前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的汽车职称论文主题范文,仅供参考,欢迎阅读并收藏。
黑龙江工程学院是国家第一批卓越工程师教育培养计划试点院校。黑龙江工程学院汽车与交通工程学院每年培养并向社会输入大批的高级汽车应用型技术人才。汽车保险与理赔作为汽车专业类车辆评估与事故处理技术专业方向的核心课程,面向的对象包括汽车与交通工程学院的车辆工程、汽车服务工程、交通运输等专业,每年有大量的毕业生就业岗位都与汽车保险与理赔行业相关。因此,建设具有特色的汽车保险与理赔课程群迫在眉睫。课程群建设是体现学校人才培养目标、提供优秀课程资源、建设特色专业的基础,是课程体系建设在高校培养目标层面的具体化表现。专业课程群建设受到现代教育思想和教育理论的广泛关注和研究,它能够有效克服课程建设中的诸多弊端,如: 过于强调某一门课程内容的完整性与系统性,缺少对与其相关课程的横纵向关系研究,导致各门课程内容重复偏多、课程内容滞后、课程设计与课程实施脱节等,它是提高课程实施效果的重要措施。
二、建设途径
1. 改革课程体系
课程体系是卓越工程师教育培养计划的关键,是高等教育人才培养的主要载体。汽车专业类卓越工程师的培养目标是培养思想觉悟高、基础扎实、知识面广、实践和创新能力强、素质综合的卓越型人才。在构建崭新的汽车保险与理赔课程体系时,各种课程之间须关联密切,逻辑性强。可先通过基础的理论课程学习,如汽车构造、汽车电器与电子设备、汽车故障与诊断、汽车检测与维修等,了解汽车方面的相关知识,在此基础上再学习汽车保险与理赔、车辆查勘与定损、汽车事故分析与鉴定等课程。这样可使理论知识具有较好的衔接性,实践内容的安排也具有递进性,这样由浅入深、循序渐进的方式更容易被学生接受,效果也更好。
2. 加强校企合作
构建“卓越工程师计划”实践教学体系,必须更新教育理念,紧密接触工程实际,加强校企合作。黑龙江工程学院一直积极引进国内外知名企业,联合建立实验室、创办人才培训基地。目前已经建立的培训基地有丰田汽车技术培训中心、博世汽车故障诊断实训中心、哈飞汽车技术培训中心、中国安邦保险公司汽车理赔员培训基地等,在校园内形成了良好的工程环境,建立了具有高校行业特色的校内实践平台。并且与各大保险公司、哈尔滨运通汽车销售服务有限公司、哈尔滨森华汽车销售服务有限公司、黑龙江博远集团、长春一汽集团、哈飞集团等企业建立了良好的产学研合作关系,均可成为教学实习和毕业设计的良好基地。
3. 加强实践教学环节
在今后的教学工作中,可以从企业和教师两个方面来加强实践教学,这主要是为了配合“卓越工程师教育培养计划”要配合企业“走出去”战略。一方面学校要利用和创造条件安排学生到相关企业进行生产实践。另一方面是教师根据学生的自身情况,为其量身定制自主实践内容,着重培养学生的创新能力和动手能力。同时,增设实验课比例,加强理论与实践的结合,使很多理论课与实验课能够整合起来,真正地达到学以致用的目的。面向“卓越工程师”人才培养的教学应树立以教师为主导、以学生为主体的教学观,学习形式主要以理论教学为主,辅以基本的实验和实训。适量采用探究式学习方法,如在汽车保险类课程的教学中,通过分组讨论等方式,引导学生积极主动参与课堂教学活动,促进组员的沟通与协作。在汽车保险案例纠纷课程教学中,采用基于案例的讨论式学习方法,通过案例介绍、案例分析、案例总结这样的环节设置,培养和训练学生的逻辑能力和实践能力。企业的学习主要是依托企业的生产条件和环境,应以实践教学为主,辅以必要的理论专题。学生通过参加企业实践,参与工程研究开发和企业技术创新,根据企业需要完成毕业设计。可将“汽车保险与理赔”、“汽车事故分析与鉴定”当中的某些教学活动安排在企业进行,利用企业平台的工程环境、拥有的专业场地、经验丰富的工程师,培养学生的工程实践能力,并能对学生的理论学习进行检验和修正。
4. 师资队伍建设
卓越工程师培养计划需要建立一支经验丰富、素质综合的教师队伍。在汽车企业中遴选适合相关教学的高级专业人才,可选聘企业实践经验丰富的专家到学校任教或做兼职,建立结构稳定的专兼职教师队伍,可定期以讲座、实操等形式为学生进行讲解。同时,学校要有计划、有组织地开展教师培训。鼓励缺少工程经历的教师到企业参加工程实践,以全面提高教师的综合业务素质。大力推动“双师型”教师人才培养工程。
5. 完善教学资源
