公务员期刊网 精选范文 土工合成材料范文

土工合成材料精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的土工合成材料主题范文,仅供参考,欢迎阅读并收藏。

土工合成材料

第1篇:土工合成材料范文

关键词:公路工程;土工合成材料;施工技术

1土工合成材料介绍

土工膜袋、土工网、土工网垫、土工格栅等都属于土工合成材料。在制造土工合成材料时,首先需要加工聚合物原料,使其形成丝、短纤维、纱或条带,然后将其连接制作形成平面结构。有纺土工织物和无纺土工织物是按照制作方法分成的两大类土工织物材料,两者排列形式存在一定不同之处。有纺土工织物交织的方式为正交或斜交的经线和纬线,而无纺土工织物是定向随意排列然后加工形成的。土工织物的联结方式主要包括三类,分别为化学联结、热力联结和机械联结。重量轻、连续性好、施工方便、抗拉强度高、耐腐蚀、抗微生物等都是土工织物突出的特点。由于土工合成材料的抗拉力学性能较好,尤其是土工布和土工格栅,可以在工厂批量生产,质量便于控制,当前在土木工程各个领域中已经得到了较为广泛的应用。土工布在公路工程中主要用以路面罩面的形式应用,可以将路面发射裂缝发生的概率降低,有助于反射裂缝发生和发展的控制。在公路工程软土路基中,利用土工格栅还能够达到快速固结地基、地基承载力优化的效果。

2土工合成材料的基本功能

隔离、加强、排水、过滤是土工合成材料的最为基本的四个功能。在公路工程中,土工材料广泛地应用于路基排水、防护、裂缝防治等工作中。不同的材料的性能存在一定差别,但是其基本功能相差不大。

2.1隔离功能

在不同材料的交界面铺设土工合成材料能够达到隔离的作用,避免这些材料相互掺杂。通过设置土工合成材料,能够实现扩散应力的作用,从而均匀控制地基土沉降量,为地基排水固结创造有利条件。

2.2加强功能

在地下铺设土工合成材料能够实现材料和土层摩擦力的增强,进而将拉伸强度提高。通过铺设土工合成材料,能够约束材料变形,增加土工合成材料复合体在外表上层的强度,达到下沉效果抑制的作用。

2.3排水功能

多孔隙透水是土工材料的特点之一,在土体内部埋设土工合成材料能够借助材料的平面渗透性将土体中的水分排出,让内部水沿着垂直于平面的方向流动。

2.4过滤功能

相比于过去天然骨料过滤层,土工合成材料的过滤排水作用、功能形态都有着很大的改善。土工合成材料可以利用被过滤土层中形成的滤饼层打到过滤的效果而不是利用自身的透水性进行过滤。换言之,土工合成材料并不需要自身具备较强的透水性,通常只要是相邻土透水系数的十倍就可以满足工程过滤功能的要求。

3土工合成材料在公路工程中的应用

3.1路堤加筋及软弱地基的处理

如果公路所在地区为软土地基,那么在高填土路堤施工中会导致表面受到侧向土压力的影响出现水平剪应力,进而可能发生路堤位移、失稳等不良现象。通过在路堤中使用土工合成材料可以利用加筋作用将路堤的稳定性有效提高,从而将路堤不均匀沉降问题大大减小。通常可以在堤身底部铺设土工合成材料完成加筋工程施工。其中土工格栅嵌入到土体中能够紧密贴合土体,利用自身较高的强度以及材料和土体的膜材料实现路堤或者软弱地基强度优化的效果。热熔挤压方法也是制作土工格栅的一种常用方法,和冷拉格栅相比,热熔挤压方法制作的格栅各项性能有所降低,所以在质量要求较低的公路工程中可以应用热熔挤压土工格栅。近些年土工格栅材料也在不断改进创新,当前有一种纤维土工格栅主要是由涤纶或者玻璃纤维制作而成,有着较强的强度和较低的延伸率,在公路工程中可以发挥良好的效果。

3.2台背路基处理

桥涵、隧道等是公路工程建设中常见的构造物,在此类建筑物修建时如果没有合理处理台背路基填土很容易导致刚度出现较大的差异,进而导致台背出现不均匀沉降的问题,久而久之,路桥结构稳定向降低,桥头跳车问题严重。在台背路基处理中合理地应用土工合成材料能够将回填材料和构造物形成一个整体,将不均匀沉降问题发生的概率大大降低,从而将公路工程的施工质量提升。当前土工泡沫聚苯乙烯块是公路工程台背路基施工处理中常用的材料,它能够填筑或者换填台背路基材料,可以将路基的自重大大减小,有助于路基稳定性的改善,降低发生桥头跳车的现象。

3.3路基防护

公路工程中路基是非常重要的一部分内容,路基防护主要包括两方面内容,一是冲刷防护,二是坡面防护。对于土质坡面的防护措施常用的包括拉伸网草皮、固定草种布以及网格固定撒种等;在防护岩石边坡时常常采用的防护方式包括土工网或土工格栅;在防护沿河路基时常常采用的防护方式为土工织物软体沉排、土工模袋。通过冲刷防护能够将路基稳定性提升,通常可以采用直接加固的方式急性坡岸的冲刷防护。另一种间接防护主要是将水流的方向、速度等进行干预。当前土工网垫、土工格室、土工格栅等都是常见的路基防护措施。土工网比土工格栅强度低,但是有着更小变形量,所以此类交叉黏结的复合土工材料在坡面防护中得到广泛应用。在路基冲刷防护工程中应用土工网需要配合填充土石、混凝土材料等,将其刚度和侧限提升,保证结构整体的稳定性。

3.4排水

排水是公路工程中非常关键的一项工作,其直接影响着公路结构整体稳定性。在公路防排水施工中,土工合成材料能够将结构的排水能力改善和提升。将土工合成材料应用于公路工程中能够充当排水体和过滤体,当前土工复合材料、土工模袋等常常在暗沟、渗沟中应用,是公路稳定性提升、路基排水性能优化的常用方法。在应用土工模袋时,需要在模袋中灌入混凝土或砂,使其形成具有一定透水性和强度的结构,在地基或者护坡中可以应用此结构。和设置泄水孔相比,土工模袋的施工更加便捷,并且反滤和排水效果更好。可以用薄形的土工织物包裹土工复合排水材料,实现土工织物排水性能优化、降低排水结构内部渗透入小颗粒的概率,避免阻塞排水通道。在路基路面纵横向排水系统中或者支挡结构墙后的反滤排水系统中可以应用复合土工排水材料。

3.5对新、旧路基衔接应用

公路工程改扩建施工各种常常需要进行新旧路基路面的衔接,在结合位置非常容易出现的一种现象就是不均匀沉降。可以说,不均匀沉降已经成为困扰公路改扩建施工的一大难点。如果施工人员没有合理处理新旧路基接合位置,一旦在后期运行中发生错台现象就会进而造成开裂,对公路质量安全产生严重不良影响,甚至引发交通事故。为了将不均匀沉降问题尽量减少,需要合理处理新旧路基交接部位。首先需要处理新路基部分,然后按照台阶形状挖掘原路基,开挖按照0.5~0.8m台阶高度、1.0~2.0m台阶宽度逐级完成,到最后一级台阶宽度应当≥2m。然后将土工合成材料顺着路线铺设,将其铺平扯直,避免重叠、扭曲、褶皱。新路基铺设的土工合成材料长度大于2m从而实现土工合成分别落在原路基和新路基尚,尽量保持新就路基填料一致。采用分层填筑的方式填筑台阶,逐层压实。

3.6对隧道内的路面应用

隧道内岩层局部会存在较高的水位和较大的水压力,容易出现地下水反渗的情况,如果没有采取有效的排水设施,那么长此以往会导致路面遭受地下水的浸泡腐蚀,影响路面结构。隧道路面的结构层大多为混凝土材料,基层防水性不佳,将土工合成材料铺设在混凝土路面和基层之间,同时做好排水管的设置可以有效避免地下水对路基产生侵蚀,降低地下水对路基路面的影响。土工合成材料能够将反渗的水绕到两侧排水沟中将路面干燥性提高,保证通车安全。

4结语

在公路工程中,土工合成材料能够解决很多施工中的难题,能够达到排水、加固、隔离等诸多效果,有助于工程成本的控制,有助于施工效率和工程质量的优化。当前土工合成材料已经在很多公路项目中应用,取得了良好的效果。在未来发展中,应当进一步改进创新,提升土工材料的各项性能。

参考文献:

[1]马凌,蒋朝旭.农村公路水泥板块“白改黑”界面材料性能研究[J].中国公路,2020(20):106-107.

