前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的高分子化学专业主题范文,仅供参考,欢迎阅读并收藏。
关键词:轻化工程;高分子化学与物理;教学方法;生产实践;科学研究
中图分类号:G642.4?摇 文献标志码:A 文章编号:1674-9324(2013)50-0071-02
一、引言
随着高分子科学与技术的不断发展,高分子科学已渗透于各个学科与领域,形成了一个无法替代的交叉学科。对于江南大学轻化工程专业(染整方向)的本科生,要求掌握有关高分子的基本理论知识和应用技能,开设了《高分子化学与物理》课程。主要包括高分子化学和高分子物理两个部分,其中高分子化学部分侧重高分子合成的基本理论知识,高分子物理部分则侧重于高分子的结构与性能[1-3]。该课程是轻化工程专业的学科平台课之一,课程的学时数为48学时,在这样少的学时条件下,要使那些对于高分子完全陌生的学生理解并掌握高分子的基本概念与原理,合理安排授课内容和讲授方式是非常重要的。通过不断地尝试和教学实践,作者积累了一定的教学经验,取得了比较满意的教学效果。
二、课堂教学方法尝试
(一)课堂教学与专业基础课相结合
虽然高分子化学和物理的基础知识所涉及的面较广,理论性较强,但对于轻化工程专业(染整方向)的本科生来说,要求不很深,希望学生在理解基本概念和掌握基础理论的基础上能够灵活地运用,并为后续课程的学习打下坚实的基础,培养他们分析与解决实际问题的能力。例如在讲授逐步聚合反应机理和特点时,通常会介绍聚氨酯的合成,概念很抽象,难于理解。可与后续专业课《纤维化学与物理》的内容进行有效结合,采用举例的方法加深学生的理解,避免死记硬背。例如介绍聚氨酯弹性纤维(俗称“氨纶”),这种纤维织物具有很好的回弹性,穿着时伸缩自如,增强了舒适感,并能显现出优美的体型和曲线美,可制作各种内衣、游泳衣、紧身衣、弹力裤和丝袜等,在日常生活中具有广泛的应用。再如,在讲授自由基共聚合时,就可与《纤维化学与物理》和《染整工艺原理》课程中腈纶的染色进行结合,均聚聚丙烯腈制得的纤维不易染色,手感及弹性都较差,还常呈现脆性,不适应纺织加工和服用的要求,为此聚合时加入少量第二单体(结构单体,通常选用含酯基的乙烯基单体,可以减弱聚丙烯腈大分子间的作用力,改善纤维的手感和弹性,克服纤维脆性,有利于染料分子进入纤维内部)和第三单体(染色单体,使纤维引入具有染色性能的基团,改善纤维的染色性能,一般选用可离子化的乙烯基单体),一般成纤聚丙烯腈大多采用三元共聚物。从而有利于学生深入理解自由基共聚合的意义。
(二)课堂教学与生活、生产实践相结合
理论联系实际,密切贴近生活。通过大学生工业见习、实习提高轻化工程专业(染整方向)本科生理论知识学习与生产实践相结合的能力。认识实习的目的在于认识与专业对口的相关生产工艺流程和设备结构、原理等,促进学生在完成业务实习目的的基础上,实现劳动教育和认识社会教育相结合。因此,我们利用暑假安排学生参与高聚物合成和加工的相关工业见习。生产实习的主要目的是使学生将学习过的专业理论知识具体化并得到巩固提高,通过深入生产现场进行调查研究,参与生产劳动操作,充当生产一线工人,养成良好的工作作风。这些工作扩大了轻化工程专业(染整方向)学生的知识面,加深了基础知识的理论。
此外,高分子材料已成为现代社会生活中衣、食、住、行、用各个方面所不可缺少的材料。日常生活中常见的制品所用的原料很多都是高分子材料,为了帮助学生认知聚合物,在讲授聚合物的分类和应用时,将具体的生活制品用图片的形式展示给学生,可以帮助学生更形象生动地记忆聚合物的名称和具体应用。例如可以讲解“限塑令”、保鲜膜的质量问题、汽车轮胎、电脑外壳、装修过程使用的涂料、油漆等,每一个都与高分子的基础知识息息相关,也是学生关心的话题。所以,在教学过程中,我们尽量避免单纯讲授抽象的基本的概念和理论,而是从一些实际现象引出问题,再通过理论分析加以解释、归纳,这样不仅可以引起学生兴趣,重要的是可以加深学生对基本理论知识的理解和掌握,达到事半功倍的效果。
(三)课堂教学与科学研究相结合
江南大学纺织服装学院是学校“211”工程重点建设学科,形成了纺纱、织布、染整和服装设计与表演等完整的学科体系,尤其在纺织材料的研究与开发方面具有很强的实力,依托科研背景和科研实力,培养学生的创新能力,促进教学质量的提高。因此,除了教授学生基础理论知识以外,还可以充分利用学校自身的科研资源优势,结合学科的发展方向,引导优秀的学生参与前沿的科学研究,激发学生的创新潜能和创造力。如在国家、江苏省和江南大学等各级大学生创新训练计划的支持下,以大三学生作为项目负责人,吸收他们参与到课题研究中,在导师指导下进行自主选题和实验方案设计,使得学生了解了相关领域的科研动态,将学习的理论知识进行应用,加深了基本概念的掌握与理解,培养了学生的科研兴趣,提高了学生将知识转化为生产力的能力。有效建立了科研与教学协调发展、科研促进教学的机制与体制,对创新型人才的培养起着重要的作用,是提高专业人才培养质量的需要、实现教学创新与培养创新性人才的需要。
例如,在讲授高分子溶液时,就可与自身的研究方向进行有效的结合。我们知道生产实践中可分为浓溶液(如油漆、涂料、胶粘剂、纺丝液、制备复合材料用到的树脂溶液——电影胶片片基等)和稀溶液(如分子量测定及分子量分布)。而在科学研究中,正是利用高分子的浓溶液(纺丝液)经过静电纺丝就可制备直径小于1000nm的纤维(俗称“纳米纤维”),这种纤维因具有较大的比表面积、独特的网路结构和丰富的孔隙率等优异性能而备受研究人员的关注,可望广泛应用于过滤和分离材料、防护服、固定酶、生物医学(如细胞支架、创伤敷料、组织工程、药物缓释和DNA传输)、电子器械(如传感器和晶体管)和能源应用(染料敏化太阳能电池、锂离子电池和生物燃料电池)等,在制作课堂幻灯片时引入直观的图片,并加以说明。这些知识的引入可有助于加深学生对基本概念的理解,也拓展了学生对微观纳米材料的认识,提高了学生进一步学习和从事科研工作的兴趣。
三、结语
通过近几年的课堂教学方法改革,提高了学生的学习兴趣和对知识的理解,为后续课程的学习奠定了一定的基础。通过这些措施,更好地培养了学生的创新意识,提高了学生的创新能力,而且该专业的毕业生中有很多人从事与高分子相关的行业,学科交叉特色明显。本文简单介绍了江南大学轻化工程专业(染整方向)本科生课程《高分子化学与物理》的教学改革的尝试,对其他开设轻化工程专业的高校有一定的参考意义。
参考文献:
[1]徐晓冬.非高分子专业《高分子化学与物理》教学中的几点体会[J].高分子通报,2010,(5):74-78.