在课程建设方面,增设与实践相关的课程,增加与教学内容相关的各类软件教学的比例,可分别增设 C + + ,UG、ANSYS 等各种仿真模拟操作软件教学,逐步形成专业特色。按照“卓越工程师”培养标准,卓越计划要求加大对课程教学的调整和更新力度,促进学科交叉,避免内容重复,在教学方法选择上注重时效性、多样性和科学性。选择合适的教材。教材是课程的主要载体和形式,合适的教材是专业教学改革取得成功的关键因素。教材建设应该按照课程整合后进行编写和选择,突出知识的系统性、精简性和时效性,注意教材内容的重复与更新。实验室建设方面,应该与时俱进,做到及时、合理、有效地配备实验设施及器材。从而保证最终服务好学生,实现学生知识、能力和素质的整体培养目标。
6. 积极拓展网络教学
按照“卓越工程师”的培养要求,必须建设与完善汽车保险与理赔课程群的教学资源,网络教学是教学资源中非常重要的一部分。随着微博、微信、飞信等网络工具软件的发展,学生与网络的联系越来越紧密,针对这一趋势,要积极引导并加以利用,使之更好地为课程教学服务。通过网站建设,定期更新教学 PPT; 链接各大汽车企业及保险公司、技术讨论论坛,引导学生自我学习,积极补充课外知识; 通过网站自测题,可以检验学习效果; 通过微博、微信、飞信与学生积极互动,激发学生的学习兴趣,加强学生与教师的沟通交流。
7. 推进任务型课程教学改革
【论文摘要】建筑业应适度垄断行业组织结构是指行业内各类企业的构成、协作方式、企业与企业间的垄断或竞争关系的框架等?涉及企业规模结构、组织关系、进入与退出、技术进步等问题。
施工企业要想在竞争日益激烈的市场中占有一席之地?必须提高企业的管理水平?用最低的成本生产出业主满意的、符合要求的建筑产品。施工企业经营管理活动的全部目的?就在于追求以低成本管理获取高经济效益。这就促使施工项目成本管理必须科学、经济的管理手段达到预期的目标?并带动整个项目管理水平的提高。目前有的施工企业组织结构形式没有大的变化?多数企业组织结构形式趋同。虽然企业组织结构调整进行了十多年?但智力密集型的管理型企业仍然很少?原有大中型企业劳务力量没有分离出去?总体上仍是劳动密集型企业。大量新成立的乡镇企业走的还是以人数取胜的劳动密集型企业的路子?很多企业是靠全县、全市企业联合形成的规模获得的高资质?管理水平未见提高?本质上也不占有专有技术或核心技术。结果是企业结构趋同?技术水平趋同?只得在同一层次展开竞争?形成全行业的过度竞争形势。
出现上述状况的原因是缺乏行业组织的统筹规划和安排落实。虽然提出了智力密集型、技术密集型、劳动密集型的行业三个层次的设想?但是有目标没有规划?有设想没有措施?大多数企业只能去争取施工承包企业的地位和资质。因此?需要研究行业组织结构构成?制定行业组织政策?通过建筑业资质管理等行政手段?根据市场需要去引领企业组织结构调整?从而达到行业组织结构的合理化和优化。职称论文
建筑业应适度垄断行业组织结构是指行业内各类企业的构成、协作方式、企业与企业间的垄断或竞争关系的框架等?涉及企业规模结构、组织关系、进入与退出、技术进步等问题。行业组织政策的作用是为调整行业组织结构而制定的指导性政策?以促进企业调整组织结构?促使企业组织向更高的组织层次跃升?并推动行业组织结构的进一步变化和优化。进行行业组织结构调整、推行行业组织政策的目标就是要造就行业有效竞争?能否实现有效竞争是行业组织优化的标准。非有效竞争有多种表现形式?过度竞争是其中之一。过度竞争一般发生在集中度较低的产业中。建筑业是行业集中度很低的行业?本各产业的产业集中度均在以上?美国汽车业高达?我国建筑业只有。产业集中度过低?一方面极难达成规模经济效应?另一方面造成大量企业为同一工程过度竞争。过度竞争阻碍价格机制的正常作用?导致企业利润率过低?造成无效工作和隐形失业增加。美国经济学家威廉·谢菲尔德对美国产业中企业的市场份额与利润率进行回归分析?证明了集中度与利润率的正相关关系?即市场份额增长十个百分点?利润率可以提高个个百分点。很显然?相反的结果是利润率下降?这在我国建筑业中有充分的体现。
在项目的开始?要保证风险承担者对于他们如何判断项目是否成功有统一的认识。经常满足一个预定义的进度安排是唯一明显的成功因素?但是肯定还有其他的因素存在?比如?增加市场占有率?获得指定的销售量或销售额?取得特定用户满意程度?淘汰一个高维护需求的遗留系统?取得一个特定的事务处理量并保证正确性。过度竞争的根本原因在于生产能力的过剩和产品的无差别化。众多企业以相同的组织形式、相近的管理方式、相似的生产水平开展竞争?过度竞争就是必然结束。解决过度竞争问题?一是进行行业组织结构调整?二是进行产品?生产?结构调整?即形成差别化生产。组织结构调整与产品?生产?结构调整相辅相成、相互促进。建筑业产品?生产?结构调整?必然带来行业组织结构调整?行业组织结构调整必然推动产品?生产?结构变化。从组织结构调整看?当生产社会化达到更高程度以后?垄断是一种高层次的资本社会化?可以说是一种不同企业之间协调、联合的产物。垄断是科技革命基础上资本与生产集中发展的必然结果就垄断结构而言?从理论上可分为完全垄断、寡头垄断、垄断竞争等几种类型。垄断竞争使竞争以新的形式发挥作用?包括垄断组织之间的竞争、垄断和非垄断组织之间的竞争、垄断组织内部的竞争等等。垄断组织之间在合作的同时?也在价格、质量、品牌、售后服务等方面展开有威慑力竞争?关键要提高施工企业全体人员的整体业务技能、服务水平、进一步完善服务功能、规范运行管理工作?并使垄断组织不得不进行研究开发?推动技术进步。