[2]李晓朔,黄敬云.高速公路路基施工中土工格栅技术的应用[J].交通建设与管理,2020(05):92-93.

[3]郑祥增.土工合成材料在公路工程施工中的应用的探讨[J].四川水泥,2020(09):148-149.

[4]孙守宝.加宽土工格栅加筋施工技术在公路路基中的应用[J].四川水泥,2020(03):36.

第2篇:土工合成材料范文

【关键词】加筋;土工合成材料;加筋土挡墙;加筋土坡;加筋土垫层

1、概述

土工合成材料是一种新型的岩土工程材料,是岩土工程应用合成材料产品的总称。土体的抗拉强度为零,使用加筋技术就是在土体中的拉伸变形区按一定方向铺设筋材,这些较高拉伸模量和抗拉强度的筋材就构成一种复合材料,从而以增强土体的强度和稳定性。近些年来,土工合成材料加筋技术已广泛应用于水利、公路、铁路、港口、建筑等部门的岩土工程中。

2、加筋技术机理

(1)扩散应力,加筋垫层的刚度较大,有利于上部荷载扩散并较均匀地传递到地基土层上;

(2)调整不均匀沉降,加筋垫层加大了压缩层范围内地基的整体刚度,便于调整地基变形;

(3)增大地基稳定性,加筋垫层的约束,限制了地基土的剪切、侧向挤出及隆起。

3、土工合成材料加筋技术的工程应用

3.1 土工合成材料加筋技术在公路工程中的应用

作为试验工程,我国某高速公路k81+80~k81+180路段,采用了粉喷桩结合CE131土工格网进行软土地基加固,结果证实明显减少了路基的沉降量。后来工程施工中,采用水泥粉喷桩处治某高速公路 k127+305~k127+650 路段的饱和软粘土地基,在桩顶铺设一层砂砾垫层和一层土工布,再铺设两层土工格网,土工合成材料(土工布、土工格网)层间填土。我国较早使用桩承土工合成材料加筋垫层法的工程实例是南—昆线永丰营车站的软土地基加固,当年初原站场路基竣工后不久,就发现线路左侧水田隆起,路基多处变形严重并下陷开裂,多处浆砌片石护脚墙损坏。经勘探后查明,地基硬壳层下分布多层淤泥质粘土及层间硬粘土层,其下更有一个较厚淤泥质粘土层,地基变形正是由于此两层淤泥质粘土含水量大、各项物理力学指标极低导致。为确保铺架工期及考虑地层的复杂性和特殊性,决定采取三项加固措施:(1)线路向右侧移动30 m;(2)采用粉喷桩加固软土地基,减少桩的数量和深度;(3)为增加路基早期稳定性,加快填土速度,可以增设2~3层CE131型土工格网于软土区的路堤下部。对该段公路从填土开始到通车后的两个阶段进行了总共为时38个月的观测,观测结果表明,沉降和位移值都在设计范围之内,而且在填土达到设计标高10个月后不再有较大的发展,说明路基已趋向稳定。全站路基填土只用了4个月,为全线铺轨赢得了工期。这些工程实例都表明,应用土工合成材料加筋技术可处理复杂地基,缩短工期,经济效益高。

3.2土工合成材料加筋垫层作地基处理

本例为一座直径15m的钢筋砼圆筒仓,仓的基础为埋深-3.5m、直径20m的钢筋砼整体筏板。根据地质勘探资料,第2层粉质粘土层为持力层,fk= 230kPa,地下水位约在地下2m左右。根据设计提供资料,0.00m以上结构向基础传下总荷载90000kN,基底压力P = 357kPa。而该持力层地基承载力设计值为f,经计算为309kPa。由于P>f,说明选用-3.50m处作持力层的天然地基方案不能满足要求。该工程的处理方法则是,必须改用桩基等深基础方案, 或进行地基处理。经分析研究,决定采用土工合成材料加筋复合碎石垫层进行地基处理的方案。设计选用厚度为2.00m的加筋复合碎石垫层,施工过程中,每碾压0.50m的碎石垫层铺设1层土工筋带,共铺三次。

本工程加筋复合碎石垫层的主要施工工艺有:碎石垫层铺压和土工筋带布设。

3.2.1 碎石垫层施工

首先确定材料要求及最佳配比,图纸设计提供材质及配比参考: 2~5cm耐风化的硬质砂岩、灰岩等碎石,可掺入30%中粗砂,砂石含泥量不大于5%以保证碾压密实。

施工要点:(1) 清理干净基底表面浮土、淤泥、杂物,并做好排水措施。(2)将计量好的各组分材料搅拌均匀后,运入坑中,并逐层铺设碾压。每次铺厚度不应小于300mm,按标高进行摊平,每500mm层分两次施工。选用12t振动压路机进行碾压,先振动碾压1遍,然后再往返压实5遍。要求不得漏压,碾压轮迹前后次至少要重合一半,直至碾压到两次的沉落差小于1mm才停止该阶段的施工。(3)圆柱边缘部分碾压的密实性在施工中是很重要的一个环节,而碎石垫层设计上为圆柱体,从受力角度看是无须满坑充填,加之土方开挖时会造成边坡放坡,故要注意在边缘部分用袋装碎石围堵,装袋时不要太满;而且在压实前用粘性及含水率较好的土进行回填夯实,与碎石垫层同标高。

碎石垫层压实度的检验分析。采用大密度法检验垫层的压实度。根据要求,最大干密度应该大于20.5~21kN/m3,压实系数应不小于95%, 即试验干密度要达到19.5kN/m3以上。本工程面积为452m2,根据要求,检验点数多于1个/100m2,每500mm层厚需要检验5点。通过20点检验数据来看,以上的材料配合比和施工方法是完全可以满足的,许多抽样点干密度在22kN/m3左右,超过设计要求。经分析对比,影响干密度数据的因素有:各组分的级配, 干密度偏低一般是有细骨料含量大于试配的最佳级配含量造成的;含水量, 碾压法中良好的含水率,是自然状态下骨料含水量在8%左右。碾压时,干密度偏低可能是碎石含水率过大导致的。

3.2.2土工筋带的施工

(1)材料要求。本工程土工筋带选用产自重庆永固工程拉筋带厂的高分子塑料钢塑筋复合拉筋带, 筋带规格为宽×厚=50mm×2.5mm ,内含单排32根细钢丝,标准其拉强度与断裂延伸率分别达到120MPa和1.7%以上,筋带分散层布置,呈间距250mm×250mm的方格状。为了均匀扩散应力,注意每层铺设方向相对于下一层方向旋转60度。

(2)施工工艺。必须保证基层干净、平整才能进行筋带铺设布置,可用砂找平表面凸凹不平的部分,并撒上灰线以确定铺设位置;铺设时保持筋带平整的自一端向另一端进行,松紧适度,防止褶皱、卷曲,按设计要求将端部用袋装碎石压好,卷回钉好土工筋带并压袋,卷回长度不小于1.5m,钉子不少于3 根,在纵横交叉点每间距500mm钉钉固定,筋带在中间的搭接长度不小于1m,并用3根钉连接;然后铺20mm厚砂保护筋带, 以防止碎石对筋带造成顶破、穿剌、擦伤等;而且,为了防止筋带暴露暴晒,应该尽快施工上层碎石垫层,。

4、结语

土工合成材料加筋技术引入我国才接近30年的时间,但发展迅速,已经广泛的应用于很多部门多个方向, 在实际施工中,如在青藏铁路工程、长江防波堤、重庆加筋岸壁、京沪铁路客运专线等工程的兴建中已广泛应用加筋技术,并取得很大经济效益和社会效益。当前土工合成材料无论从品种还是质量上都有了很大的丰富和提高,这都离不开对该技术的深入研究和实际应用的总结,近年来的土工合成材料应用技术规范的国家标准和行业标准就是在大量总结研究的基础上颁布的,而这些标准的颁布也标志着此项技术走向成熟,可以获得进一步的推广。但是,由于起步时间较晚,加之应用领域广, 国内应用加筋技术的现实情况仍然是理论落后于实践。目前还存在一些亟需解决的问题:材料控制仪器和测试方法还未统一;对土工合成材料与土相互作用的机理不能说完全清楚;设计方法有的还不够完善;试验和观测还有些技术困难等。这些问题还有待继续深入研究和交流合作, 来充实、完善、提高土工合成材料加筋技术。

参考文献:

[1]姜晔.土工格栅在码头陆域软基处理中的应用[DB?OL].中国土木土工合成材料交易网—应用文库,2012,3.

[2]刘汉龙,吴维军.土工织物加固堤防非线性有限元分析[J].岩土工程学报,2003,24(1):79282.