【关键词】高分子化学;双语教学;教学改革;科研导向
随着人类文明的进步与社会经济生活的发展,能源危机、人类重大疾病相关问题、环境问题等一系列对全球造成影响的科学技术问题的出现使得化学学科、特别是高分子学科成为所有学科的中心学科。例如,基于共轭聚合物半导体材料的有机发光二极管、场效应晶体管和聚合物太阳电池等最新的科研成果将成为未来社会生活中主要的半导体元器件;高分子药物的出现将能够很大程度上对药物释放、药物靶向性等方面进行控制而不需要增加更多的临床药物试验;生物医用高分子在改善人类生活质量方面更是意义非凡。而各种塑料、纤维、橡胶、涂料、粘合剂等高分子材料更是关系到人们衣、食、住、行的方方面面。可以说,现代人的生活已经离不开高分子化学和高分子材料。因此,对高分子科学的研究越来越受到国内外学者的关注。高分子科学的诞生源于高分子合成化学,其基本概念源自于有机化学、物理化学等化学、材料学科,这种情况导致我国现有的高分子科学领域从业人员来源多样。其中,从本科阶段即接受高分子化学教育的比例依然很低,很多从事高分子材料、高分子化学、高分子物理、高分子工程等领域研究的人员本科主修为无机化学、物理化学、有机化学、材料学等专业。一定程度上,这些研究人员存在对高分子化学体系缺乏系统认知的可能。在我国高等学校进行高分子化学教学教育活动,是提高我国现有的高分子科学领域的从业人员基本素养与技能、促进我国高分子科学发展、壮大的重要途径。近年来,高等学校为主导的国家级或省级“协同创新中心”的设置,使我国高等学校进入新一轮的由教学型(教学科研型)大学向科研型大学转变的历程中。为快速实现这种转变,培养高层次、研究型的高分子科学领域人才愈发显得必要和重要。目前,主要的国际学术会议、顶级国际学术期刊均以英语为主。
通过学术会议、、论文检索等在这些国际知名的学术舞台上进行高分子方面学术活动与信息交流,观察国际高分子学科的发展动向,无疑是我国高分子学科跟进国际学术发展步伐和超越世界学术水平的基本条件。为此,我们必须建立培养能够熟练使用英语进行高分子化学相关学科听、说、读、写应用的国际性专业人才的教育体制和培养机制,强化我国高分子方面的科技队伍建设。换言之,在本科阶段开展高分子化学双语教学,为培养具有国际化交流能力的研究生和高层次高分子科学从业者,对我国高分子学科的发展具有非常重要的意义。在高等学校开展高分子化学双语教学存在诸多问题亟待解决。现有的双语教学限于学生专业英语基础薄弱、高分子化学本身内容庞杂、学生在以往几乎没有任何高分子化学学习经历和基础等多方面、多层次原因导致高分子化学双语教学过程中面临如下问题:1)学生的基础参差不齐,授课对象中有部分学生在高中阶段甚至从未学过化学;2)课程的知识体系中涉及较多的有机化学、物理化学理论;3)我们选用的教材是理工兼用、教材全面但缺乏系统和针对性,而英文教材价格昂贵、内容更是纷繁复杂;4)高分子化学双语课程的目标除了教给学生基本的高分子合成化学的基本原理和方法外,还需要使学生建立起英文思维的习惯和基础概念,如何实现这个目标,也是需要我们进行探索和研究的;5)高分子化学这门课程相关无论中英文教材均在理论综合性,如何将这些貌似无用的枯燥理论加以应用,同时,在教学中从工程的角度予以描述,以彰显其重要实用性作用,需要我们加以思考;6)某些高校尚不具备同时兼顾专业知识和相应英语水平的教师,学生极少有机会接触国际交流的学术活动,缺乏感性认识,无法调动学习积极性。更多情况则是双语教学流于形式,课上、课下全汉语,单纯的授课课件是英语;或者脱离了知识传递的根本目标,语言障碍导致学生不能有效的掌握高分子化学的知识。这样,双语教学的“形”与“体”脱节,成为“两张皮”。无论哪种情况的出现,对高分子化学双语教学都会产生严重影响。另外,高分子化学双语教学的执行情况的另一重要考量指标是教学质量。特别是以科学研究和国际交流为导向时,考察双语教学的教学质量和教学效果的指标也需慎重考虑,并加以确认。在教学实践中,我们发现完善教学内容,教学方式与手段,通过激发学生学习兴趣和专业兴趣,能克服其对双语教学中英文的畏惧和排斥都有益处;制作精减的英文讲义、多媒体课件深入研制等方法和措施的实施,安排学习英文讲座视频等都有利于双语课程的讲授。
1)高分子化学双语教学的核心是知识而非形式。对于知识性的内容编排,我们的做法是做了三份相互关联的辅助教材:a)专业术语的定义和解释,并针对性的配插图,方便学生理解和记忆;b)对于课程内容去芜存菁,制作一份大约5万字的全英文简明读本,内容从高分子化学历史、命名法、聚合方法、原理、典型计算、逐步聚合和链式聚合、聚烯烃、活性聚合等内容进行覆盖,完善高分子化学知识体系,使学生从整体上把握教材的主线,掌握高分子化学概念、分子量概念、各种聚合方法、聚合反应原理、高分子材料分类与理化特性等;c)收集经典英文文献14篇。此外,对于上述内容另配置各一份讲义,辅助阅读。这样做的目的包括:简明读本覆盖了经典教材核心内容并包含教材内容总体的80%,重复利用教学和课余时间,让全部学生尽可能的掌握这部分分内容而不是试图让学生学100%的内容,但只是掌握更低比例———当然,对于学有余力的同学,鼓励其在教师辅助下,完成全部教学内容的掌握。
2)在教学方法上做出努力,采用高分子理论框架、线索教学法;讲薄到讲厚教学法;关键词教学法;避免按章节步步为营的方法等。例如,理论框架、线索教学法的执行发方法是,每次课都用5分钟左右,把课程内容以简短的内容说明,并指出其与其他章节内容之间的关联性,让学生能更好的把握课程脉络。“讲薄到讲厚”是指,每学期开学以两次课分别用中文和英文分别解释全部简明教程相关讲义,让学生一开始就熟悉全部内容的关键处,这样,其阅读辅助材料和课堂学习思路更明确清晰,真正能明白课程“精要80%”的含义。“关键词教学法”是指在厘清脉络框架的基础上,对辅助教材中文献部分涉及的理论相关关键词,集中突破,让学生能理论和实践两方面都获得提高。
3)利用视频和录像内容辅助教学。制作教学录音和录像,给学生共享,让学生课下可以继续观摩课堂内容,培养其听和说的能力。不断构建新的新的本科双语教育模式,使本科生能从双语教学过程中分享课程教育国际化的机会,从中受益,并获得在其他场所不能获得的实践和能力锻炼,从而提高整体素质、创新意识及综合能力。安排学生参加国际学术会议,到场听取英语母语国家的专家汇报,同时录制会议报告录像和录音。
4)组织学生检索高分子化学基础理论相关英文文献、制作课件,并互相评阅,提升学生使用英文交流的能力。从科研的角度让学生体会双语教学“重点在读懂、其次在会写,然后是能听懂和能说”的含义。
5)对于课堂教学效果的考察采用按照学习内容分段考核,并以英文形式呈现。例如,逐步聚合及其原理和聚酯、聚酰胺放在一起考核;自由基聚合物及其原理和实施方法一起考核;工程塑料、天然产物、环境污染和降解与稳定化放在一起考核等。这样的做法,让授课内容的排列更加紧凑,也让学生更好的把握知识点的相关性。
6)强调背景预备知识积累,强化双语教学对其他相关化学课程的关联性,培养学生专业英语综合素养,以期对学生阅读英文文献、其他相关英文课程教科书有所裨益。上述的教学思想和教学新方法的采用虽然在一定程度上大幅度增加了教师备课、授课工作量,但是从全局的角度看,能通过高分子化学单独一门功课的教授,培养学生对专业英语的掌握,甚至到一定时间,可以接受全英文教学。在实施两年后,我们大体有以下一些感受。1)教与学双方的主动性都被调动起来,让教学过程变得更丰富;教师自编教学讲义,必然会更加熟悉,更加明白其意义,在讲授过程中,看到自己的成果被学生接受,会更加有热情。2)国际会议现场交流,前言文献和研究内容引入课堂等显著增加了学生对英文感性认识,增加其学习热情,更有利于双语教学的实施。3)全局教学、富有线索和逻辑的分段教学、合理的考核内容安排让学生能更好的认识到自己学习的不足,避免学生到了期末才开始突击学习的压力和无奈,把问题发现在平时。通过阶段考核,让教师能合理的调节讲授的节奏。4)课外文献调研和互评报告能提供学生自主学习的灵活空间,让学生能主动的进行自我培养,有利于独立学习能力的提高。总之,在过去几年的高分子化学双语教学中,我们通过合理的教学改革措施的使用,提高教学质量和教学效果,为将来这些接受良好英语授课培养的学生进入科研岗位,从事研究生学习打下良好的基础。当然,这些方法也有继续改进的空间,我们也将继续进行深入研究与探索,总结经验,探索培养具有创新意识和创造能力的高分子科学人才的新思路和新方法。
【参考文献】
[1]董建华.高分子通报[Z].2005(1),1.
[2]许一婷,戴李宗.关于《高分子化学》课程教学的几点思考[J].广东化工,2008(8):165-167.
[3]李丽.多媒体在高分子教学中的应用[J].高分子通报,2006(2):64-69.
[4]刘国勤,黄芳,刘天娥.《高分子材料》课程改革探讨[J].河南科技,2008(2):6-26.
[5]王家喜.高分子化学教学改革初探[J].化学试剂,2009(4):307-309.
[6]宗惠娟,潘才元,徐文英.“高分子化学”教学中的几点体会[J].高分子通报,1990(1):51-52.
[7]邹汉涛,刘晓洪,黄年华,等.《高分子化学》教学方法的探讨[J].武汉科技学院学报,2009(3):58~60.
[8]李丽.多媒体在高分子教学中的应用[J].高分子通报,2006(02).
[9]高琼芝,王正辉.《高分子化学》双语教学的实践与探索[J].广东化工,2004(08).