1城市环境地球化学调查的技术路线
1.1采样点布置方案
目前,国外的城市环境调查一般在两个区域进行,即郊区和城区。在郊区的调查一是为了确定城区的背景值,写作论文二是获得城-郊地理变化区域内元素分布的地球化学变化梯度。如Lind等在瑞典的斯德哥尔摩市调查土壤重金属的含量时,以城市最繁华地带为中心,分带布置样点,带距为0~3km,3~9km和>9km[5];Birke等在德国柏林市的调查中就包括大范围的郊区区域[3]。通过对比城-郊区的地球化学特征来揭示人类活动对城区地球化学环境状况的影响程度。
为了调查城市不同区域内的环境地球化学状况,研究不同的用地类型对元素分布的影响,分别在城市的不同功能区域分类取样,即:郊区土壤、工业区土壤、居民区土壤、商业区土壤和农业土壤[3-5]。主要采集表层土壤(0~5cm)。在不同类型区域内选择代表性点位取垂向土壤剖面样品。城区的土壤难以实现均匀的网格化取样,一般按公园和绿地的分布随机布置取样点。
1.2采样介质
环境地球化学的采样介质包括土壤、大气、水、水系沉积物、生物样等。但目前城市环境地球化学调查主要集中在土壤、大气颗粒物(或气溶胶)、大气降尘等三种。其中较常用的是采集和分析城市浅层土壤样和降尘样。
在街道两边或高层建筑物顶部收集降尘并结合地面土壤是城市环境地球化学调查的主要方法。如Rasmussen等在渥太华市内取居室内灰尘、附近的街道降尘和公园土壤进行比较来研究该市的环境质量[6]。降尘和土壤对比调查,即可查明元素在不同介质中的污染水平,还有助于分析污染物的来源。
2城市环境地球化学的解释与评价
2.1城市环境的地球化学解释
城市环境调查结果的地球化学解释是指对城市环境中重金属元素的分布特征、成因及其来源进行解释,写作毕业论文研究元素地球化学分布模式、迁移转化规律和机理,建立城市环境地球化学调查成果解释体系。
2.1.1元素来源判别
对城市环境中污染物的来源及成因进行分析判断是城市环境地球化学调查的重要内容。多元统计方法在研究城市环境的物源判断中具有广泛的应用,并以聚类分析和因子分析为主[7-9]。不同来源的元素在因子分析中常常进入不同的主因子或表现为聚类分析中的不同元素组合,根据元素的组合特征来区分元素的来源。如Manta等在意大利的城市土壤中发现了Cu、Pb、Zn人为源的因子组合,而V,Ni,Mn,Co等元素作为自然源进入另一因子,并在聚类分析中组合在一起[8]。
城市环境物源判断的另一重要方法是富集因子(EF)法,它是一种能反映不同地质环境的化学元素比率方法,用代表陆地来源的元素(如Al、Ti、Zr和稀土元素等)和代表海洋源的元素(Na)作为参考元素对样品中的元素含量进行标准化,以平抑自然差异对元素含量的影响,在此情况下出现的较高的富集因子值即意味着人为源的存在,这种方法在环境地球化学判断
元素来源及富集程度中具有非常广泛的应用[10-11],特别是在大气颗粒物或气溶胶介质中的应用效果尤为显著。其计算公式为[11]:
EF海(X)=(X/Na)气/(X/Na)海(1)
EF壳(X)=(X/Na)气/(X/Na)壳(2)
其中,公式(1)为判断海洋源的计算公式,以Na为参考元素;公式(2)为陆地源的计算公式,以Al为参考元素。(X/Na)气、(X/Na)海、(X/Na)壳分别代表元素X在大气颗粒物、海水及地壳中的含量。
通常将EF>10作为大气颗粒物的人为源标志。但在粒径为2.5μm的大气颗粒物中,EF>5即为人为源的标志[12]。
2.1.2元素分布类型及成因
在世界范围内的城市土壤中重金属元素含量普遍偏高,但在不同的城市中变化很大,这依赖于城市的历史年代、经济发达程度、写作硕士论文不同的用地类型、汽油的添加济成分、车辆元件的组成等,在城市环境元素分布及成因的解释中应综合分析以上各种因素。城市交通是产生重金属元素的重要途径之一,如Cu通常是汽车剂的组分,而Pb曾一度是汽油的防爆剂,Sb可以作为闸垫材料。因此,交通是城市中Cu、Pb、Zn、Sb等元素的主要来源。Romic等发现,燃烧和道路交通,尤其是轮胎的磨损和消耗是城市区域内Cd的主要污染源[7];Moller等在大马士革调查时认为交通是表层土壤中Cu、Pb、Zn等重金属元素富集的主要原因[9]。