第3篇:土工合成材料范文

关键词: 土工合成材料 加筋土挡土墙 设计 破坏

中图分类号:TU476+.4文献标识码: A 文章编号:

1 挡墙的破坏形式

土工合成材料加筋土挡墙的破坏形式主要有三类: ①外部稳定性破坏; ②内部稳定性破坏; ③加筋土挡墙的变形破坏。目前国内外加筋土挡墙的设计主要是基于①、②进行稳定性验算的。

外部破坏一般表现为结构的整体失稳、倾覆等, 其力学行为与重力式挡墙相似, 破坏的主要表现形式有平面滑动、倾覆破坏、地基破坏和深层滑移。内部破坏发生在加筋土体的内部, 主要表现为拉筋材料的拉断破坏、拔出破坏以及由于拉筋和面板连接处的局部应力超过构件的构造强度发生的连接件破坏。变形破坏是指加筋土结构虽未发生整体失稳, 但由于其变形过大而丧失正常的使用功能, 主要包括加筋土挡墙墙面的过大变形和地基的沉降破坏两种形式。在实际工程中, 加筋土支挡结构的破坏往往表现为综合性的破坏,各种破坏形式互相交叉、互相转化。

2 设计方法概述

土工合成材料加筋土挡墙的设计方法很多, 但可归纳为极限平衡法、极限状态法和有限单元法三种。极限平衡法和极限状态法是用于分析加筋土挡墙极限破坏时的稳定安全系数, 有限元法则用于分析加筋土挡墙在工作应力状态和极限破坏状态时拉筋材料的拉力分布与土体变形情况。一个完整的加筋土挡墙的设计分析应包含极限平衡分析、工作应力状态分析及墙体变形量的估算等内容。

2.1极限平衡法

目前, 土工合成材料加筋土挡墙的设计方法普遍采用极限平衡分析方法。该方法是对加筋土挡墙进行稳定性验算, 即分析计算墙体整体结构内、外部稳定破坏所需的拉筋材料强度及应力分配。外部稳定性设计分析是将加筋土体视为具较高强度的复合土体, 再依据传统重力式挡土墙外部稳定性设计分析方法进行计算。内部稳定性设计分析是以锚固楔体法为基础的设计方法, 先假设侧向土压力分布状况, 再计算不同深度处平衡该侧向土压力所需的拉筋材料的强度及应力分配。

德国建筑研究所的DIBt ( Deutches Institutefur Bautechnik) 设计方法已在欧洲广泛使用, 并流行到其它地方。该方法基于锚固楔体法, 但其又有自身的特点。加筋土体墙背侧向土压力设计采用库仑土压力理论, 土体强度采用有效内摩擦角, 基础承载力则采用Meyerhof 分布形式。计算时考虑了改进的太沙基承载力公式, 且考虑由主动土压力产生的合力偏斜作用。内部稳定型分析采用双楔体法, 先估计拉筋的布置, 只着重考虑拉筋的拔出破坏, 采用的破裂面是折线型的,假设滑动面上部沿加筋体边缘且在墙面的不同高度

处, 每隔3°即有一个计算面。此外还有两种特殊的面,在两层拉筋之间而不与拉筋相交的面以及滑动面为拉筋面, 见图1、图2。按照以上各个不同的计算面来验算拉筋的拔出稳定性, 从而确定拉筋的布置。

极限平衡法简单、易行, 所以设计单位多采用该方法。但是由于极限平衡法需要对拉筋、土体、滑动面做出许多假定, 加上人为隔离强度与变形, 与实际情况差异较大, 导致极限平衡法计算结果精度较差, 只能将极限平衡法看作半经验半理论的方法。因此, 通过积累工程经验和进行试验研究、理论分析, 对极限平衡法进行合理的修正, 使其更接近工程实际。

2.2 极限状态法

在极限平衡设计方法中, 直接以土的峰值强度( 或残余强度) 为指标, 给定一个保证结构不发生破坏的总体安全系数, 没有或很少考虑结构的变形。而对于广泛应用的土工合成材料加筋土挡墙来说, 如果在设计中不考虑其变形, 显然是不合理的。

极限状态法自20 世纪80 年代在结构工程中开始使用, 90 年代在岩土工程得到应用。在极限状态法中, 一个特点是同时考虑强度和变形, 即临界极限状态ULS( ultimate limit state) 承受静载荷与活载和功能极限状态SLS( serviceability limit state) 。另一个特点是引入风险系数( 即分项安全系数) 来代替整体安全系数。对基于极限状态设计方法的土工合成材料加筋土挡墙来说, 一是可以考虑不同极限状态下的各种材料之间的应变兼容性, 同时还可以考虑内外部环境对材料耐久性的影响。

随着土工合成材料在加筋土结构中的应用和发展, 其特殊张拉应变特性要求设计上将加筋土结构的边界变形及内部应变协调性直接( 而不再是间接) 作为设计准则来控制和评价结构设计。极限状态设计法的设计思想因此应运而生, 其核心是引入了临界极限状

态分析、功能极限状态分析以及分项修正系数PF( Partial Factors) 的概念。规范BS8006(1995)/FHWA(1997)/AASHTO(1997)/NCMA(1997)等部分采用了极限状态法的思想或在不同程度上已初步解释了极限状态设计法以及分项修正系数的概念。按照BS8006, 对平面状或条带状拉筋材料的加筋土挡墙来说, 其设计方法分为锚固楔体法与粘结重力式法( Coherent Gravity) , 采用的方法与拉筋材料的延伸性有关。BS8006 规定在所有设计情况下, 分项安全系数在考虑完全破坏的极限状态下其值应> 1.0, 若改为功能极限状态, 则其值为1.0; 设计荷载则由土体及拉筋材料的复合性质来提供阻抗能力, 土体强度乘以分项安全系数则为设计强度。拉筋材料若为金属时, 其设计强度

仅需将材料极限抗拉强度除以分项安全系数即得; 至于土工合成材料拉筋, 则需将拉伸蠕变断裂强度与拉伸蠕变应变控制强度分别除以分项安全系数后, 取最小者为设计强度。

2.3 有限元分析方法

土工合成材料加筋土挡墙的有限元分析是一个十分复杂的问题, 涉及到填料、拉筋、地基以及拉筋与填料和拉筋与地基的相互作用等因素。土工合成材料加筋土挡墙的数值计算方法主要分为三类: ①将拉筋单元与土单元分开考虑, 拉筋单元与土体单元之间设接触面单元; ②拉筋与土体合成为一体, 作为复合材料考虑;③将拉筋作为外荷载考虑, 直接作用在土体单元上(仅土体单元)。与极限平衡法相比, 有限元分析的优越性是将加筋土挡墙的变形协调和应力平衡结合在一起, 克服了传统的极限平衡法将两者完全分开的局限。该方法不仅能计算出土体中各点的位移、应力、应变和应力水平, 提供受荷后土体与拉筋的应力场和位移场,还能在计算中考虑土体的非均质和非线性、土体与拉筋随时间的变化、施工程序和荷载变化情况, 而且还可以模拟某些复杂性质和过程。这些都弥补了极限平衡法的不足, 但是由于有限元法的参数需要进行复杂的试验来确定, 加上难以对破坏进行定量的判断, 限制了有限元法在实际工程中的应用。

第4篇:土工合成材料范文

【关键词】土工合成材料 应用现状 发展趋势

中图分类号:TU3文献标识码: A

土工合成材料是近几十年发展起来的一种新型岩土工程材料。它以人工合成的聚合物,如塑料、化纤、合成橡胶等为原料,制成各种类型的产品,置于土体内部、表面和各层土体之间,起着加强和保护土体的作用。虽然土工合成材料问世历史不长,然而整个土木工程却因之发生了巨大变化,许多土木工程领域中的新概念也应运而生。土工合成材料是一种多功能的材料,利用合成纤维高强性、整体连续性、良好水理性和抗腐蚀等特性,可开发成透水的工程材料。目前已在水利、公路、铁路、工业与民用建筑、海港、采矿、军工等工程的各个领域得到广泛的应用。

一、土工合成材料的种类

土工合成材料(Geosynthetics)是一种新的岩土工程材料,它以人工合成的聚合物,如化纤、合成橡胶等为原料,制成各种类型的产品,置于土体内部、表面或各层土体之间, 发挥增强或保护土体的作用。“土工合成材料”是一概括性术语,标识很广泛的产品,土工合成材可分为土工织物、土工膜、复合型土工合成材料和特种土工合成材料等类型。目前已广泛应于水利、水电、公路、铁路、建筑、海港、采矿、军工等各个领域的工程建设。