关键词:高分子化学;教学改革;教学质量
中图分类号:G642.0?摇 文献标志码:A 文章编号:1674-9324(2014)03-0032-03
高分子化学是高分子专业和材料专业的理科及工科学生的必修课,也是其他化学、化工专业学生的选修课之一,是高分子科学及材料科学的基础,在化学相关专业培养体系中占据相当重要的地位。所以,很多院校既在本科阶段开设本课程,又在研究生阶段开设相应的必修和选修课程[2]。高分子化学的主要讲授内容[1]为各种聚合方法的反应机理及其对聚合物结构的影响,以及聚合物的化学改性方法。课程的目的在于使学生能够通过高分子化学基础知识的学习,指导科研和生产实践活动。但是由于相对材料领域的其他学科来说,高分子化学还是一门比较年青的科学,许多理论还不太成熟,而且新材料和新的合成方法不断涌现,致使许多学生感觉无所适从,反映该课程涉及的内容太多且难于掌握,在一定程度上影响了学习的兴趣和掌握程度。为了提高学生学习的兴趣及知识的掌握程度,本人就教学中存在的一些问题进行了思考并且提出了一些个人的解决意见。下面分别从教学内容、教学方式、教学对象以及教学实验拓展创新几个方面分别阐述。
一、关于教学方式
以往的高分子化学课程多是采用讲授法[3],这种方法的优点是教师容易控制教学进程,能够使学生在较短时间内系统地掌握科学知识。但是,如果运用不得当,就会出现教师在讲台上激情澎湃,而学生却听得云里雾里的状况,很可能由于听不懂而失去兴趣。所以我们根据授课对象的不同,改变不同的授课方式,通过调整教学方式,使难懂的知识变得易于接受,增加学生的学习兴趣。比如在讲授法的同时适当地加入了讨论教学法、互动教学法等。其中讨论法教学特别适用于对研究生的教学,让学生以小组为单位,围绕最新的高分子前沿知识,查阅相关资料,并布置课后作业,让学生查找与某一知识点相关的前沿科研成果(如RAFT法在材料制备中的应用),做成幻灯片,然后在课上以主题讲座的形式向全体同学汇报、讲解,并回答其他同学的问题。通过主动讲解的方式,把被动思维转化成主动思维。这样既调动了大家的积极性,同时又丰富了大家的知识,使学生在深刻地掌握高分子学科的相关知识的同时,又锻炼了研究生查阅文献和学术报告的能力。互动教学法中,我们会让学生提出一些自己感兴趣的高分子相关问题,然后在课堂讲授中予以回答。比如缓释药剂的释放原理是什么、塑化剂为什么会到饮料中去、饮料瓶是如何成产的等等。学生提出的往往是生活中遇到的实际问题,将这样的问题放到课堂,可以提高学习兴趣,活跃课堂气氛,加深学生对知识的理解。
二、关于教学内容
高分子化学是一门化学类的专业课程,它不仅需要有机化学、物理化学等基础化学专业背景知识,而且内容丰富、知识点众多,理论体系严谨,实践性强。在教学过程中存在知识点众多、反应方程式复杂、反应机理抽象深奥等特点,相对较难理解记忆。尤其是作为选修课的时候,许多同学由于相关的化学背景知识掌握得不扎实,导致难以理解,甚至不理解,造成学习障碍,从而影响学习的兴趣。因此,如何把复杂的机理,例如配位聚合、开环聚合等,通过通俗易懂的方式将知识点深入浅出地传达给学生,是教学改革的关键问题。在实际教学过程中,我们将高分子化学中的反应过程、反应机理、聚合物立体构型等抽象难懂的教学内容,以立体或动画的形式表述出来,实现了聚合反应的“可视化”[4]。以丙烯的配位聚合为例,我们以三维动画的形式来表述,分子式是三维立体的,反应机理是动画的形式一步一步进行的,生动地向学生讲述了从配位到过渡态再到反应终态的过程,最后还用ChemOffice等专业化学软件绘出彩色立体并可以旋转的聚丙烯旋光异构的结构,直观形象地描绘出难以想象的三维立体结构。大量三维立体图、动画、视频等多媒体的综合运用,将高分子化学知识形象逼真地显示在荧屏上,从而多方位刺激学生的感官,达到“刺激-反应-强化”式现代教学方式[5]。这种方式有利于调动学生的学习积极性和提高学习兴趣,加深对知识点的理解,优化教学过程,提高教学质量,提高学生形象思维能力和课堂效率,实现最佳的学习效果。我们还将高分子教学与网络教学相结合,提供给学生相应的文献检索数据库(如CNKI、ISI等)和高分子领域主流杂志(如Macromolecules、Progress in Polymer Science、Polymer、高分子学报等),使学生可以在课堂以外有针对性地选择自己感兴趣的内容,进行深入的学习。尤其对于研究生教学,要强调高分子科学中前沿科学的讲解,注重结合科研的最新成果。高分子科学本身就是一门年轻的学科,随着时代的不断进步,其内容也在不断地发展与完善。如自由基活性聚合机理的提出、配位聚合机理的完善、树枝状聚合物的成功合成、活性可控乳液聚合方法、‘click化学’的出现,极大地丰富了高分子化学的内容。它们不同于经典的高分子化学反应,但又是当今研究的热点。这些新技术的机理往往还不太成熟,很难在近期内系统写入教科书中。所以我们在讲解高分子化学的课程中,要在深化基础知识的前提上,将前沿的科研成果作为实例,融合到教学过程中,从而丰富和活化教学内容,使教学内容始终跟上时代的步伐。总的来讲,学生更爱听一些高分子化学在实际应用方面的知识,所以在讲课中,作者还把自己以前的研究内容,如聚合物纳米微球的聚合方法、聚合物互穿网络、铬系非均相催化乙烯的配位聚合等与所讲知识结合起来,丰富了教学的内容,收到了比较理想的效果。
三、关于教学对象
高分子化学这门课程既对本科生又对研究生开设,但是学习的侧重点会有所不同,所以应采用不同的教学方式,选择不同的教学内容。对于本科教学,我们要抓住基础知识的讲解。初窥门径的学习,最重要的是要有直观的认识,要将知识点尽量讲得生动、具体;注重基础理论部分,同时也要注重开放性思维的培养。对于研究生教学,则应当关注更深层次的理论研究,并将其与所研究课题的内容联系起来,把所学的知识活学活用,理论落实到实际当中去。在正式讲课前,可以让学生对自己的研究方向、研究内容做一个简短的介绍,了解学生研究课题与高分子相关之处,这样在授课中,对于学生的研究课题有益的地方重点讲解,做到有的放矢。比如乳液聚合的讲解。对于本科生,基础地从乳化剂、聚合机理和动力学进行讲解,突出强调了成核机理、聚合场所和乳液聚合的三个阶段这些基础知识点,并以最为常用的醋酸乙烯酯乳液聚合为例(同时还进行了分组实验),与本体自由基聚合进行对比,让学生形象地认识到乳液聚合的特点,特别是乳液聚合可以同时提高聚合速率和聚合度。而对于研究生,有些学生已经在本科阶段学习过该课程,而且学生的接受能力也较本科生好,可以在帮学生梳理上述基础知识后,结合乳液聚合的新进展进行讲解。我们为学生介绍了可控活性乳液聚合,即将可控活性自由基聚合和乳液聚合结合起来,如RAFT乳液聚合、RATRP乳液聚合等;还介绍了以不同材料作为种子,进行的种子乳液聚合制备多种复合材料的方法。
四、关于教学实验拓展创新
高分子化学是高分子科学的基础,是一门以实验为基础的自然科学,但是它的理论部分略显枯燥,让人觉得难以理解,如何把理论与实验相结合,相得益彰,这是我们努力的重点方向。实验部分不仅可以验证聚合理论,理论的学习最终也是要为实验服务。合理引导与启发,更能为学生学习后继高分子课程奠定必要的认识基础。为此,我们在绪论、逐步聚合和连锁聚合等部分的讲述过程中穿插开设了相应的实验。在课程伊始的绪论部分,我们将PE、PP、尼龙6等聚合物工业原料颗粒带进课堂,让学生对聚合物有一个直观的认识,并分别以果冻和淀粉这两种的食物为例,来区别交联和线性聚合物。在逐步聚合部分,让学生分组进行了酚醛树脂的制备实验。以先对简短而又典型的聚合实验,展示缩聚反应的过程,并让不同组,加入不同的苯酚和甲醛配比,来说明凝胶点问题。在连锁聚合讲述过程中,我们插入了醋酸乙烯酯的乳液聚合,结合乳液聚合特点的讲述,使学生在实践中学习,显得更有效率,印象更加深刻。
我们要不断改进教学方法和教学内容,调动学生的积极性,力求学生能掌握知识要点,让学生学得明白,学得透彻。使学生在学习高分子化学课程后,能够融会贯通,指导生产实践和科研创新。
参考文献:
[1]潘祖仁.高分子化学[M].第4版.北京:化学工业出版社,2011.
关键词:涂料学;高分子专业;教学改革;涂料实验
近年来,随着我国对创新型人才培养问题的日益重视,大力加强素质教学,培养和激发学生的创造力的同时,进一步巩固学生的基础知识就显得尤为重要[1]。在我国,无论是在综合性院校、理工科院校,还是职业技术院校,大都开设了高分子的本科专业,包括:高分子化学与物理专业、高分子材料专业以及高分子加工专业等。在课程设置方面,基本都开设了高分子化学、高分子物理和高分子分析方法等基础课程以及高分子专业基础实验。然而我们在教学实践中发现,学生很难将之前开设的基础课程中的知识融会贯通,对生活实例不能做出相应合理的解释。高分子作为一个实用性很强的专业,各门专业课之间有着密切的联系:利用高分子化学知识合成出不同结构的高分子材料,高分子材料的结构将直接影响其性能,在对材料进行加工时又需要运用高分子物理和流变学等知识[2]。如果学生们不能将专业基础知识活学活用、融会贯通,那么他们将很难应对高分子专业相关工作中的实际问题。因此,我们尝试针对高分子专业的培养方案,在开设高分子化学、高分子物理、高分子成型加工以及高分子结构分析方法这些专业课程的基础上,新增了一门《涂料学》课程,安排在第7学期进行,计划学时为32学时。力求通过本课程的学习,巩固之前学到的专业知识并将其融会贯通,同时拓宽学生的知识面,提高其实践能力。为了达到教学目标,培养出基础扎实、有创新思维、创新能力的高素质人才,《涂料学》课程的本科教学内容和教学方法的设计就是必须考虑的首要问题。为此,笔者结合从事涂料课程教学与科研的经验,参考接收本科生进行涂料实习单位的反馈意见,同时结合《涂料学》课程自身特点,做了一些初步的探讨。