与历史久远的工业化城市相比,相对年轻的城市具有较低的重金属含量,如非洲的哈博罗内市[4]比悠久的重工业城市伦敦[2]、柏林[3]的表层土壤的重金属含量偏低[9],Li等发现,城市公园土壤中Cu,Pb和Zn的含量与公园的年龄之间具有明显的相关性[1],即城市历史越长,重金属含量越高。元素在表层土壤中的分布明显依赖于城市用地及工业类型,如Birke等[3]在柏林市调查中发现,Al,K,Si,Na,Sc和Ti主要是自然源,即与母质的组成有关;工业区域倾向于被Cu,Cd,Zn,Pb,Hg污染;农业区由于大量使用化肥和污泥,富集Cd,F,Cr,Hg,Ni,Zn和P元素。尽管非洲的哈博罗内市比较年轻,但它的不同区域仍然受Cr,Co,Ni,Cu,Zn和Pb等元素不同程度的污染。如城市中心和工业区的Co,Cu,Pb,Zn等元素污染,农业土壤中的Cr,Ni污染,居民区及工业区的Zn污染[4]。
2.2城市环境地球化学评价
2.2.1污染程度评价
将郊区土壤背景值与城市各功能区含量进行比较是了解城市环境污染水平最常用、最直接的方法。如瑞典斯德哥你摩市Hg在市中心土壤中的含量是郊区背景值的20倍,Pb和Zn在市区中的含量也远远高于背景值[5];在柏林老工业区,Cu的最大值是背景值的2050倍,Cd是1638倍,Hg是1780倍[3]。通过同一城市不同功能区内元素含量的对比以及不同城市之间的对比,也常用来评价城市环境的污染水平。
农业土壤与城区内土壤不同,除了农用化学品外,大气沉降、污水灌溉、垃圾填埋场等都会对农田中的重金属积累产生重要影响。对这部分的污染评价,比较有效的评价方法是地质积累指标法(Igeo)和富集因子法(EF)。对大气污染物的评价,富集因子法尤为有效。
2.2.2生态效应评价
(1)气溶胶的生态效应评价。大气固体悬浮物的粒径大小具有来源特征,粗粒源于陆地尘埃,而细粒源于燃料的燃烧[13]。颗粒越细,危害越大,极细的颗粒物可通过呼吸进入人体,粒径小于10μm(PM10),尤其是小于<2.5μm(PM2.5)的粒子,会导致哮喘,甚至死亡[14]。因此,生物圈气溶胶中的重金属含量具有高度的生态风险性。
(2)元素生物有效性评价。研究元素生态效应的常规方法是连续偏提取法,在城市环境调查中,也有相关的研究实例,如Zhai等调查发现,写作医学论文由交通引起的人为源的Pb主要以有机质吸附和铁-锰氧化物态存在[4];香港和伦敦的路尘中,Pb,Zn主要以铁锰氧化物相存在,Cu主要以有机质吸附态存在[15]。影响降尘中元素有效性的重要因素是降雨的pH值。一般情况下,在较低pH条件下元素易于溶解,Alloway等报道其可溶性Cd平均为总量(降尘量)的60%[16];这可能是由于人类活动输入的硫和氮的氧化物使雨水酸化。因此,在易出现酸雨的城市区域具有较大的生态风险性。
3城市环境地球化学调查应解决的重点问题
3.1开展城市环境的立体空间调查
目前城市环境地球化学调查主要集中在土壤和大气,缺乏系统的地下水及地表水资料。在城市环境的地球化学元素循环过程中,起源于自然地质作用和人类活动的元素在土壤-大气-水-生物系统内迁移转化,借风力作用进入大气中的元素通过干湿沉降进入土壤和水体。世界各国所进行的城市环境地球化学调查,获得了大量土壤和大气颗粒物等方面的资料,但结合水体和生物样的调查不多。如果采样介质涵盖环境生态系统中的各个环境因子,将有助于综合分析重金属元素在城市环境系统中的迁移转化规律,建立元素在城市环境系统中的循环演化模型。
3.2确定城市环境调查的污染指示物
城市区域内浅层土壤样及农业土壤深、浅层样是目前国际上广泛使用的城市环境调查指示物,但是,以何种粒度的样品作为指示物尚没有统一。Birke等在柏林市的土壤调查中分析了<2mm粒度样品[3],写作职称论文而有的作者用沉积物中<2μm的粘土组分进行污染评价,而用<63μm的泥粒作相态分析[17]。细粒组分含有更多的粘土矿物和有机质,对重金属元素的吸附力强,使重金属元素倾向于在细粒组分中富集[1],所以表层土壤的细粒组分,如<63μm适于作为污染评价的指示物。
其次是大气颗粒物或是气溶胶。由工业排污、燃料燃烧、机动车交通等引起的污染物,多以气态、颗粒物或气溶胶等形式存在[5]。一般情况下,污染物含量依赖于粒径大小,颗粒越细,越具有毒性效应[16],因此Fairley等认为,PM2.5适于作为颗粒物质引起的风险评估[17]。
另外,重金属通过自然作用和人类活动进入大气圈,它们主要以分子或颗粒物形式通过大气圈进行大规模的迁移[18]。在英国城市区域内Cd的大气沉降速率为3.9~29.6g/hm2·a,郊区为2.6~19g/hm2·a[7]。所以,城市区域内的表层土壤和路边尘土是大气沉降污染的有效指示物。
关键词: 城市环境; 地球化学调查; 生态评价; 污染指示物