1、土工织物。土工合成材料是以高分子聚合物等制成的新型建筑材料。目前大致可分为:(1)有纺土工织物;(2)针织土工织物;(3)无纺土工织物;(4)复合土工织物。

2、土工膜。它主要是由透水性低的聚合物、沥青以及合成纤维和织物另加一定的填充料和外加剂制成的材料。它具有很好的防渗和防水性能及很强的抗变形能力和耐久性。它的厚度一般为0.25~7.50mm,它主要有以下优点:(1)改进荷载分布状况;(2)减少填料层厚度,并能满足抗剪强度的要求;(3)限制土体的侧向位移;(4)抗拉性能高,能避免产生裂缝;(5)增加土层刚度。

3、复合型土工合成材料。它包括土工格栅、土工网、超轻型土工合成材料、土工膜袋、土工垫、土工格栅等。常用的土工合成材料为前3种。

4、特种土工合成材料。土工特种材料包括土工格栅、土工带、土工格室、土工网、土工石笼、土工管、土工模袋、三维网垫、E P S 等, 均由聚合物按需要分别以不同加工方法制成。如土工格栅是聚合物片材经冲孔和单向或双向拉伸,形成具有条格形或长方形格栅状的抗拉材料;土工带由聚合物经挤压拉伸,再加筋材复合制成的条带抗拉材料;土工网由聚合物经挤塑成网或由粗股条编织或由合成树脂压制成的具有较大孔眼和一定刚度的平面结构网状材料;土工模袋由双层化纤织物(织造型)制成连续的不同间距(厚度)的平面袋状结构材料。

二、工材料应用现状

1、加筋

(1)加筋土坡

将土工合成材料(土工格栅或土工织物)加入土坡中可以起加筋作用。就加筋功能而言,同针织土工织物相比,土工格栅和有纺土工织物可以在较小的应变下发挥作用,针织土工织物则具有土工格栅和有纺土工织物所不具有的土工合成材料平面内的透水性。在实际应用过程中,可将不同的土工合成材料组合使用,使得加筋效果更加良好。例如可将针织土工织物与土工格栅叠合铺设、针织土工织物与有纺土工织物叠合铺设结合,具有加筋和排水功能;土工合成材料作为土坡内排水系统(竖向和水平向)和土工格栅、有纺土工织物结合。土工合成材料在加筋土坡中的应用前景是将土工合成材料作为含有活性炭纤维的载体,使土工合成材料成为具有导水性的填充聚合物或金属纤维。从而,通过电泳、离子转移和电渗改善加筋区内细粒土的性质。

(2)加筋土挡墙

与加筋土坡类似,加筋土挡墙可以形成直立墙面。加筋材料可以是土工织物,但采用更多的是土工格栅。土工合成材料在加筋土挡墙中的应用前景是在锚固区设置聚合绳、条带和锚具(或土钉),将墙面单元通过加筋体锚固在锚固区。实质上,这一概念在20 世纪80 年代在我国的加筋土挡墙上已经采用。如果加筋土挡墙距岩体较近,也可以将锚具(或土钉)锚固在岩石上。

2、排水

土工织物主要是无纺织物,是良好的透水材料。无论是织物的法向或水平向,均具有较好的排水能力,能将土体内的水积聚到织物内部, 形成一排水通道,排出土体。较厚的针刺无纺土工布和一些具有较多孔隙的复合土工布都可以起排水作用。在岩土工程中很多情况下需要采取排水措施, 以降低渗透压力,或加速土体的固结,或降低无压渗流场的浸润线的位置。过去所采用的常规措施是在适当的部位(如两种透水性不同的土层的交界面,或土料与混凝土建筑物表面的交界面等)铺放在碎石层进行排水。用土工织物则可取代这种碎石层。这种取代不仅可以收到排水效果,而且施工特别简单(特别对倾斜或垂直方向的施工面) ,工程造价也可以大为节省。可用于土坝内垂直或水平排水,土坝或土堤中的防渗土工膜后面或混凝土护面下部的排水,埋入土体中消散孔隙水压力,软基处理中垂直排水,挡土墙后面的排水等。

3、防渗

(1)混凝土坝防渗

在混凝土坝的上游面粘贴土工膜。沿垂直方向每隔2 米设一水平不锈钢槽,以夹紧土工膜。该方法的改善是先在混凝土坝上游面设置土工网格,然后将土工膜粘贴在土工网格上。由于紫外线和氧化作用,土工膜的寿命受到限制。如遇高温,这些作用对大多数聚合材料的影响非常大。这方面的发展前景应是开发改善型的聚合材料,以提供寿命更长的土工膜。

(2)隧道防渗

现行的方法是将土工膜用于永久性混凝土里侧的防渗体,与克重较大的针刺非织造土工织物一起,将水导入设在隧道底脚的排水出口,形成封闭的排水系统。然而,土工膜及其下面的土工织物的布置是很困难的。土工合成材料会从临时的护顶下垂,在永久性混凝土衬砌施工时容易遭到破坏。土工合成材料应和永久性混凝土衬砌同时施工,以避免在永久性混凝土衬砌施工时损坏土工合成材料。将来的发展是开发寿命在100 年以上的土工合成材料,以抵抗隧道周围的不利环境,因而施工方法的改进和材料的寿命是最关键的问题。

4、隔离

将土工合成材料放在不同的材料之间或同一材料不同粒径之间及土体表面与上部建筑结构之间,使其隔离开来。当受外部荷载作用时,虽然材料受力互相挤压,而由于土工织物在中间隔开,不使互相混杂或流失,保持材料的整体结构和功能。隔离用的土工织物必须有较高的强度来承受外部荷载作用时而产生的应力,保证结构的整体性。可用于道路基层与路基之间或路基与地基之间的隔离层,在土石混合坝中隔离不同的筑坝材料,用作坝体与地基之间的隔离体,堆场与地基间的隔离层等。

工程土工合成材料的发展趋势

目前国内一些较大的工程,跨世纪工程中均不同程度地应用了土工合成材料。如长江三峡工程,长江口深水航道整治工程,上海浦东国际机场等,由此可以看出中国正成为土工合成材料应用与销售的最大市场。世界各国对中国土工合成材料的应用与发展都十分关注,积极筹划将设备和产品打入中国市场,这也充分说明中国土工合成材料市场的潜在能力很大。虽然近几十年来土工合成材料总的发展趋势是不管在产品的种类、数量和质量上都有大幅度的提高,而对这一新型材料的认识和应用还不普及,土工合成材料的利用和研究还比较少,有些材料的品种还是空白,与世界上的先进国家相比,还有一定的差距。但是随着工程建设的大规模发展,土工合成材料的推广应用必将在工程建设中得以迅速发挥,发挥巨大的经济效益和社会效益。

四、结束语

土工合成材料具有其独特的力学性能,应用范围广泛,各类土工合成材料已经应用到水利、土建所有的领域中。在某些种类的特定工程中应用土工合成材料,不仅可以减少造价,而且效果都优于其他材料。

参考文献

第5篇:土工合成材料范文

关键词:土工格室 高速公路 软基处理 桥头跳车 应用

0 前言

土工格室作为一种新型的合成材料,在八十年代末九十年代初,欧美等国家就开始了大量的研发工作,并经试验和现场应用证明在提高一般填土承受动荷以及路基防护方面均有很大的功效。我国在九十年代初在吸收国外先进经验的基础上,开始了土工格室的开发研究工作,并在道路基床病害整治,固定松散介质的应用方面取得了重大突破。随着人们对土工格室特性的进一步了解,已经发现其具有其它土工材料(土工布、土工膜、土工格栅、土工模袋、土工网等)不可替代的优势,使其在诸多领域有着独特的应用前景。

1 土工格室的基本原理

土工格室之所以具有卓越功效而受到工程界的关注,还应从其基本原理说起。国外文献中在描述其原理时称其为“一种蜂窝状三维限制系统,可以在很大范围内显著提高普通填充材料在承载和虫蚀控制应用中的性能。”它的关键原理就是三维限制。大家都知道,当汽车行驶在沙漠上时,就会压出两道深深的辙印,被压部分深深下陷,车辙两侧会高高隆起。后面的车辆如果继续沿着车辙前进,沉陷部分会进一步下沉、隆起部分会进一步隆起,直到隆起部分蹭到了车底盘、沉陷的车辙埋没了大半个轮子,进而无法前进。之所以如此,就是因为当外荷作用于地基表面时,依据普朗特尔理论和泰勒理论可知:在集中荷载的作用下,主动区1受压下沉,并将力向两侧分解传递给过渡区2,过度区2又传给被动区3,被动区就会毫无限制地发生形变而隆起。也就是说,载荷一旦作用于路基,在载荷的下方就会形成起契状的主动区域,它又通过过渡区域进行挤压,从而使被动区域发生隆起。也就是说,通过沿滑移线的剪切力和移动主动、过渡、被动三个区域的力决定了地基的承载能力。不仅在沙基地上可以十分明显的体会到以上原理的真实过程,在软基公路上也会找到这种的样板,只不过其形成的速率较之在砂上的变化慢些罢了。即使较好的路基材料也仍然无法避免其横向移动。一般的高速公路路基都高出地面好几米,吸水翻浆不太容易,但长期沉降依然存在。究其原因,雨水透、材料流失、基地下沉是其中部分原因,路基路面在车轮荷载长期碾压、振动力的作用下,材料向路基断面两侧横向位移不可否认是另外一个十分重要的原因。以我省各地各级公路为例,都有在该路的主行车道上可以明显感觉到路面已经被压出了一条“S”型沟状带。部分高速公路也不例外,汽车行驶在行车道上的颠簸明显强烈于行驶在超车带上的感觉,在道桥连接段尤为明显(俗称“桥头跳车”)。这种沟状路基沉降就是路基材料横向滑移的典型。