一、《涂料学》课程的特点和意义
高分子的主要应用领域集中在涂料、塑料、粘合剂和助剂四方面。进入21世纪以来,我国涂料行业发展迅速,对涂料行业科研技术人才的需求量大大增加[3]。为此,在国内一部分高校中的高分子相关专业开设了涂料相关课程。《涂料学》课程是建立在高分子化学、有机化学、无机化学、胶体化学、表面化学与表面物理、流变学、材料力学、光学和颜色学科基础上的一门综合性学科,但又不是这些学科的简单加和而有其自身理论。对于高分子专业的学生而言,如何能将其学到的无机化学、有机化学、物理化学、高分子化学、高分子物理等基础知识贯穿统一起来,《涂料学》无疑是一个不二选择。开设涂料课程,一方面使今后从事涂料行业的学生进入工作岗位后,尽快成为行业技术骨干;另一方面对于今后从事非涂料领域的高分子学生而言,课程的学习过程也是对之前学到的化学和材料学基础知识巩固、加强和提高的过程。
二、《涂料学》教学的主要内容
涂料学课程的内容多,课时少,教师难以在短时间内将涂料行业所需的内容讲深、讲透。在课程教学的过程中,教师应该坚持理论结合实际的教学方针,对知识结构优化调整,做到简单而不浅显,深奥而不枯燥。在教学内容上,要注重两方面的统一:一方面注意《涂料学》课程章节间的联系和统一,这门课程涉及到涂料概述、颜料、溶剂、树脂等内容,各部分内容既相对独立,又相互联系;另一方面,要把握《涂料学》课程与无机化学、有机化学、物理化学、高分子化学、高分子物理等基础知识贯穿统一。教师在教学中应该重点介绍以下内容。
1.涂料的基本知识。这部分内容主要介绍涂料概念、组成、类别、功能以及发展概况。结合日常生活所接触的涂料,使学生掌握涂料的基本概念、分类和作用。让学生们了解到,现代涂料学的发展是以化学,特别是高分子科学为基础,结合界面科学和流变学发展起来的。了解涂料的发展背景和面临的挑战,懂得涂料的发展趋势。通过对目前报道较新的,具有特殊功能的涂料的介绍来激发学生对涂料的兴趣,并为以后进行涂料的科学研究开好头。
2.颜料相关理论。颜料和填料是涂料生产不可缺少的成分之一。其作用不仅是色彩和装饰性,更重要的是改善涂料的物理化学性能,提高涂层的机械强度、附着力、防腐性能、耐光性和耐候性。让学生了解遮盖力、着色力和吸油值等基本概念。在授课过程中,这部分知识与物理化学中的双电层理论联系紧密,可以对以前的基础知识巩固提高。关于颜料的分散是教学的重点。
3.溶剂知识。溶剂是不包括无溶剂涂料在内的,各种液态涂料中所含有的,为使得液态涂料完成施工过程的必要的一类物质。原则上不构成涂膜,也不存留在涂膜中。在授课过程中,这部分知识与有机化学和高分子物理中的极性、溶解力、粘度等相关知识联系紧密,可以对以前的基础知识巩固提高。在教学中,使学生掌握根据溶剂理论选用溶剂和改善涂料性能,了解有机溶剂对环境的危害,开发绿色水性涂料和高固体份涂料是涂料行业的趋势。
4.树脂知识。成膜物质是组成涂料的基础,它具有粘结涂料中其他组分形成涂膜的功能,对涂料和涂膜的性能起到决定性的作用。例如,在丙烯酸树脂章节中的内容与高分子化学基础课中自由基聚合和聚合方法的相关知识密切联系。不饱和聚酯树脂、醇酸树脂和聚氨酯章节中内容与高分子化学基础课中的缩聚和逐步聚合相关内容联系紧密。因此,授课的过程也是对以前的知识复习,深入体会和提高的过程,将这些基本知识与涂料制备技术相互渗透,相得益彰,这也正是开设《涂料学》课程的特色。
三、教学方法
1.教学与生活、生产相结合,注重理论联系实际。涂料是一门理论性和应用性都很强的交叉学科。理论知识比较晦涩,但大多数基本理论知识都已经在本科基础课教学阶段涉及,在涂料课程中只是有针对性的学习,必须与实际结合才能使学得的知识深化和牢固,也才能引起学生的兴趣。在教学的初期阶段,为了使得学生尽快入门,熟悉涂料学,就要将日常生活、生产与涂料结合,介绍生活和生产中涂料的应用,提高学生从心理上对课程的接受程度。众所周知,涂料学的特点是“入门易、学懂难”。为了提高教学效率,改善教学效果,必须要注重理论联系实际。这种联系实际上是基础知识与涂料学的联系;涂料学与实际应用的联系。把涂料学作为有机化学、高分子化学、高分子物理等基础知识实践的对象,会使学生对所学过的基础知识巩固提高,为今后打下坚实的理论基础。在涂料学理论实践过程中,学生可以去涂料生产厂和研究院所参观学习。学习涂料生产方法和检测方法,了解生产设备和检测仪器设备。学生往往很有兴致,注意力高度集中,因此将理论知识寓于合适的实际背景中进行讲授效果明显。
2.开设涂料实验。在高分子化学实验的基础上,开设涂料实验课程[4]。高分子化学实验中,一般开设甲基丙烯酸甲酯(或苯乙烯)的乳液聚合、聚酯合成实验等,可以在这些实验的基础上,进一步开设丙烯酸乳液合成、低分子量聚酯合成以及低分子量聚酯与异氰酸酯固化等,并且可以进一步开设乳胶漆的制造、涂料性能检测等系列实验,让学生自己合成树脂,自己配制涂料,自己对涂料和涂层进行检测。通过实验,不但将课堂所学到的理论知识通过实验巩固提高,而且训练学生进行涂料生产和科学研究的方法,培养学生的动手能力,分析和解决问题的能力。
四、结语
总之,笔者对在高分子专业本科教学中开设《涂料学》课程的必要性、优化教学内容、改进教学方法进行了初探,提出开设《涂料学》课程的必要性:一方面,对于处于专业知识学习的学生而言,通过本课程的学习,加强他们对高分子专业基础知识的巩固,为今后从事高分子相关专业的工作打好坚实的理论基础;另一方面,针对今后从事涂料行业的学生,涂料行业快速发展,科技含量越来越高,涂料学课程的开设正好可以满足涂料行业对大批高层次科研技术人员的需求。
参考文献:
[1]徐光宪.我对素质教育的认识[J].大学化学,2004,19(3):1-8.
[2]陈立贵,袁新强,李雷权,等.构建符合学校定位的高分子专业人才培养方案的研究[J].科技资讯,2009,(22),161-162.
[3]涂料工艺编委会.涂料工艺[M].北京:化学工业出版社,1997.
关键词:绿色化学;高分子;设计实验
高分子化学是一门实用性和实验性都很强的学科,是化学、化工、材料等专业必须修读的基础课程,与原有的四大化学并列,成为第五大化学。高分子材料已深入到人类生活和生产的每个角落。
高分子化学教学过程中发现,在实验内容等方面存在一定的局限性和不足之处,其完善需要经历一个不断实践和更新论证的过程。将高分子实验课中聚合物的分子设计、合成、加工和测试等实验内容有机结合,组成一门高分子科学实验课程,是高分子教学改革的必然趋势。
一、高分子设计实验课开设的必要性
廊坊师范学院化学与材料科学学院材料化学专业的高分子化学实验于2008年开设以来,由本专业教师在部分科研成果及其他院校高分子化学专业实验教学资料和经验的基础上,对设计实验的内容进行了设定。高分子设计实验的开设,为学生专业实验技能的培训、动手能力的培养以及思维创造力的提高等方面起到了积极的促进作用。
设计性实验是指给定实验目的、要求和实验条件,由学生自行设计实验方案,并加以实现的实验。设计性实验有利于培养学生的实践能力,提高学生探索新问题的兴趣、研究问题的综合能力。开设设计性实验时,要注意紧紧围绕学生的综合能力、初步设计能力及创新意识培养这一目标,注意与课程设计、课外科技活动、集中的综合训练相结合。
传统实验在与理论教学的配合上,是教师根据教学的一般规律或实验内容安排的,而不是学生根据各自学习中的需要或进一步探索的兴趣所确定的,无法体现个性的发展。验证性实验一般是前人做过的,经过精简提炼,专门为教学而设计的实验,实验没有次要的实验现象的干扰,这对学生今后从事科学研究和对新事物的探索非常不利。在高校中开设设计性实验,营造培养学生创造性思维能力的环境是非常必要的,有利于提高学生的综合素质和创新能力。
二、注意培养绿色环保和可持续发展意识
1.绿色化学的核心内容
绿色化学又称环境无害化学或环境友好化学,是指设计和生产中,使用没有或者尽可能小的产生环境副作用的化学品。绿色化学的核心内容主要体现在:第一是减量,即减少三废排放;第二是重复使用,如催化剂、载体等;第三是回收,可以有效地实现省资源、少污染、减成本的要求;第四是再生,是节省资源、能源,减少污染的有效途径;第五是拒用,如不用有毒副作用及污染严重的原料,这是杜绝污染的最根本方法。
开发新型的、可生物降解的高分子材料,解决“白色污染”问题;以及充分应用可再生资源,即:采用可再生资源做化学化工原料,是绿色化学的重要任务和方向。众所周知,“白色污染”是当今社会的一大公害,塑料作为合成高分子材料,具有性能多样、用途广泛和价格优廉的优点,已成为人类生产和生活中不可缺少的一种材料。然而,废弃塑料造成很大的环境污染。在实验教学中,应注重强调高分子材料的环境同化,高分子材料的循环和再生技术,探索高分子材料与生态环境的相互影响,实现高分子材料与生态环境的和谐等内容。
2.绿色化学的重要指标