自上世纪60 年代系列公害事件发生后, 环境问题已成为倍受各国关注的国际性的重大问题。作为人口高度密集的城市区域, 其环境状况早已引起世界上许多国家的高度重视, 在过去的几十年里, 一些地球化学研究相继集中在城市区域。目前, 城市环境地球化学调查已在世界各地展开, 如亚洲的香港[1]; 欧洲的伦敦[2]、柏林市[3], 非洲的哈博罗内市[4]。调查的目的在于查明市区的污染水平及郊区的“背景值”, 区分鉴定不同的污染源, 评价城市环境的生态效应, 研究城市环境与人类健康的关系。
1 城市环境地球化学调查的技术路线
1.1 采样点布置方案
目前, 国外的城市环境调查一般在两个区域进行, 即郊区和城区。在郊区的调查一是为了确定城区的背景值,论文 二是获得城- 郊地理变化区域内元素分布的地球化学变化梯度。如lind等在瑞典的斯德哥尔摩市调查土壤重金属的含量时, 以城市最繁华地带为中心, 分带布置样点, 带距为0~3km, 3~9km 和>9km[5];birke 等在德国柏林市的调查中就包括大范围的郊区区域[3]。通过对比城- 郊区的地球化学特征来揭示人类活动对城区地球化学环境状况的影响程度。
为了调查城市不同区域内的环境地球化学状况,研究不同的用地类型对元素分布的影响, 分别在城市的不同功能区域分类取样, 即: 郊区土壤、工业区土壤、居民区土壤、商业区土壤和农业土壤[3- 5]。主要采集表层土壤(0~5cm)。在不同类型区域内选择代表性点位取垂向土壤剖面样品。城区的土壤难以实现均匀的网格化取样, 一般按公园和绿地的分布随机布置取样点。
1.2 采样介质
环境地球化学的采样介质包括土壤、大气、水、水系沉积物、生物样等。但目前城市环境地球化学调查主要集中在土壤、大气颗粒物(或气溶胶)、大气降尘等三种。其中较常用的是采集和分析城市浅层土壤样和降尘样。
在街道两边或高层建筑物顶部收集降尘并结合地面土壤是城市环境地球化学调查的主要方法。如rasmussen等在渥太华市内取居室内灰尘、附近的街道降尘和公园土壤进行比较来研究该市的环境质量[6]。降尘和土壤对比调查, 即可查明元素在不同介质中的污染水平, 还有助于分析污染物的来源。
2 城市环境地球化学的解释与评价
2.1 城市环境的地球化学解释
城市环境调查结果的地球化学解释是指对城市环境中重金属元素的分布特征、成因及其来源进行解释,毕业论文 研究元素地球化学分布模式、迁移转化规律和机理, 建立城市环境地球化学调查成果解释体系。
2.1.1元素来源判别
对城市环境中污染物的来源及成因进行分析判断是城市环境地球化学调查的重要内容。多元统计方法在研究城市环境的物源判断中具有广泛的应用, 并以聚类分析和因子分析为主[7- 9]。不同来源的元素在因子分析中常常进入不同的主因子或表现为聚类分析中的不同元素组合, 根据元素的组合特征来区分元素的来源。如manta 等在意大利的城市土壤中发现了cu、pb、zn人为源的因子组合, 而v, ni, mn, co等元素作为自然源进入另一因子, 并在聚类分析中组合在一起[8]。
城市环境物源判断的另一重要方法是富集因子(ef)法, 它是一种能反映不同地质环境的化学元素比率方法, 用代表陆地来源的元素(如al、ti、zr 和稀土元素等)和代表海洋源的元素(na)作为参考元素对样品中的元素含量进行标准化, 以平抑自然差异对元素含量的影响, 在此情况下出现的较高的富集因子值即意味着人为源的存在, 这种方法在环境地球化学判断
元素来源及富集程度中具有非常广泛的应用[10- 11], 特别是在大气颗粒物或气溶胶介质中的应用效果尤为显著。其计算公式为[11]:
ef 海(x)=( x/na) 气/( x/na) 海(1)
ef 壳(x)=( x/na) 气/( x/na) 壳(2)
其中, 公式(1)为判断海洋源的计算公式, 以na为参考元素; 公式(2)为陆地源的计算公式, 以al 为参考元素。(x/na)气、(x/na)海、(x/na)壳分别代表元素x在大气颗粒物、海水及地壳中的含量。
通常将ef>10 作为大气颗粒物的人为源标志。但在粒径为2.5μm 的大气颗粒物中, ef>5 即为人为源的标志[12]。
2.1.2元素分布类型及成因