工程中常规处理路基的方法无需赘述,其目的就是提高地基材料的抗剪力和摩擦力,减少或延缓地基材料在荷载的压力或震动作用下发生移动的能力,因而工程中对材料的要求必然有许多苛刻的限制,如果不能就近获取所需材料,就需要外购这些材料,购买材料的费用和运输费用占去整个工程成本的很大部分。而使用土工格室就可以就地或就近取材,甚至可以使用在常规情况下不能使用的材料,从而大幅度减少材料购置费用和运输费用。为什么会这样呢?土工格室承载情况示意:在集中载荷作用下,受力的主动区1依然会把所受的力传递给过渡区2,但由于格室壁的侧向限制和相邻格室的反作用力,以及填料与格室壁的摩擦力所形成横向阻力,抑制了过渡区2和被动区3的横向移动倾向,从而使路基的承载能力得以提高。经过试验,在格室的限制作用下,中密砂的表观粘聚力可以增加三十几倍。很显然,如果能增加路基材料的抗剪力或抑制三个区域移动就可以取得提高地基承载力的效果,这就是土工格室的限制原理。

大多情况下格室内充填砂砾或碎石等非粘性材料,因此,土工格室加固层又是一个水平排水通道,可加快饱和土固结过程中空隙水压力消散速度,从而加速土体的固结。总之,土工格室具有垫层、加筋、排水、调节应力及变形,提高土体抗渗能力的综合功效。

2 土工格室的施工方法

土工格室作为一种新型的土工合成材料。施工快捷、方便、省力,整平施工场地,清除杂物。铺设施工垫层并压实,然后铺设土工格室,铺设中要尽量拉紧,不得有皱。及时用填料填充格室内并压实,同时观测格室变形和检查密实度。最后修正边坡完工。

3 土工格室在公路建设中的应用

3.1 沙漠筑路应用

早在1994年,西安公路学院与华北石油管理局筑路工程公司合作,使用华北石油管理局橡胶制品暨防腐技术研究所研制的土工格室,进行了沙漠筑路应用研究,重点研究了土工格室填充塔克拉玛干沙漠筑路的主要设计参数--抗压回弹模量。研究结果证明,所获得的抗压回弹模量达190-210MPa,完全满足路基设计要求,而且土工格室填沙结构层比天然砂砾结构层减薄约10cm,可以就近取材。1995年应用此项研究在塔里木沙漠永主性石油公路塔中四-民丰南段10Km的线路上全面使用土工格室填沙法构筑路基垫层。所测得的路表弯沉值为49-64,均小于允许弯沉值(允许弯沉值为80),回弹模量为206.19-273.97MPa,平均值为239.58MPa,说明格室固沙所获得的整体强度明显大于级配砂砾层的强度,而且所有层位的压实度检测都满足规范要求。所节省的常规路基材料费用和运输费用,使筑路成本降低50%,所使用的工期也比常规方法缩短60%。

3.2 软基处理

1997年,辽河油田勘察设计院海洋工程研究院,在滩海潮间带临探道路进行了土工格室筑路试验,更进一步证明了土工格室在解决沉降方面的独到功效。该地区黄海高程1m以上,涨潮水深近1m,地基承载力仅110MPa,上有10cm以上的淤泥。他们采用华北石油管理局橡胶制品暨防腐技术研究所生产的20cm高土工格室两层,配合土工布作路基底层,下层格室内填粗砂、砾石,上层内填矿渣,两边用山皮石作路肩。经过潮水浸透自然沉降以后,无需碾压即可行走大型重载翻斗车。经过四个多月、每日近百车次(单车重量15t-30t)的碾压和每天两次潮水的冲刷,整体沉降不足10cm,而且基本停止继续沉降,平均弯沉值113.3(允许弯沉值143),反映了格室、矿渣路面结构强度高、整体性好、荷载均匀扩散能力强的特点。从他们在这次试验中所作的土工格室筑路与常规使用山皮石填海筑路两种方案的经济效益和社会效益分析中可知:使用山皮石筑路每公里造价在400-500万元之间,工期30-40天,每公里需要3600个运输台班,每公里占地20万m2。而用土工格室(双层)筑路,造价在100-130万元,工期7天左右,每公里运输台班310个,每公里占地近7000m2。两者差距之大令人惊叹。减少车辆行驶污染、减少石料用量、减少填料对海洋的污染,特别是具有养殖价格的滩涂地区,其环保、经济效益更为可观。

3.3 湿陷性黄土地区、高填方路基填挖连接段

与其它地域相比,西北地区公路方面应用此项新材料、新工艺相对落后。可喜的是2000年在连霍国道馋兰高速公路、国道109线白兰高速公路的施工中,为了克服高填方路堤湿陷性黄土固结沉降从而引起填挖结合部出现的裂缝,采取在填挖结合部强夯加铺土工格室的处理措施,解决挖填连接段路基不同速率沉降层的衔接问题。经过实践证明,其效果非常明显。2002年,兰临高速公路、尹中高速公路均属粉性土壤,干旱缺水,因此,均采用在路面底基层或底基层下垫层加铺土工格室,处理挖填连接段、半挖半填段差异沉降,效果明显。可见,土工格室在公路中的应用范围很广,应用前景很好。

3.4 处理桥头跳车

2001年,兰州交通厅与长安大学公路学院合作完成科研项目,在连霍国道古浪至永昌高速公路全线桥梁均采用土工格室制作差异沉降过渡段,专门治理“桥头跳车”的通病。由于全线粉性土、砂性土居多,使用了10cm(高)×40cm土工格室,每个桥头处理面积需600-800m2不等(桥的高低、图纸、坡的长短不同),每平方米造价为26-30元(使用土工格室规格不同)。使用土工格室可以省去大量灰土,工程综合造价与常规方法处理桥头跳车的造价相当,但效果和使用寿命成倍提高。

3.5 控制冲蚀的应用:护坡、堤坝

以上所举的这些例证多是利用土工格室提高承载能力。其实,土工格室的另一个重要作用是控制冲蚀,而且在国外使用土工格室控制冲蚀的应用量丝毫不亚于承载应用。应用最多的有护坡、堤坝、挡土墙、防波堤岸等等。它的原理就是增加流动能力,减少毛沟侵蚀,防止水压积聚、消除集中冲蚀。蜂窝限制结构可以固定填充材料,限制作用于其上的水压,从而改善了流动能力。蜂窝壁使正常的排水可以进行,但却控制了窝内的流动速度。如同千百个微型堤坝,将集中水流分散成均匀、舒缓的薄层水流。

4. 结语

今天,全国高速公路建设仍在高峰期,所经过地区的地质条件千差万别,需要进行大量的挖填段衔接,还有许多的道桥连接处。这些都是高速公路建设中比较难以处理的难题,虽然以前也有许多处理方法,但效果并不理想,尤其是道桥连接处的“桥头跳车”问题和路基材料在荷载作用下侧移、挤出的问题,严重影响着高速公路的使用寿命和安全。还有防护护坡,无论是用传统的浆砌、干砌或水泥混凝土网格都无法阻挡雨水对其下面土层的破坏蚀,致使高速公路的维护费用增加。如果使用土工格室护坡,配植根系发达的草种,既可固土护坡,又可绿化、保护生态环境,完全符合国家注重环保、建设绿色通道的要求。即使初期工程造价比传统方式略高一些,但其延长公路使用寿命、减少维护成本以及环保、生态等方面的综合经济效益却是功在当代、利在千秋。■