绿色化学的一个重要指标是原子利用率,其定义为:期望产品的摩尔质量占化学方程式中按计量所得物质的摩尔质量的比值。高分子材料的制备包括单体的合成,聚合物的合成及聚合物的加工,前两步都有一个原子利用率的问题。要实现绿色化,只有在合成中提高原子利用率,才会真正减少废物的生成。
绿色化学的理想是指:不使用有毒有害的物质,不产生有毒有害的废弃物,不使用对环境有害的落后化学工艺。其目的是把现有的化学和化工生产的技术路线从“先污染,后治理”改为“从源头上根除污染”。
3.开设小量、半微量实验
有关绿色化学的教育才刚刚起步,国内大多数学校尚未涉足。现有的化学实验课程的教学内容难以体现绿色化学思想,不少实验仍大量使用有毒有害药品,产生大量的“三废”,对微型化学实验研究推广不够。
传统的常量实验药品用量大,导致教学经费投入大、资源利用率低、环境污染严重等。可以在某些实验开设小量、半微量实验。这些小量、半微量实验对学生实验技能、实验的准确性和精密度等都提出了更高的要求。
绿色环保和可持续发展已成为企业生产和发展必须考虑的因素。在设计专业实验时,尽可能地采用专业、简单高效的实验路线,教师在讲授时将其他生产过程和工艺进行对比,强调整个实验过程的经济性和环保效益,让学生充分体会到增强环保意识和可持续发展对社会经济发展的重要性。通过给学生灌输环保和可持续发展的理念,为学生今后生产设计和研究开发等工作提供一个基本的思想准则。
三、将科研与实验教学结合起来,开发应用型实验
1.将废旧高分子的综合利用作为设计实验内容
高分子化学是一门应用性很强的化学基础学科,是材料化学专业的重要专业基础课,对于材料化学专业的学生,学习高分子化学不仅要全面掌握高分子化学的理论知识,更重要的是要学会高分子的实验方法以及在实际中的应用。我们从废旧高分子的综合利用出发,探讨科研成果转化为高分子设计实验的研究与实践。
废旧高分子材料的综合利用是绿色化学的重要组成部分,它将对减少环境污染具有重要的实际意义,同时又能获得有价值的工业原料,对能源的再利用具有一定的意义。在我们的教学实践中,在已经具备的课题组成员大量前期科研成果基础上,对废旧聚苯乙烯、废旧有机玻璃、废旧聚氨酯和聚酯进行再利用研究。设计实验的内容包括对控制反应的几个因素:升温速度、温度、催化剂种类与用量、反应时间等进行优选。这类设计实验的开设使学生对绿色化学的概念有一个深入理解,使学生增强环保意识、掌握废旧高分子材料的综合利用方法,对从实际出发锻炼自身科研能力有重要意义。
在高分子实验教学中,适时引入“降解”这一高分子学科中的重要概念,并适当介绍高分子降解中的一些问题,如生物、光、辐射、热、机械及化学等因素引起的降解规律,并介绍相关高分子的设计方法。也就是让学生正面理解“聚合”的同时,也从反面理解了“降解与解聚”,这样就形成了一个完整的教学体系。
2.将天然可降解高分子作为设计实验内容
目前对付“白色污染”的方法一般是以填埋和焚烧为主,还有再生利用。再生利用的费用较高,难以推广,最好的方法是开发能够降解的环境友好材料。这种材料能够在环境条件下分解成能纳入自然生态循环的小分子物质。现在一般以淀粉、纤维素、甲壳素、壳聚糖等天然多糖为原料,采用共混或接枝等方法得到聚合物(如塑料),这类制品可以生物降解,最终转化为二氧化碳和水,纳入生态良性循环。
高分子设计实验中可以开发一些能联系实际生活的应用型实验,将教师的科研工作与实验教学紧密联系起来,体现出高分子科学实验的实用价值,能强烈地激发学生的创造性。
基于此,在高分子设计实验中我们增加了“从虾壳蟹壳制备甲壳素和壳聚糖并用于工业废水的净化”,本设计实验是从绿色高分子角度出发,将回收的虾壳蟹壳经水洗、稀酸浸泡、稀碱浸泡等方法先制备甲壳素,然后用碱煮的方法将制得的甲壳素进行脱乙酰化,制备出壳聚糖初产品,再用沉淀法进行纯化得壳聚糖纯品。将壳聚糖纯品分别进行脱乙酰度、平均分子量、灰份含量、水份含量的测定。将得到的甲壳素和壳聚糖用于工业废水中重金属离子和有机酸的吸附分离。
四、培养学生绿色化学思想和对高分子实验的兴趣
兴趣是学习的最大动力,学生只有具有了学习兴趣,才会主动花时间和精力钻研所学的内容。目前,实验课几乎全部是程式化过程,教师总是先讲解实验原理、操作步骤、注意事项等,学生被动地听,不去思考,机械地完成每一步操作,为实验而实验。实验带给学生的不是学习的兴趣,更不用说培养思考能力和兴趣了。因此,在课程实验教学阶段,通过质疑引思、举例与联想、归纳总结、启发式教学等方法来实现开拓创新。
关键词:施陶丁格;高分子理论;化学史料
文章编号:1005-6629(2011)12-0063-05 中图分类号:G633.8 文献标识码:B
在现代化学史上,20世纪的二十到三十年代是个关键时期,因为它正是现代化学建立的初期。以共价键的提出为契机,现代化学家和部分物理学家开始着手奠定现代化学的理论基础。例如,量子化学和高分子化学两个领域。在量子化学领域,以美国化学家鲍林为代表,展开了对分子结构的准确描述和对化学键本质的探索,这方面的内容在前文中已作介绍。在本文中,将重点陈述和探讨德国化学家施陶丁格,为建立高分子理论而走过的艰难历程,以及他为高分子合成材料的发展所作出的历史性贡献。
1 化学实践召唤创新的高分子理论
施陶丁格(Hermann Staudinger,1881~1965),德国有机化学家和高分子化学家,出身于沃尔姆斯一个知识分子家庭,父亲是位哲学教授。施陶丁格自幼爱好化学和化学实验,曾就读于达姆施塔特大学、慕尼黑大学,1903年获哈雷大学博士学位。后赴斯特拉斯堡大学深造,1907年任该校讲师,1908年任卡尔斯鲁厄工业学院副教授,1912年任苏黎世工业大学有机化学教授。1926年任弗赖堡大学化学教授,1940年任该大学高分子化学研究所所长,一直工作到1951年退休并任名誉教授终生。
施陶丁格从事高分子化合物研究,为此付出了常人难以想象的心血和代价。其重要原因在于,他所面临的研究对象既是古老的又是新生的,无论是高分子化合物的性质,还是高分子化合物的分子结构以及高分子化合物的改性和合成,都存在着新的实践和旧的理论或新的理论与传统观点之间的冲突。众所周知,高分子化合物自古以来就有之,一般称之谓“天然高分子物质”,它与人类的生活密切相关。例如,作为食物的蛋白质和淀粉,作为织物纤维的棉、毛和丝,作为涂料的天然树脂和油漆等都属于这类物质。不过在古代都是采集来这些物资后直接加以利用,没有什么化学加工,因此还谈不上对高分子物质的化学研究。早先,人们虽然天天在与天然高分子物质打交道,但对它们的本性却一无所知。随着社会生产力和化学技术的发展,从19世纪中叶开始,人们逐步涉及对天然高分子物质的化学改性的实践活动,已使它们更适应于工业、生活中某种需要的性能要求。而正是在这种化学改性的实践过程中,有些化学家开始了对天然高分子物质本性的探求。
1.1天然高分子物质的核心改性
首先应该提到的是橡胶的加工工艺。据记载,哥伦布第二次航海(1493-1496)到达拉丁美洲的海地时,曾发现当地土著人已经开始利用天然橡胶。1735年,法国科学院考察队在南美洲亚马逊河河谷发现野生橡胶树林;1876年,橡胶树中最重要的品种海维亚巴西橡胶被移植到英国,其后又移植到锡兰(现斯里兰卡),而在今日马来西亚、印度尼西亚、泰国及越南等地得到了大发展。19~20世纪之交,亚洲地区橡胶的出口量已经达到7000多吨。而要将大量天然橡胶变为适合人们所需的橡胶制品,需要一系列的橡胶加工工艺将其改性。
第一步是解决固体生胶的溶解问题。最初是采用添加松节油和乙醚,后改进采用橡胶与硫磺及少量铅粉共煮变成弹性既好,又不发粘,而且坚韧的制品。这便是最早将线型天然橡胶分子用硫磺作交联剂,使其形成网状结构的成功尝试。这种硫化工艺从1885年开始被广泛采用并运用于橡胶轮胎的制造。20世纪初期,这种硫化橡胶工艺获得了进一步发展,其主要表现是硫化促进剂(苯胺)和补强剂(碳黑)的应用,以促进硫化过程的加速和硫化温度的降低。这不仅降低了成本,而且改善了橡胶轮胎的强度和耐磨性,从而提高了生产效率和产品质量。
其次,天然纤维素的化学改性也是一项意义重大的天然高分子加工工艺。主要涉及硝化纤维即“火药棉”的制造和“人造丝”的制作。1846年,瑞士化学家申拜恩(C.F.Schonbein)用硝酸一硫酸混合酸处理纤维素得到了火药棉(含氮量在12.0~13.5%,相当于纤维素三硝酸)。起初火药棉不稳定易爆炸,后经对产品长时间的水煮打浆处理、经干燥得到化学稳定的硝化棉。1868年,有化学家建议把压缩的硝化棉用作高级炸药;1875年,瑞典化学家诺贝尔(A.B.Nobel,1833~1896)发现硝化甘油和火药棉(或硝化棉)混合可以生成一种比较稳定而又具有强大爆炸性的胶状物(含有92%的硝化甘油和8%的火药棉);它是最强烈的炸药之一,常用于爆破岩石、开山筑路。如果把其中的硝化甘油的比例减少,可以得到慢性炸药,用于作炮弹的发射药,具有重要的军事意义。
关于诺贝尔,值得推荐的是他把一生都献给了科学事业。他的主要化学发明都与炸药有关,每一次化学实验都是在死神的威胁下进行的。为了向大自然索取动力,他宁愿付出血的代价。尤其令人崇敬的是,他把因从事与炸药有关的商业活动而积蓄的财产设立一项专用基金,并立下遗嘱:“将上述财产兑换成现金,然后进行安全可靠的投资,以这份资金成立一个基金会,将基金所产生的利息每年将给在前一年中为人类作出杰出贡献的人。”一一这就是当今学术界最高荣誉诺贝尔奖的由来。