在世界范围内的城市土壤中重金属元素含量普遍偏高, 但在不同的城市中变化很大, 这依赖于城市的历史年代、经济发达程度、硕士论文 不同的用地类型、汽油的添加济成分、车辆元件的组成等, 在城市环境元素分布及成因的解释中应综合分析以上各种因素。城市交通是产生重金属元素的重要途径之一, 如cu 通常是汽车剂的组分, 而pb 曾一度是汽油的防爆剂,可以作为闸垫材料。因此, 交通是城市中cu、pb、zn、sb 等元素的主要来源。romic 等发现, 燃烧和道路交通, 尤其是轮胎的磨损和消耗是城市区域内cd 的主要污染源[7];moller 等在大马士革调查时认为交通是表层土壤中cu、pb、zn 等重金属元素富集的主要原因[9]。与历史久远的工业化城市相比, 相对年轻的城市具有较低的重金属含量, 如非洲的哈博罗内市[4]比悠久的重工业城市伦敦[2]、柏林[3]的表层土壤的重金属含量偏低[9], li 等发现, 城市公园土壤中cu, pb和zn 的含量与公园的年龄之间具有明显的相关性[1],即城市历史越长, 重金属含量越高。元素在表层土壤中的分布明显依赖于城市用地及工业类型, 如birke 等[3]在柏林市调查中发现, al,k, si, na, sc 和ti 主要是自然源, 即与母质的组成有关; 工业区域倾向于被cu, cd, zn, pb, hg 污染; 农业区由于大量使用化肥和污泥, 富集cd, f, cr, hg, ni,zn 和p 元素。尽管非洲的哈博罗内市比较年轻, 但它的不同区域仍然受cr, co, ni, cu, zn 和pb 等元素不同程度的污染。如城市中心和工业区的co, cu, pb,zn 等元素污染, 农业土壤中的cr,ni 污染, 居民区及工业区的zn 污染[4]。
2.2 城市环境地球化学评价
2.2.1污染程度评价
将郊区土壤背景值与城市各功能区含量进行比较是了解城市环境污染水平最常用、最直接的方法。如瑞典斯德哥你摩市hg 在市中心土壤中的含量是郊区背景值的20 倍, pb 和zn 在市区中的含量也远远高于背景值[5]; 在柏林老工业区, cu 的最大值是背景值的2050 倍, cd 是1638 倍, hg 是1780 倍[3]。通过同一城市不同功能区内元素含量的对比以及不同城市之间的对比, 也常用来评价城市环境的污染水平。
农业土壤与城区内土壤不同, 除了农用化学品外,大气沉降、污水灌溉、垃圾填埋场等都会对农田中的重金属积累产生重要影响。对这部分的污染评价, 比较有效的评价方法是地质积累指标法(igeo)和富集因子法(ef)。对大气污染物的评价, 富集因子法尤为有效。
2.2.2生态效应评价
( 1) 气溶胶的生态效应评价。大气固体悬浮物的粒径大小具有来源特征, 粗粒源于陆地尘埃, 而细粒源于燃料的燃烧[13]。颗粒越细, 危害越大, 极细的颗粒物可通过呼吸进入人体, 粒径小于10μm (pm10), 尤其是小于<2.5μm(pm2.5)的粒子, 会导致哮喘, 甚至死亡[14]。因此, 生物圈气溶胶中的重金属含量具有高度的生态风险性。
( 2) 元素生物有效性评价。研究元素生态效应的常规方法是连续偏提取法, 在城市环境调查中, 也有相关的研究实例, 如zhai等调查发现, 医学论文 由交通引起的人为源的pb主要以有机质吸附和铁- 锰氧化物态存在[4]; 香港和伦敦的路尘中, pb, zn主要以铁锰氧化物相存在, cu主要以有机质吸附态存在[15]。影响降尘中元素有效性的重要因素是降雨的ph值。一般情况下,在较低ph条件下元素易于溶解, alloway等报道其可溶性cd平均为总量( 降尘量) 的60%[16]; 这可能是由于人类活动输入的硫和氮的氧化物使雨水酸化。因此,在易出现酸雨的城市区域具有较大的生态风险性。
3 城市环境地球化学调查应解决的重点问题
3.1 开展城市环境的立体空间调查
目前城市环境地球化学调查主要集中在土壤和大气, 缺乏系统的地下水及地表水资料。在城市环境的地球化学元素循环过程中, 起源于自然地质作用和人类活动的元素在土壤- 大气- 水- 生物系统内迁移转化, 借风力作用进入大气中的元素通过干湿沉降进入土壤和水体。世界各国所进行的城市环境地球化学调查, 获得了大量土壤和大气颗粒物等方面的资料, 但结合水体和生物样的调查不多。如果采样介质涵盖环境生态系统中的各个环境因子, 将有助于综合分析重金属元素在城市环境系统中的迁移转化规律, 建立元素在城市环境系统中的循环演化模型。
3.2 确定城市环境调查的污染指示物
城市区域内浅层土壤样及农业土壤深、浅层样是目前国际上广泛使用的城市环境调查指示物, 但是,以何种粒度的样品作为指示物尚没有统一。birke等在柏林市的土壤调查中分析了<2mm粒度样品[3], 职称论文 而有的作者用沉积物中<2μm的粘土组分进行污染评价, 而用<63μm的泥粒作相态分析[17]。细粒组分含有更多的粘土矿物和有机质, 对重金属元素的吸附力强, 使重金属元素倾向于在细粒组分中富集[1], 所以表层土壤的细粒组分, 如<63μm适于作为污染评价的指示物。