参考文献

[1]孔令伟,袁建新.强夯的边界接触应力与沉降特性研究.岩土工程学报,1998,20(2):86~92

[2]牛志荣主编《地基处理技术及工程应用》中国建材工业出版社2004年4月

[3]路基施工技术规范JTJ033-95[4]公路工程质量检验评定标准JTJ071-98

第6篇:土工合成材料范文

主要用于:堤坝的防渗斜墙或垂直防渗心墙、透水地基上堤坝的水平防渗铺盖和垂直防渗墙、混凝土坝和土坝的防渗体、渠道的衬砌防渗和施工围堰的防渗等诸多方面。复合土工膜是土工合成材料的一种,一布一膜、二布一膜、三布一膜等到不同产品。现在把防渗土工合成材料的铺设技术和防渗土工合成材料在工程施工中常出现的问题等方面进行分析和研究。

1、渗土工合成材料的铺设技术

土工合成材料自广泛用于岩土工程建设以来,在水利水电工程建设中引起不小的变革,这不仅反映在水利水电工程的材料使用上,而且反映在设计原理、计算方法、施工工艺和工程管理上。防渗土工合成材料主要用于垂直铺膜防渗和坡面铺膜防渗,因铺设结构形式的不同,其施工工艺和铺设技术也不尽相同。

2、渗土工合成材料在工程施工中常出现的问题

经常遭受石块或其它尖棱物的穿刺破坏;由于土工薄膜缺少约束支持,在承受水压力和土压力时易于被鼓破;薄膜受到下层气体或液体的顶托产生应力集中导致破坏;铺设在支撑土与混凝土面板之间的土工薄膜由于受到温度、重力、土移、浪击和水位变化等因素的影响,可能引起界面滑动,使土工薄膜产生过度拉伸,撕裂或擦伤;在斜面上用土或混凝土面板保护土工薄膜,当水位骤降时,土体中的孔隙水压力和库水位失去平衡而造成失稳滑动。只要按照施工规范和施工组织设计施工,确保施工质量,就可避免或减少类似问题的出现。

3、防渗

防渗结构设置上、下垫层的目的是保护土工膜不受破坏;下垫层尚有排水、排气作用。

铺设土工膜后,膜下仍可能因缺陷引起渗漏而积水,也可能有土中排出的气体或产生的沼气等,水、气可能顶托土工膜,危及膜的安全,尤其是在大面积的膜下,必须考虑排水、排气措施。

4、工程防渗设计与施工

对含毒矿场的尾矿坝等,有毒物质混入水体将造成环境污染,危及人、畜生命安全,必须严格防止。条文中所述措施是为了确保安全。建议渠道防渗土工膜厚度不小于0.25mm是根据多年的实践经验。土工膜太薄可能产生气孔,也易于在施工中受损,使防渗效果减小。一般生活垃圾和工业垃圾不含毒质或毒质较小,故可采用单层防渗结构。如果这类垃圾也含有毒物质,则应选用双层防渗结构。如含剧毒,甚至要求多层结构。隧道、洞室防渗应采用复合土工膜或合适的防排水材料,是因为围岩(土)中皆有渗水,必须将其通过土工织物或防排水材料流入下方纵(横)向排水沟排走,以确保防渗衬砌安全工作。

5、加筋土挡墙设计

加筋土挡墙采用的筋材有两种。因筋材的抗拉模量不同,墙内填土中的潜在破坏面相异。

目前加筋土挡墙设计有极限平衡法和有限元法两大类。由于筋材、填土以及两者相互作用的本构关系难以准确和协调建立,加之缺乏破坏准则,工程中几乎均采用极限平衡法,后者可作为一种辅助和对比方法。排水设备对保证加筋土挡墙的稳定十分重要。

6、加筋土垫层设计与施工

实践可知,加筋垫层抗深层滑动计算采用圆弧法,得到的稳定安全系数往往提高较少,表明加筋效果很不显著,实际效果却很明显。这说明现有的稳定分析方法未能反映筋材所起的全部作用。分析认为,加筋所以发挥明显作用可能与下列因素有关,例如加筋后潜在滑动面可能往深处发展,地基土的侧向位移受到部分限制以及地基中应力分布发生了变化等,而这些有利因素在计算中却未能计入,可见现有分析方法有待改进。我国铁路、公路系统目前在作圆弧滑动分析时,认为首先所加底筋应该是稳定的,即滑动圆弧不应该切断底筋,应将筋材及其上填土视为一整体,为此,潜在圆弧必然下移,稳定安全系数自然有所提高。此项考虑是否符合实际,应通过实践和积累资料来加以验证。由于筋材承受拉力才能发挥其加筋作用。所以建议回填顺序,目的是使筋材始终处于受拉状态。

7、软土地基处理中排水带设计与施工

利用排水带加固地基的目的,即是要求在预定工期内消除地基的规定预期沉降和提高地基土强度。排水带地基设计方法与传统的砂井地基设计相同。利用砂井计算方法时应将排水带断面转化为当量砂井直径。砂垫层所用应为洁净砂料,以保证排水通畅。存放排水带需加封盖,是为保护其不变坏。

第7篇:土工合成材料范文

关键词:桥头跳车;台背回填;高填台背

中图分类号:U445.7 文献标识码:A 文章编号:1006-8937(2016)32-0166-02

1 概 述

随着我国公路建设的飞速发展以及人们生活质量的提高,在车辆高速行驶的过程中,所要求的舒适度也在逐渐提高。

但在桥涵台背回填施工过程中,由于地基或路基本身的沉降、路基(柔性)与桥涵构造物(刚性)的承载力和沉降量不同,公路通行后,随着使用时间的推移,桥台与相邻路堤之间产生不均匀沉降,桥与路堤形成台阶,当车通过时,会产生跳跃现象。

2 桥头跳车的危害及成因分析

2.1 桥头跳车的危害

桥头跳车对行车安全和舒适度均产生影响。

①由于桥头跳车车辆不得不降低车速,使公路的使用功能和通行能力受到很大影响;

②另外桥头跳车使驾驶员和乘车者感到不适,心情不快易疲劳,所载货物易损坏;

③严重的桥头跳车会造成翻车、追尾等交通事故,威胁人、车和财物的安全,造成生命、财产的损失。

2.2 桥头跳车的成因分析

①桥头跳车台阶的产生和行成是多方面的,包括地基地面条件、填料、施工材料以及设计、施工方面的诸多因素。

②桥涵、通道与路基大都是同年进行施工的,桥面是刚性体,其地基强度有较高的要求,沉降较小或不沉降,而路基填土虽经压实仍会产生较大的工后沉降,最后形成错台;

对于软土地基部分,桥涵地基一般进行加固处理,但路基部分与桥涵部分的工后沉降仍不相同。

③在台背和路基的连接部分,因施工场地狭小以致压实不足,经长时间的车辆碾压及自身重量的作用,沉陷不一,造成错台。

④施工工期、工序安排不当,对桥头施工及台背回填不能有充足的时间安排,为赶工期不得不违章作业。

⑤对台背基坑的回填材料使用不当,对桥头和锥坡的压实控制不严。

⑥压实机具与压实厚度不能配套。

从桥头跳车成因分析上可看出:台背回填质量是防止桥头跳车的关键步骤,台背回填的好坏直接影响到道路施工质量,在实施过程中,施工单位应设质检、试验人员现场监督检查填筑质量。

3 施工准备

3.1 技术准备

①施工前做好安全技术交底。

②确认构筑物的强度满足回填要求,隐蔽工程验收合格。

③完成施工场地的清理、挖掘,以及必要的场地平整等。

④用红油漆在构筑物背墙上每隔15 cm由下至上水平标出层厚和层数,以利控制填筑厚度。

3.2 材料准备

①台背填筑材料一般均设计采用石灰土进行分层填筑。填筑前,灰土拌合按设计配合比要求采用集中机械拌和后,由运输车覆盖运输至施工现场。拌制灰土时,严格控制配合比、含水量和拌合的均匀性,避免出现含水量大形成大团粒和含水量小形成扬尘,污染环境。试验室在灰土拌合站配备试验人员检测含水量和灰土含量,达到设计要求后方可运输至施工现场,如灰土拌合站与施工现场较远,含水量可适当提高1%~2%。

②对选定的石灰和土进行原材料、土工等各项试验,保证原材料的质量必须符合要求。经过试验主要确认填料的重型击实、CBR、含水量、颗粒分析等技术参数,配制时确保充分拌合及颜色均匀一致,确保灰土的含水量达到最佳含水量。

4 施工工艺流程

施工准备测量放样桥台隐蔽工程检查(包括沉降缝防水等)填前碾压第0层验收(包括压实度等)第一层填料碾压压实度检测整平第一层交验拍摄工程照片第二层填料直至填筑设计标高交验台背回填完成。