改性后的纤维素(硝酸纤维以及后来兴起的醋酸纤维)更广泛的用途则是制作人造丝。“人造丝”的想法是人们受自然界生物功能的启示而产生的。通常人们对蜘蛛、蚕等昆虫吐丝结网作茧的奇妙自然现象颇感兴趣。作为先行者是一些动物学家详细地研究了吐丝的蝶、蛾类的生理构造,发现它们的体内有许多粘稠的液体,通过它们的小口吐出,遇到空气便会凝结成丝。有些化学家从中也受到某种启迪,试图用人工方法仿制出类似的粘液,然后通过小孔进行抽丝。前面提到的申拜恩,在1846年制得的纤维素硝酸酯溶于有机溶液后,就具有这种类似粘液的性能。1855年,安地玛尔(A Andemars)以桑树枝为纤维原料,将其硝酸酯溶在乙醚一乙醇混合溶液中后,再把所得粘液通过毛细针管挤压到空气中,溶剂蒸发后就凝固成光亮、柔韧的丝,从而获得世界上第一根人造丝(Artificial Silk)。但这种物质极易爆燃,妨碍了它的工业化生产。后经法国技师夏东奈(H.de Chardonnet)革新,把棉花的硝化纤维素用NH4HS脱硝转化成安全脱硝硝化纤维素,再把它溶于酒精一乙醚后抽成人造丝,并于1889年,在巴黎国际博览会上展出,引起轰动,受到人们的赞赏。1891年,
夏东奈在法国贝尚松建厂,日产约50公斤,成为世界上第一家人造丝厂。这项天然纤维素改性的加工工艺的成功,向人们展现了人造丝的光辉前景,并有力推动了这方面的研究。
1.2高分子物质本性的探究
正是在对天然高分子物质进行化学改性的化学实验和生产实践中,化学家们开始了对高分子物质的性质与结构的理论性探究。这种探究长期以来进展缓慢,是跟高分子物质本身的复杂特性有着密切关系,例如,化学家们―直搞不清高分子的分子量究竟是多少;为什么它难于透过半透膜而类似胶体;为什么它没有固定的熔点和沸点且不太容易形成结晶等问题。以当时流行的化学观点来看,这些独特的性质是很难理解的。于是,个别化学家开始尝试一种对高分子物质性质的理论解释。
早在1861年,胶体化学的奠基人、英国化学家格雷阿姆(T.Graham,1805~1869)曾将高分子物质与胶体相比较,认为高分子是由一些小的结晶分子形成的;并从高分子溶液具有胶体的某些性质着眼,提出了所谓“高分子的胶体理论”。该理论在一定程度上解释了某些高分子的特性,得到较多称谓“胶体论者”的化学家们的支持。他们套用胶体化学的理论观念来阐述高分子物质的可能存在的结构,认为:“纤维素是葡萄糖的缔合体”,即认为它是一种小分子的物理集合。19世纪末,随着人们对胶体一系列物理化学特性的发现及展开,一些从事胶体化学研究的物理化学家进一步助推了“高分子胶体论”,并将其引伸为“高分子聚集体论”。该理论认为:胶体是一种物理的凝聚体,而有胶体性质的高分子化合物不仅是一种小分子的物理聚合或缔合;而且它还是由小分子借分子间的范德华力而结合产生的聚集体所组成。该理论强调高分子特性和分子外部作用力的对直与关联。
20世纪初期,当施陶丁格初登高分子化合物研究舞台之际,他所面临的理论境况是:胶体论者或聚合体论者主导着高分子化合物性质与结构研究的局面。对于施陶丁格来说面临着这样的抉择:要么顺应胶体论或聚集体论的潮流去推波助澜;要么努力创新去开拓研究高分子化合物性质与结构的新途径。施陶丁格选择的是后者,因为他崇尚:“研究学术,最重要的是需要具有自由的意志和独立的精神;没有自由思想、没有独立精神,就不可能发现科学真理,亦即不能研究学术理论”。基于长期从事有机合成反应的研究,施陶丁格大胆着手对这种新途径的探究。他从1908年就开始了对人工合成橡胶的研究,发明了“异戊二烯合成法”。1912年到1926年,施陶丁格就任瑞士苏黎世工业大学教授期间,还着重研究了乙烯酮、异戊二烯等不饱和烯烃。他从这些化合物的大量反应中发现和归纳出一个很值得关注的规律性特点,即这类化合物不仅容易与其他物质发生加成反应,而且它们自己还能进行自聚(即自身加成)。这样所生成的物质虽然在化学成分上与原来的单体没有什么不同,但化学性质和物理、机械性能都表现出极大差异。于是他指出:这不是一般的有机合成,而是一种新型的反应,即加成聚合反应;由苯乙烯聚合成聚苯乙烯就是典型的案例。异丁烯、醋酸乙烯酯等单体的聚合反应也产生类似的结果。很多实验表明,高分子物质可以由低分子单体物质经化学键(共价键)重复连接聚合而成。这―重要发现后来就导致高分子理论的诞生。
从20世纪20年代起,施陶丁格在论文中首先使用“Makromolekul”(高分子)这一名词来标记这类聚合物;并不断阐明他的这种观点,强调指出:“这类聚合物的微粒是真正的分子,并不是小分子的物理集合(或缔合)物。而且事实上,休想用别的任何试剂使它变成我们通常所说的那种典型的低分子溶液”。显然,施陶丁格的这种新观点是与当时流行的并占主导地位的“胶体论”或“聚集体论”的观点是相对立的。于是,一场激烈的学术论争已经不可避免。
2 学术论争中诞生的高分子理论
1922年,施陶丁格明确提出了高分子是由长键大分子构成的观点,他把当时作为小分子聚合体的一批有胶体特性的物质(橡胶、纤维素、淀粉、蛋白质等)看成是由成千上万个碳原子通过聚合反应由共价键连接起来的长链状大分子(或高分子)。这种创新的高分子观念动摇了胶体论或聚集体论的基础。同时,由于施陶丁格的高分子理念超越了当时的分子概念,跟传统的观念相抵触而互不相容,故遭到胶体论者或聚集体论者激烈反对。不少持保留态度的学者曾劝阻他:离开大分子(或高分子)这个概念吧!根本不可能有大分子那样的东西存在;有的甚至责难他缺乏足够的实验根据又无法证明所谓的高分子的分子量是多少。
面对种种对高分子理论的非议,施陶丁格没有退缩。他―方面认真地思考反对者的质疑,深入地对高分子概念进行再论证;另―方面设法在理论与实践的结合上去解决高分子物质的分子量的测定问题。此时,关键是要直面责难、大胆宣传正确的理论主张。为此,施陶丁格先后在1924年及1926年召开的德国博物学及医学会议上、1925年召开的德国化学会的会议上多次详细介绍和阐明了自己的高分子理论,跟“胶体论者”或“聚集体论者”展开了面对面的学术辩论。这场持续多年的学术论争,主要围绕三大焦点问题而展开。
2.1橡胶加氢过程实质的研判
胶体论者或聚集体论者认为,天然橡胶等是通过小分子之间的范德华力而缔合起来的;这种缔合归结于异戊二烯的不饱和状态。他们甚至预言:橡胶加氢将会破坏这种缔合,得到的产物将是一种低沸点的小分子(或低分子)烷烃。施陶丁格从理论与实践的结合上加以批驳。他首先研究了天然橡胶的加氢过程,结果得到的是加氢橡胶而不是低分子烷烃;并且加氢橡胶在性质上与天然橡胶几乎没有什么区别。实践结果增强了施陶丁格关于天然橡胶是由长链大分子构成的信念。随后他又将成果推广到多聚甲醛和聚苯乙烯,指出它们的结构同样是由共价键形成的长链状大分子。
2.2高分子溶液的粘度和分子量的关联
施陶丁格认为,测定高分子溶液的粘度可以换算出其分子量,而根据分子量的多少就可以确定它是大分子还是小分子。“胶体论者”或“聚集体论者”则认为,粘度和分子量没有直接的关联。由于当时缺乏必要的实验证明,施陶丁格起初显得比较被动,但他没有就此却步。1927年他提出:通过测定高分子稀溶液的粘度来验证高分子具有惊人巨大的分子量,这在实践中是有规律可循的。经过多年的努力,他终于在粘度和分子量之间建立起了定量关系式,这项工作在1936年导致了著名“施陶丁格粘度公式”的诞生:η=KmM,其中η代表高分子溶液的特性粘度、M为分子量、Km是由高分子的种类、溶剂性质和温度、浓度等因素所决定的常数。当Km为常数时,粘度与分子量之间存在线性关系,从而揭示出了粘度与分子结构间的内在联系。实验可以证明,任何一种高分子溶液的粘度总是与它的长链分子中的链节数(或单体的数目)成比例。
2.3高分子结构中晶胞与其分子的关系
学术论争双方都使用x射线衍射法来测定纤维素结构和拉伸橡胶的数据,均发现单体(小分子)与晶胞大小很接近,但双方对此的看法却截然不同;“胶体论者”或“聚集体论者”认为一个晶胞就是一个分子,晶胞通过晶格力相互缔合形成高分子;施陶丁格则认为,晶胞大小与高分子本身大小无关,一个高分子可以穿过许多晶胞,从一个结晶区通过一个无定形区,然后再进入另一个结晶区。双方对同一实验观测事实有着不同的解释,可见科学的解释有时与科学的实验同样重要。正当双方观点争执不下时,出现了一个转机,那就是在1923~1925年期间,瑞典化学家斯维德贝里(Theodor Svedberg,1884~1971)发明了超速离心机,获得比地球表面的重力加速度大几十万倍的力场,由此可利用沉降速度法测定出蛋白质的分子量在1.2万~200万之间(系指平均分子量)。同时,还创造出电泳和吸附方法,用以分离和提纯胶体和高分子化合物。这一事实,为施陶丁格的高分子聚合物的存在及其理论提供了直接的证明。1926年,斯维德贝里因发明超速离心机并用于研究高分散胶体物质和高分子化合物而荣获诺贝尔化学奖。
以此为转机,学术辩论双方的力量发生了显著的变化。在1928年召开的德国化学会上,除个别人仍持保留态度外大多数有机化学家和物理化学家都放弃了原先持有的“胶体论”或“聚合体论”观点。有两位主要反对者(马克和迈耶)则公开承认错误,同时高度评价了施陶丁格的科学思想、理论与实践以及坚韧不拔的科学精神。令人感动的是,他们还以实际行动具体协助施陶丁格完善与发展高分子理论。有机化学家和物理化学家们开始统一在高分子科学思想理论的旗帜之下。1932年,施陶丁格总结了自己的高分子理论,出版了划时代的名著《高分子有机化合物》,标志了高分子学科的诞生。