其次是大气颗粒物或是气溶胶。由工业排污、燃料燃烧、机动车交通等引起的污染物, 多以气态、颗粒物或气溶胶等形式存在[5]。一般情况下, 污染物含量依赖于粒径大小, 颗粒越细, 越具有毒性效应[16], 因此fairley等认为, pm2.5适于作为颗粒物质引起的风险评估[17]。
另外, 重金属通过自然作用和人类活动进入大气圈, 它们主要以分子或颗粒物形式通过大气圈进行大规模的迁移[18]。在英国城市区域内cd 的大气沉降速率为3.9~29.6g/hm2·a, 郊区为2.6~19g/hm2·a[7]。所以,城市区域内的表层土壤和路边尘土是大气沉降污染的有效指示物。
3.3 城市环境质量标准的建立
城市环境质量标准是城市环境污染评价、城市环境监测、保证大众身心健康的重要依据, 环境质量标准的建立, 依赖于大量的调查资料、科学的工作方法和实验结果。上已述及, 城市环境地球化学调查的指示物包括表土、降尘、大气颗粒物等, 不同的指示物应有各自的限度值。2000年, 世界卫生组织制定了大气质量标准, 如pb, cd的大气质量标准分别为500, 5ng/m3(who, 2000)。作为城市环境污染重要指示物的尘埃及表土等介质中的污染限度值还没有统一的标准。
[参考文献]
[1] xiangdong li, chi - sun poon, pui sum liu. heavy metal contamination of urban soils and street dusts in hong kong [j]. applied geochemistry, 2001,16 : 1361- 1368.
[2] thorntoni. soils in the urban environment[m]. blackwell, bullock p., gregory p.j. (eds.), 1991.
[3] birke m, rauch u. urban geochemistry: investigations in the berlin metropolitan area[j]. environmental geochemistry and health, 2000,22: 233- 248.
[4] zhai m, kampunzu h a b, modisi m p, et al. distribution of heavy metals in gaborone urban soils (botswana) and its relationship to soil pollution and bedrock composition [j]. environmental geology,2003,45:171- 180.
[5] lind m, bengtsson h. concentrations and pools of heavy metals in urban soils in stockholm, sweden[j]. water, air and soil pollution, 2001,1: 83- 101.
[6] rasmussen p e, subramanian k s, jessiman b j. a multielement profile of housedust in relation to exterior dust and soils in the city of ottawa, canada[j]. the science of the total environment,2001, 267: 125- 140.
[7] romic m, romic d. heavy metals distribution in agricultural topsoils in urban area[j]. environmental geology,2003,43:795- 805.
[8] manta d s, angelone m, bellanca a, et al. heavy metals in urban soils: a case study from the city of palermo(sicily),italy [ j ] . the science of the total environment , 2002 :229- 243.
[9] moller a, müller h w, abdullah a, et al. urban soil pollution in damascus, syria: concentrations and patterns of heavy metals in the soils of the damascus ghouta[j]. geoderma,
2005,124: 63- 71.