5 施工方法

①承台台身(涵洞盖板)强度达到设计强度的75%以上时,台后方可进行石灰土填筑,填土时两个台背同时对称分层夯填。每层压实厚度不大于15 cm,分层填筑厚度不大于20 cm,测量工程师测出基底顶面处及构筑物顶面高程,根据回填料的分层厚度,测算出每处构筑物的回填层数,用红油漆在构筑物背墙上每隔15 cm由下至上水平标出层厚和层数,以利控制填筑厚度,每填筑一层需要对应留下施工照片,做好台账。划红色标线前保证台背表面已做完沉降缝的防水层。

②将涵洞基坑完全开挖至设计要求,并进行基坑清理。底部距基础外缘宽度不小于2 m,按1:1的比例放坡至涵洞盖板顶平齐(拱涵放坡至拱圈底上口平齐)。

③分层压实时设置2%~4%的横坡度以利排水,每层应于两侧各超填宽出设计宽度30 cm以利最终路堤边缘的压实。推土机进行粗平,人工控制厚度。粗平完成后,使用平地机进行细平。

④涵洞基础顶面以上回填要等盖板安装完成方可进行。采用振动压路机碾压时,第一遍应无振动静压,然后先慢后快,由弱振至强振,振动压路机一般重叠0.4~0.5 m。碾压由两边向中间进行碾压。距台背20 cm处改用平板振动夯(或其他满足施工要求的小型振动夯)人工夯实,应达到无漏压,无死角,确保碾压均匀。

施工中做到层层压实度检测,每50 m2检测一点,不足50 m2时应至少检验1点,台背回填压实度均按≥96%控制,合格率保证100%。碾压完毕后,由施工单位实验员先自检,合格后报驻地试验监理抽检,监理抽检率100%,抽检合格后方可进行下层灰土填筑的施工。

⑤涵洞台背回填每层填料施工完成后,由施工单位技术员和现场监理共同拍摄每层的工程照片,照片上要体现构筑物背墙上的红色标线所显示的层厚和层数(参照点)以及说明图板,能够直接、清楚地反映每层的填筑状况,照片将作为质量评定的部分资料归档。

⑥桥梁两端的台背路基填筑范围:施工图如图1所示,如无说明,可采用以下实施:底部处理长度为构造物基础外缘沿路基方向(填土高度+6 m)处,顶部长度为(填土高度的2.5倍+

4.5 m)处。

⑦桥梁台背路基填筑与一般路基采用台阶搭接,搭接台阶宽度为1.50 m,高1.0 m,自基底1:1.5的坡率向上搭接至路床顶面。

⑧桥梁台背填土高度大于3.5 m处以及路床顶以下40 cm处设置单向土工格栅,搭接部分可用U型钉连接或铁丝穿绑。

⑨填土高度≥3.5 m时,为防止台背填土较高处桥头差异沉降出现跳车,在台背墙面垂直增设L型(长边*短边*厚)

100 mm×63 mm×8 mm角钢将土工格栅固定,角钢上铺设土工格栅,土工格栅上用(长*厚)100 mm×6 mm的钢板压制,台背墙面的角钢与压条钢板用膨胀螺栓固定。土工格栅采用单向拉伸型,抗拉强度不低于80 KN/m,屈服伸长率不大于10%。

6 施工注意事项

①台背回填必须在隐蔽工程验收合格后方可进行,注意台背回填时,必须待台身强度达到设计强度的75%以上时,方可进行回填。

②按设计做好过渡段,过渡段路堤压实度不小于96%,并做好纵向和横向防排水系统。

③台背回填部分的路床宜与路堤路床同步填筑。

④桥台背和锥坡的回填施工宜同步进行,一次填筑到位并保证压实整修后能达到设计宽度要求。

⑤洞身两侧,要对称分层回填压实,填料压实后厚度不大于15 cm。

⑥配备合理的碾压机械,压路机达不到的地方,使用小型机动夯具。作业面比较窄小的台背回填,对于台背、涵背碾压不到位的死角与构造物的结合部,配置合理的小型夯实机具(分层厚度小于10 cm),方可进行大面积回填,小型夯实机具机振力不小于1 t。

⑦土工格栅上的第一层填料应采用轻型推土机摊铺,一切车辆、施工机械只容许沿路堤轴线方向行驶,不得在土工格栅上强制小角度调头。

7 施工质量保证措施

①施工前做好技术质量交底工作,施工中做好检查工作,确保每层回填工作标准化、规范性。

②严格执行“三检”制度,且认真落实每层隐蔽工程验收制度。

③台背填筑不能含有腐植土、树根、草、泥或其它有机质土,保证填筑质量。

④每层砂砾土的铺设宽度每侧宽出30 cm,以保证台背回填范围内的压实度。

⑤用红漆在台背上标示出每层填筑的压实厚度和层数。

第8篇:土工合成材料范文

【关键词】复合材料;土木工程;发展与应用

1复合材料简述

复合材料是指纤维增强复合材料,简称为FRP,是由增强纤维材料,如玻璃纤维,碳纤维,芳纶纤维等,与基体材料经过缠绕,模压或拉挤等成型工艺而形成的复合材料。复合材料具有一定的特点:比强度高,比模量大,材料性能具有可设计性,抗腐蚀性和耐久性能好,热膨胀系数与混凝土的膨胀系数相近。因此,能够充分满足现代土木工程发展的实际需要。

2复合材料在土木工程中的应用与发展

2.1纤维增强复合材料加固补强。FRP加固补强的主要形式就是粘贴加固混凝土结构。[1]首先,应用FRP布对混凝土柱进行缠绕加固,从而提高混凝土的强度,增强其抗震性。其次,在梁、板等受拉面位置,粘贴FRP片材,采用这种方式控制混凝土裂缝的产生,同时提高其承载能力。最后,应用FRP片材对梁、柱等构件进行包裹,从而提升梁、柱的抗剪承载力。这也是一种非常有效的加固补强的方式,在工程施工过程中常常用到。但是在实际应用过程中,要注意其提高程度与原构件配箍率保持在一定标准范围内,充分发挥FRP片材的强度。

2.2FRP筋索和预应力FRP筋混凝土结构。FRP筋索与传统钢筋材料相比,起重量较轻,纤维比重较大,强度又很高,同时具有很强的耐腐蚀性能。基于FRP筋索的而这些优势,可以很好地代替钢筋材料,能够有效避免传统钢筋材料出现锈迹的情况,有效保护钢筋结构,延长其使用期限,节省费用,降低成本。此外FRP还有一个明显的优点,就是无磁性,能够达到某些工程的无磁性要求。FRP筋索用于土木工程的混凝土结构中,根据不同的方法,加强FRP筋索与混凝土的粘结,从而提高其强度。一般主要应用一下积累FRP筋:其一,GFRP筋,对其表面进行沙化处理。其二,CFRP预应力筋,这种筋与钢绞线相似,而且在多股之间进行环氧粘结。其三,通过压痕或者滚花处理过的FRP筋。最后,通过对纤维进行交错编制的FRP筋。

2.3FRP组合结构。FRP组合结构就是把不同的FRP制品与钢材或者混凝土进行组合,形成的结构模式,达到优势互补的状态,应用于工程建设之中。一般在工程施工中,应用到的FRP组合结构形式主要有以下几种:其一,FRP管混凝土结构。这种结构主要是在缠绕成型的FRP管中填充混凝土,而且FRP管可以充当模板,节省模板的消耗,同时提高施工效率,此结构具有很好的耐久性。基于它的众多优势,在桩、柱等工程结构上得到了广泛的应用。其二,FRP、钢管、混凝土组合结构。这种结构的构成首先是在整个构件中间位置设置空心钢管,在钢管外面包裹FRP,在钢管与FRP中间填充适当混凝土。这样在工程施工过程中,钢管是主要的成立骨架,FRP作为模板,对钢管进行保护,以免其生锈受损,混凝土部分受到了一定的限制,有效提高了组合构件的承载能力和变形性能。对提高工程的安全性起到了很大作用。其三,FRP组合梁、板。FRP组合梁、板是受弯的FRP组合结构,通过组合作用,上部的混凝土受压,下部FRP受拉,其中保证FRP和混凝土协同工作的剪力连接件是最为关键的部分。通过组合使FRP材料的优势发挥的更加充分,使施工过程更加方便快捷。最后,FRP、木材组合构件。二者在构成上具有类似的纤维形式,受力特点相似,缺点都是抗火性能低。但是把二者进行重新组合,形成新的组合构件后,FRP作为增强部分,木材作为填充部分,能够更加充分发挥其力学性能,使加工过程更加方便。FRP组合结构不但提高了构构件的整体性能,而且能够有效降低工成本,有助于提高工程经济效益。