3 高分子理论经受住实践的检验
在学术论争中诞生的高分子理论是否是科学真理,最终还得经受实践的检验。实践表明,直至20世纪30年代末,美国化学家卡罗瑟斯(W.H.Carothers,1896~1937)在高分子理论指引下,按照缩聚反应的原理,研制成功了人造尼龙纤维,施陶丁格的高分子理论由此才得到科学界的普遍接受、认可和赏识。那是在1927年,美国伊利诺斯大学和哈佛大学的年轻化学教授卡罗瑟斯接受杜邦公司的邀请,研究高分子物质的合成和结构问题。他先通过二元醇和二元酸进行缩合聚酯反应的研究,对反应物配比严格要求,从而发现了缩合聚合的规律。1930年,他与助手希尔发现乙二醇与癸二酸缩合而得到的聚酯,其熔融物能拉伸成长纤维状的细丝,具有可纺性。而且冷却后仍可拉伸,强度和弹性并随增加担脂肪醇与脂肪酯的缩聚物熔点偏低,而且易水解,所以不适用作纤维使用。于是,他们转而集中精力研究聚酰胺,以二元胺替代二元醇,发现聚酰胺具有聚酯的各种特性,熔点高、耐水性也好。
卡罗瑟斯及其助手以极大的韧性合成了_上百种聚酰胺,最终筛选出由己二胺和己二酸反应生成的聚合物,命名为“Nylon-66”(即尼龙66,两个“6”分别代表二胺和二酸中的碳原子数),由此奠定了熔体纺丝的生产工艺流程,包括缩聚、熔体纺丝及在室温下的冷拉伸等。尼龙66的生产规模发展很快,当时的杜邦公司曾用“我们生产如钢丝一样结实,像蜘蛛网那样纤细的具有美丽光泽的尼龙丝”的广告吸引顾客,加上可观的商业利润和市场需求的刺激,各国开始陆续建厂投产。以高分子化学工艺为基础的人工合成纤维材料开始走向世界。
正是高分子理论的建立,人造尼龙纤维的试制成功和大分子量测定方法的完善(渗透压法及光散射法相继成为有效的测定高分子物质分子量的手段)使高分子化学成为发展最迅速、应用最广泛的新兴学科之一。施陶丁格本人由于在这方面做出的开创性贡献而荣获1953年诺贝尔化学奖。
施陶丁格在高分子领域研究取得成功以后,开始按照早年的设想,将研究的重点逐步转向生物学领域。不过从实质上看,只是拓展了高分子的研究范围。事实上,他当初选择高分子这―课题时,就曾考虑到他与植物学的密切关系。早在1926年,他就曾预言大分子(或高分子)化合物在有生命的有机体中,特别是蛋白质之类的化合物中起着重要作用。于是一旦时机成熟,他顺理成章地将大分子(或高分子)概念引入生物学,积极倡导分子生物学的建立。他和妻子、植物生理学家玛格达-福特合作研究高分子和植物生理学的关系,在科学探索的道路上开始了新的征程。
要证明大分子(或高分子)同样存在于动植物等有生命的生物体内,施陶丁格夫妇俩认为最好能找到除了粘度法以外的其他方法,以证明高分子确实存在及其具体存在的方式。经过两年多的努力,他们利用电子显微镜等现代观测手段,终于用事实证明了生物体内存在着大分子(或高分子)即糖、脂、蛋白质和核酸及其衍生物等生物大分子。可是这项有重要意义的工作因希特勒法西斯的上台和第二次世界大战的爆发而被迫中断,施陶丁格所在的研究所毁于战火。第二次世界大战一结束,施陶丁格立即恢复了_一度中断的关于生物有机体中大分子的研究。1947年,他的新著《高分子化学和生物学》出版。在该著作中,施陶丁格尝试性地描绘了分子生物学的概貌,为分子生物学这一前沿学科的建立与发展打下了必要基础。此外他还关注着高分子化学的进展,为了配合高分子学科的继续发展,1947年起,他还主持编辑了《高分子化学》这一专业杂志。1961年,发行了新版《高分子有机化合物:橡胶和纤维素》。
总之,以20世纪30年代施陶丁格建立起现代高分子学说为开端,新的合成高分子化合物被不断地开发出来,尤其是20世纪50年代以后,伴随着石油化工的发展,高分子化学工业日新月异,发展迅猛。如今,塑料、合成纤维、合成橡胶、涂料及胶粘剂等高分子材料在日常生活中的应用已无所不在,同时也遍及所有工业部门和科技领域。随着高分子化学工业的高速发展,新颖的高分子材料给传统的材料结构带来了深刻变化。这就要求人们继续深化它们的结构与性能特征以及所涉及的基本理论,并探索高分子新的制法及其加工工艺。这样一门以有机化学、物理化学、生物化学、分子物理学等为基础的新科学一一“高分子科学”就应运而生。
迄今为止,高分子科学已成为一门相当完整、相对独立的基础科学分支。从施陶丁格的“高分子化学”到如今的“高分子科学”,人们对高分子化合物及其合成的研究又完成了一次认识上和实践上的飞跃。抚今追昔,人们不禁深深怀念施陶丁格的创新精神和杰出贡献。可以期望,施陶丁格和他的“高分子”理念将久远地共存于人们的心中。
参考文献:
教学和科研是衡量一所学校,一个专业发展水平的重要指标体系。教学和科研可以相互促进,提高学校的办学水平。科学研究为学生提供接触本专业最新专业知识理论和方法的机会,锻炼学生的动手能力和创新思维能力,有效推动专业人才培养质量的提升,为地方及区域经济的发展输送高素质的工程技术人才。结合专业建设的机遇,鼓励教师强化科学研究,努力提高科研水平,以科学研究成果促进教学水平的提高,具有重要的现实意义。
武汉工程大学材料科学与工程学院高分子材料与工程专业教师科研成果促进本科教学工作在实践探索中取得了初步成效。笔者将以此为例,就这方面的工作进行一些探讨。
二、教师科研成果促进本科教学工作的思路与实践
(一)实施的背景
1.是当今社会发展对人才培养质量的要求。随着人类社会的进步和科技的迅猛发展,材料、能源和信息已被公认为科学技术的三大支柱。将教师的研究成果融入本科教学内容,扩大学生知识面,了解和掌握学科前沿的最新动态,是培养技术开发和应用的创新科技人才,为地方及区域经济的发展输送高质量的工程技术的重要举措。
2.是学校建设规划实施的需要。
武汉工程大学是一所化工特色鲜明的多科性教学研究型大学,人才培养目标定位于高素质应用型人才的培养。学校明确提出,要以素质教育、工程实践能力和创新意识培养为教学工作出发点,培养一批适应社会发展需求的“基础扎实、知识面宽、实践能力强、具有创新精神的应用型人才”。为进一步贯彻落实学校关于本科教学质量与教学改革工程的精神,我校高分子材料与工程专业几年来的教学改革与实践都是围绕推进素质教育和质量工程建设,培养符合知识、能力、素质三方面要求的创新型人才进行的。让学生参与到教师的科研工作中,是实施人才培养计划的有效途径之一。
3.高分子材料与工程专业具备科研促进教学工作的优势。
(1)专业优势。该专业成立于1994年,是我校的优势特色专业,是学校博士点的两个一级学科之一。2007年获得“2007-2010中央地方省部共建材料科学与工程特色专业实验室”立项建设,“2007-2010中央地方省部共建高分子化学与高分子物理特色专业实验室”2008年获准通过。本专业的橡胶加工和塑料加工设备齐全、先进,专业实验教学条件领先,为本业专和相近专业提供起点高、装备齐全、适用性强的高分子材料与工程专业实验示范基地。
(2)专业师资优势。突出表现在:拥有楚天学者岗、教师的博士比例高、SCI和EI收录数量多。所属学科“材料科学与工程”一级学科是湖北省重点学科,设有硕士学位授予点(含材料学、材料加工工程和材料化学与物理三个二级学科硕士点)。“高分子化学与物理”二级学科也是湖北省重点学科,设有硕士点,同时,“材料科学与工程”一级学科已通过博士点立项建设验收,现有兼职博导3名。另外,所属专业主干课“高分子化学与物理”等课程为省级精品课程,为本科生、硕士和博士研究生的培养提供良好的理论教学和科研条件。专业教师搞好教学的同时,还积极开展科学研究,通过承担科研课题,撰写高水平论文,发明专利,举办、参加学术活动等方式,极大地提高了本学科教师的理论水平。
(二)科研促进教学工作的思路及措施
几年来,本专业教师在积极开展科研工作的同时,特别注重科研成果在教学活动中的应用,努力丰富教学内容,提高教学效果。除了一般性的结合自身的科研经历于理论教学中外,许多老师将科研课题直接用于教学实践活动中,开设创新性实验项目,提高了学生的学习兴趣,加强了学生工程实践能力的培养。
1.科研成果促进教学的平台构建
本专业多年的办学经验显示,教学与科研训练是不可分离的,二者的有机结合为培养研究创新型人才,提高学生对新产品、新工艺、新材料的研究、开发能力大有裨益。通过实践,我们总结了如下的科研促进教学体系:
2.科研成果促进教学的方式方法
科研成果促进教学的方式方法可归纳为以下几种:
(1)作为理论教学的补充内容
高分子材料与工程专业的理论基础课,如高分子物理、高分子化学,高分子的专业主干课如聚合物加工原理,都是与实际紧密相连的课程。例如,高分子化学课程中讲授的许多原理都将直接运用于工业生产的控制中。因此,将科研成果融合在理论课的教学中,对学生加强理论的理解,提高学习理论课的兴趣,是十分有用的。比如老师在讲解《聚合物加工原理》课程时,将自己的科研成果,如聚丙烯的改性、加工融入讲课内容,丰富了课堂教学的内容和层次。
(2)作为实验教学的内容
高分子材料与工程专业教师充分利用科研的优势,将研究成果应用于实验教学中。高分子材料与工程《专业实验》课的基本实验项目中的科学研究实验如下表(部分):
科研成果转化为实验教学内容清单(部分)
(3)作为学生毕业设计(论文)的课题
近年来,该专业本科学生的毕业论文题目均出自指导教师的科研课题,获得很好的效果,学生的本科毕业论文多人次获湖北省优秀本科毕业论文奖励。