2.4全FRP结构。FRP与传统材料相比,具有鲜明的优势,在土木工程中的应用越来与广泛。一般主要应用到的FRP结构有以下几种:其一,FRP桥面体系。在实际应用中,桥梁面板部分直接采用FRP材料,不但能够减轻结构内力,而且能够抵御外部环境侵蚀损害,同时减轻桥身重量,延长其使用年限。其二,FRP编织网结构。此结构主要对FRP板条进行编制,通过张拉作用形成新的机构体系,此结构体系具有一定的柔性。这种结构一般适合用于跨度较大的工程结构中。其三,FRP杆件空间结构。FRP在应用于空间结构中时,主要实现形式是网架结构,而FRP网架的杆件主要是由CFRP片材构成,在构成过程中,CFRP片材要从不同的角度进行层叠粘贴。这种网架结构的优势就是重量轻,抗腐蚀性强,温度效应小,一般在环境比较差或者跨度较大的空间结构中应用。

3结论

综上所述,复合材料在土木工程中的应用还处于探索阶段,在实际应用中还需要不断提高技术水平,根据复合材料结构的不同特点,有针对性的应用到工程建设中去。相信,通过不断地研究与应用,复合材料在土木工程中的发展中一定会发挥出更大的作用。

参考文献

第9篇:土工合成材料范文

关键词:公路工程;土;路面基层材料;试验检测

Abstract: Test detection of highway engineering construction technology management is an important component, but it is also an indispensable key link in the quality control of highway engineering construction and engineering acceptance (finish) in the evaluation. Good soil and road base materials is to ensure the quality of highway engineering test detection premise, testing personnel must strictly according to the related technical standards of highway engineering material test for the detection of good quality.

Key words: highway engineering; soil; road base materials; testing

中图分类号:U416 文献标识码:A

试验检测工作是公路工程施工技术管理中的一个重要组成部分,同时也是公路工程施工质量控制和交(竣)工验收评定工作中不可缺少的一个主要环节。通过试验检测能充分地利用当地原材料,能迅速推广应用新材料、新工艺和新技术[1];能用定量的方法科学地评定各种材料和构件的质量;能合理地控制并科学地评定工程质量。因此,它对提高工程质量、加快工程进度、降低工程造价、推动公路工程技术进步起到极为重要的作用。

每项试验检测方法应根据有关国家或部颁现行最新技术标准、操作规程 和有关行业工作规范制定详细的实施细则。试验检测要严格参照相关技术标准,主要是国家质量技术标准、设计文件等,特殊情况下可由业主提供特殊的检测要求。

1 路基填土试验 1.1土的分类目的:对土的性状作定性评价。分类方法:感性方法:肉眼可见、直接接触分为无粘性土(粉土)、粘性土。科学分类:通过对土的颗粒组成分析,液塑限指标分析以及土中有机质存在情况定出土的名称。 第一分类界限值:粒组质量占总质量50%为界。巨粒土:>75% 漂(卵)石;50%-75%漂(卵)石夹土;50%-15%漂(卵)石夹土;

粗粒土:

细粒土:

1.2土的物理、力学性质物理性质:含水量、密度、(粘性土)液塑限、(砂土)相对密度、颗粒分析,用于确定土名。力学性质:击实试验、直剪试验、压缩试验1.3代表试验项目 (1)含水量试验目的:测定各类土中水的含量。烘干法:测定含水量的标准方法,适用于粘质土、粉质土、砂类土和有机质土。酒精燃烧法:施工现场常用的试验方法,快速简易测定细粒土的含水量。微波法:适用于不含金属矿物质的土。 碳化钙气压法:路基土和稳定土含水量的快速简易测定。不能直接用,需要进行标定。特殊土的含水量测试:含石膏土和有机质土:在真空干燥箱下或将烘箱温度控制在75-80度为好。无机结合料稳定土:烘箱提前升温到110度,水泥混合料直接烘干。 (2)密度试验方法:环刀法:取得现场原样土,通过室内试验计算后,测定细粒土的密度。蜡封法:易破裂土和形态不规则的坚硬土。灌水法:现场测定粗粒土和巨粒土的密度。灌砂法:施工现场常用试验方法,现场测定细粒土、砂类土、砾类土的密度。 (3)颗粒分析方法:筛分法:粒径大于0.074mm的土。比重计法、移液管法:用于粒径小于0.074mm的土。 (4)界限含水量方法:液塑限联合测定法:划分土类、计算天然稠度、塑性指数。(5)击实试验目的:通过击实试验,模拟现场施工条件,确定路基填土的最佳含水量和最大干密度。是路基压实效果的标准参数。方法:轻型、重型击实。高速公路采用重型击实试验方法。重型Ⅱ.1(最大粒径25mm,小筒、5层27次)、Ⅱ.2(最大粒径38mm,大筒3层98次)。注意事项:标准击实仪的安装要水平,并用地脚螺栓与地面紧密连接,保证击实功。根据土的颗粒大小确定试筒。小试筒适于粒径不大于25mm的土,大试筒适于粒径不大于38mm的土。制备粘性土等时,要保证洒水均匀,充分拌和,充分闷料。在留取测定含水量的土样时,要从试筒两侧均匀取得,从而保证测定含水量的准确度。当试样中有大于38mm颗粒且含量小于30%时,要进行数据校正。(6)承载比试验(CBR)目的:CBR是用于综合评定路基土和路面材料的强度指标,是柔性路面设计的主要参数[2]。CBR(国际);E0(国内)所谓CBR值,就是试验贯入量达到2.5mm 或5mm 时的单位压力与标准碎石压入相同贯入量时标准荷载强度(7MPa 或10.5MPa)的比值, 用百分数表示。注意问题:(除击实试验的问题外)加载装置测力计大小选择时,所测土的最大值应在测力计最大力值的1/3至2/3范围内,以提高测定精度。加载装置测力计和测定贯入量的百分表必须标定后使用。

2 路面基层材料试验

2.1无机结合料稳定土组成材料要求

(1)土

A、水泥稳定土:级配满足要求;Cu>5, WL

B、石灰稳定土:IP15%~20%粘性土;含粘性土的中粒土、粗粒土;压碎值

C、石灰工业废渣稳定土:IP12%~20%粘性土,有机质含量不超过10%;压碎值

(2)水泥

普通水泥、矿渣水泥、火山灰水泥都可使用,应选用终凝时间较长(宜在6h 以上,标号较低325号)。水泥作为水硬性结合料,可以改善混合料的粘结力,它与优质的级配碎石按照合理比例混合作为路面基层[3],可有效保障路面基层的整体承载力、刚度和耐水性,从容应对大流量的重型交通压力。

(3)石灰

三级以上生石灰或消石灰,高速公路和一级公路,宜采用磨细生石灰粉。

4 半刚性基层和底基层材料强度评定

半刚性基层和底基层材料强度,以规定温度下保湿养生,6天、浸水1天后的7天无侧限抗压强度为准。

在现场按规定频率取样,按工地预定达到的压实度制备;试件,每2000平米或每工作班制备1组试件:不论稳定;细粒土、中粒土或粗粒土,当多次偏差系数CV≤10%时,可为6个试件;CV=10%-15%,可为9个试件;CV>15%,则须13个试件。

试件的平均强度R应满足下式要求:R≥Rd /(1-ZαCV)

Rd—设计抗压强度

CV—试验结果的偏差系数(以小数计)

Zα—标准正态分布表中随保证率而变的系数。

高速公路、一级公路:保证率95%, Zα =1.645

其他公路:保证率90%, Zα =1.282

5 结语

作为检测工程质量的一种有效手段,试验检测应予以高度重视,禁止盲目凭经验施工[6]。试验检测操作人员应熟悉检测任务,了解被检测对象和所用检测仪器设备的性能。检测人员应掌握所从事检测项目的有关技术标准,了解本领域国内外测试技术,检测仪器的现状及发展方向,具备制定检测大纲,采用国内外最新技术进行检测工作的能力,要了解误差理论、数据统计方面的知识,能独立进行数据处理工作。同时检测人员还要实事求是、忠于职守,作风正派。对检测过程、数据处理工作持严肃的态度,以数据说话,不受行政或其他方面影响的干扰。

参考文献

[1] 李淼.浅谈水泥混凝土路面施工的监理[J].中国科技博览,2009,(18):170-171.

[2] 孙惠娟,徐环宇.浅谈公路建设试验检测工作[J].中小企业管理与科技,2009,(9):148.

[3] 方承昊.对公路桥梁安全性检测技术的探究[J].中华民居,2010,(9):135.

[4] 邓孟华,邹梅芳.公路工程试验检测工作应用探讨[J].中小企业管理与科技,2010,(18):116.

[5] 陆璐.潍坊华泰路桥工程有限公司公路工程试验检测系统研究[D].江苏大学,2010.