(4)作为大学生课外科技创新活动的内容
本专业的教师积极吸纳学生参与在研科研项目的研究,指导学生独立完成大学生课外科技创新活动,培养了学生独立分析问题、解决问题的能力,激发了学生的创新意识,为今后的考研、读研打下了良好的基础。比如学生在教师科研项目的基础上提出了新的子课题,并积极申报了“武汉工程大学校长基金”,使高分子材料与工程专业连续成为获得资助项目最多的专业。在大学生化学实验技能竞赛中该专业学生也获得很好成绩。
(5)作为本院教授(博士)论坛的讲座内容
武汉工程大学的教授(博士)论坛是由材料科学与工程学院创办并推广的。高分子材料与工程专业的教授(博士)将科研成果通过讲座的形式传授给低年级学生,拓宽了本专业学生的知识面,使他们了解了本学科的前沿科学研究,促进了本专业学生参与科研的热情,成为科研成果促进教学的新方式。
三、 科研促进教学工作的实践意义
关键词:高分子化学;高分子科技发展史;历史故事
中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)37-0063-02
高分子发展过程中众多的趣闻轶事构成了高分子科技发展史的重要内容。我们在高分子化学教学过程中注意穿插相应的历史故事,并加以分析评价,帮助学生了解历史,让学生掌握科学的智慧,取得了较好的教学效果。以下就有关故事进行简单的介绍。
一、Staudinger与高分子学说的创立
1920年Staudinger发表了划时代的《论聚合》,首次提出了“长链大分子”的概念。共价长链分子的概念在今天不难理解。然而历史上高分子学说的确立却颇费周折,一些科学家已测到聚合物的高分子量,却拒绝接受这一实验结果。一方面,当时盛行的胶体说能解释部分实验现象;另一方面,个人认为可能还与化学史有关。1861年,格雷阿姆提出“胶体”这个名词时,近代的原子―分子论为人们接受不久。高分子长链假说的提出,无疑有悖于物质是由“简单分子”构成这一惯性思维。这个故事教育我们不仅要学习Staudinger坚持真理,不懈努力的精神,还要学会转变思维方式。“Think different”是一个科技工作者必备的素质。一个新学科的诞生、新研究方向的确立,往往都伴随着新思维的产生。
二、导电高分子的发现
导电高分子的发现充满了戏剧性。1967年,白川英树的研究生做实验时错用了一千倍的催化剂,加上搅拌器凑巧停止,在溶液表面生成了银色的薄膜状物。白川英树以此为切入点,进行了深入细致的研究,终于发现制备膜状聚乙炔的有效方法。1975年,美国的Macdiarmid教授偶然见到白川英树的金属光泽的膜状聚乙炔后,立即邀请他去美国与Heeger合作研究。后来,三人一起获得了2000年诺贝尔化学奖,也被传为佳话。与硝酸纤维素、炭黑增强橡胶等发现一样,聚乙炔膜的发现也是“偶然的”。这个故事也教育我们合作的重要性。“这是我的idea,说出去会不会被别人学去了?”具有知识保护意识固然重要,合作交流能够更快、更有效地促进研究的发展,科研中需要有团队精神。
三、Crothers与尼龙66
深受女士喜爱的尼龙袜无疑是引出缩聚反应的最佳例子。尼龙袜在全美首次发售时,每人限购一双,500万双当天告罄,没有买到尼龙袜的人在裸腿上画纹路冒充丝袜。那么引起如此轰动的商品是如何制造出来的?这个问题吊起了学生的胃口,他们对相应的知识特别用心。1928年,杜邦公司成立了基础化学研究所,Crothers受聘担任该所的负责人,并决心利用二元醇和二元酸的缩聚来支持当时刚刚提出的高分子学说。在实验中,同事偶然发现熔融的聚酯可以抽丝,Crothers意识到这是纺丝原料的特性,并展开了大量的研究。克服各种困难后,最终得到了尼龙66纤维。尼龙66的出现不仅有力的支持了高分子学说,也深入改变了人们的生活。尼龙的发现离不开Crothers。同样让人称道的还有杜邦公司,能够在经济大萧条时期拿出一笔巨款支持没有明确应用目的的基础研究,需要敏锐的眼光和巨大的勇气。注重基础研究,在今天也有着重要的借鉴意义。
四、塑料之父――Baekeland
作为第一种人造聚合物――酚醛树脂的发明者,Baekeland是一个传奇人物。他21岁就获得了博士学位,专利意识非常强。发明Velox相纸后,故意在专利中省略一两步。结果柯达公司不得不两次出资购买。在发明酚醛树脂后,Baekeland及时申请了专利(仅比同行早一天),也得到了塑料之父之称。Baekeland的幸运和知识产权保护意识让人感叹不已。酚醛树脂的发明也是一个成功的科研案例。Baekeland敏锐地意识到绝缘材料在刚刚兴起的电力工业中的巨大市场,将研究目标确定为寻找天然绝缘材料的替代品。他没有立即进行实验,先是充分进行了文献调研。发现早在1872年德国化学家Vaeyer曾把苯酚和甲醛混合产生一种树脂状物质,指出在实验中应防止它的产生。Baekeland反其道而行之,加热加压来加快反应,得到琥珀样的样品,并最终掌握了酚醛树脂的制备方法。他于1907年申请了专利,这年也被视为塑料元年。这个故事充分说明了科学研究的选题和文献调研的重要性,在阅读文献时要注意批判性阅读,不迷信已有的解释。
五、配位聚合和Ziegler-Natta
1953年Ziegler在用乙基铝使乙烯加成的一次偶然失败中发现,镍会抑制反应进行,其他过渡金属也有类似作用。他给博士生Breil的论文题目是“系统地实验整个周期表的元素”来对这一作用进行研究!有趣的是,最终研究得到了一种能使乙烯迅速聚合成为高分子量聚乙烯的催化剂。事实恰好与预料的相反,这充分说明,和预期不同的结果不见得是坏结果!Natta的成功无疑是跟踪世界研究前沿的结果。他在Ziegler催化剂研究之初就派人过去接受指导。在用改进后的催化剂进行了丙烯聚合后,Natta发现它含有高结晶部分,敏锐地“把新的结晶聚合物的结构归之于主链或至少相当长部分的主链上的不对称碳原子都采取了相同的构型”。Natta文章因未披露催化剂的本质这一关键问题,初审被拒稿。而作为编辑的Flory则意识到了文章不寻常的意义,更改了裁决才使得文章得以发表。与Ziegler-Natta的成功相对的是,1943年Fischer希望能找到使乙烯聚合成油的方法,发现“当三氯化铝与四氯化钛并用作催化剂时,液态产物减少而有利于生成固态物”,因此似乎是失望多于希望。另外,Ziegler的学生Wesslan制备聚丙烯后,发现物质的熔点高于聚乙烯,他肯定自己错了,他不相信支化会提高石蜡烃的熔点。他没有认识到熔点升高的意义。这两个故事也从反面再次印证了如何看待实验中的意外。高分子史上还有更多的历史故事,如“的确良”(涤纶),田中耕一发现质谱离子化新方法,聚四氟乙烯和高压聚乙烯的发现等。在高分子化学教学中适当穿插相应的历史故事,不仅可以增加课堂的趣味性,还有助于学生了解科学家思考问题的方式,学习他们成功的经验和失败的教训,培养学生思考研究的能力。
最后要强调的是,故事可以有适当的艺术处理,但不应违背历史和科学常识。如有文章这样介绍导电高分子“楼道角落里的一堆既像塑料又闪着银光的薄膜吸引了艾伦教授的注意了。当他好奇地询问陪同的白川教授时,对方不以为然地回答:这只是一堆废品,毫无科学价值”。该描述对百川英树有失公允,引用后会给学生错误的印象。充分利用网络资源对故事进行甄别,可以避免这种事情的发生。
致谢:本文获教育部本科教学工程与专业综合改革试点建设项目;广西专业课程一体化建设项目;广西紧缺专业建设项目;广西高等教育教学改革工程立项项目资助。
参考文献:
[1]董炎明.奇妙的高分子世界[M].北京:化学工业出版社,2011.
[2]姚金水,李梅,等.高分子科技发展史上几个重要事件给我们的启示――兼谈高分子物理概论部分的讲授[J].高分子通报,2012,(8):101.
[3]P.J.Flory,Principles of Polymer Chemistry,Cornell University Press,Ithaca,New York,1953.
高分子物理的学科发展线索是,研究高分子的多层次运动(链段运动、分子链运动)、多层次相互作用、多层次结构(高分子链结构、序列结构、各种凝聚态结构),各种结构因素对聚合物材料性能及功能的影响,以及进行上述工作的手段(新仪器)研究和新方法研究。
全书由8章组成。第1章为引论,介绍了线性高分子、网络状高分子、橡胶高分子和多组分体系,对这些高分子的结构、制备方法、合成机理和分子量及其分布的基本概念和测定方法做了系统的论述;第2章为高分子链构象的统计表征方法;第3章介绍了不同高分子体系的热力学方面的研究成果;第4章和第5章分别介绍了高分子体系特殊的光学性质和电学性质;第6章简要介绍了表征高分子体系微观结构的波谱学方法的原理;第7章重点介绍了橡胶态高分子相关的结构和性能关系理论;第8章详细介绍了晶态高分子的研究方法以及高分子结晶机理、微观形态和动力学分析结果。
本书初步介绍了利用数学模型研究物理现象的方法,可以作为数学及其相关领域学生进行高分子物理研究的指导教材,也可以帮助数学领域的专家扩充高分子科学方面的背景知识。本书提供的丰富材料还能够帮助具有基本数学、物埋和化学知i只和不同高分子物理背景的读者了解众多物理现象背后的数学原理。同时,因为作者在本书里详细阐述了高分子物理领域的许多数学模型和假设的建立和演变过程,所以本书可以帮助从事高分子物理研究的专业人士对期刊和书籍里普遍使用的数学方程和模型假设有全面和系统的认识。