[10] mustafa y, semra t, namik k, et al. atmospheric trace elements in ankara, turkey:1. factors affecting chemical composition of fine particles[j]. atmospheric environment,
2000, 34: 1305- 1318.
[11] chabas a, lefevre r a. chemistry and microscopy of atmospheric particulates at delos[j]. atmospheric environment,2000, 34: 225- 238.
[12] gao y, nelson e d, field m p, et al., characterization of atmospheric trace elements on pm2.5 particulate matter over the new york- new jersey harbor estuary[j]. atmospheric environment, 2002,36:1077- 1086.
[13] günter j k, komarnicki. lead and cadmium in indoor air and the urban environment[j]. environmental pollution, 2005, 136:47- 61.
[14] dockery d w, pope c a. acute respiratory effects of particulate air pollution. annual reviews of public health[j].atmospheric environment ,1994,35:2045- 2051.
[15] wang w h, wong m h, leharne s, et al. fractionation and biotoxicity of heavy metals in urban dusts collected from hong kong and londonp[j]. environmental geochemistry
and health ,1998, 20:185- 198.
[16] alloway b j. atmospheric deposition of heavy metals onto agricultural land in england and wales[j]. biogeochemistry of trace metals, 1999, 1: 414- 415.
关键词:箱涵;顶进施工;软土地基
0引言
在道路施工过程中,如果新施工的公路需要在原来的公路,铁路的路基下面立交通过的时候,需要对原来的线路进行加固的措施,这样可以确保道路交通的安全运行。箱涵顶进施工技术在道路施工中有着非常重要的作用。
1箱涵顶进施工技术
箱涵顶进施工中,机具设备包括:由动力器具,操作器具,执行器具,和辅助机构组成的液压系统;由顶铁,顶柱,分配横梁等组成的传力系统。箱涵顶进施工中的传力设备根据顶进的方法,孔的跨的数量的不同而不同。箱体后背建成后,进行安装顶进设备的工作,同时,需要对设备进行测试。在进行顶进施工之前,首先要由相关的技术人员检查顶进前的准备工作是否完成。比如,箱身的设计的强度是否达到,线路是否加固等,经过检查并和个以后,要使箱身和底板进行分离。全部的检查工作合格以后,进行正式的顶进施工。开启高压油泵,使得千斤顶由于受到液压从而产生顶力,由此推进箱身前进。箱身前进一镐后,要及时把千斤顶的活塞回位,确保下次开镐。这样进行交替的循环,直至箱身到达所需要的位置职称论文。
为了保证顶进的质量,在顶进过程中,必须要注意控制两孔箱形桥在一个平面上。箱体达到要求位置后需要马上对于线路进行三角区回填。
施工过程中需要注意以下问题:
①在箱体顶进的时候,要不断的应对各观测点的变化。如果有问题的时候,立即停止,解决后再进行施工。②顶进过程中,挖好的工作面要及时填埋,不能较长时间的暴露。③顶进中要对路基进行监护。④挖土机械要进行监护,在线路下方施工时,应避免直接碰撞。⑤顶进施工时,每当油泵油压升高5~10Mpa的时候,就需要停泵观察。如果有问题应及时处理。⑥顶进施工之前,需要先对各台顶镐油泵出油量进行调试,从而保证各台顶镐能够正常同时工作。⑦在顶进施工中,利用经纬仪和水平仪进行跟踪测量,顶进一次就要测量一次,随时进行方向测量,按照方向调整顶镐顶力。调整的方法是调节以两侧顶力为主。⑧在顶进施工中,顶杆和顶铁应该在同一个轴线上面,这样可以避免顶杆过长造成的失稳。
2加强软地基处理
含水量较高,孔隙比较大,强度低等是软土地的特征。正因为上述的特点从而导致了软地基承载能力和稳定性都比较差。因此,需要对软地基进行处理,预防由于直接在软地基上施工而造成的危害建筑物安全的问题。
对软地基的处理一般采取以下的方法:
①通过挤压或者振动的方法,降低软地基的孔隙比,从而可以达到提高地基强度的目的。一般情况下,对于松散性的砂土等软地基,处于最佳的含水量的浅层时,采用人工或者机械的夯实以及机械的振动碾压;对于粘性土,碎石,杂填土等,通过外界强大的夯击力,使得软地基深层固结,从而密实了土体,增强了地基的强度;采用重锤下落产生的冲击力,击实软地基的表面浅层,这样形成了一层均匀的较为强硬的壳体,这样的方法比较适用于非饱和性的粘性土等。②采用一定的措施,减小软地基的孔隙水,降低孔隙比,使得土体的孔隙水压力也在减小,从而土体产生了固结的变形,从而提高了沉降的速度,地基抗剪强度增加,地基的承载力提高。堆载预压法,真空预压法,电渗排水法都是常见的排水固结的方法。③用石灰,碎石,砂等材料去置换软土,同时和周围的土体形成地基,减少地基的沉降,提高地基的承载力。强夯置换法,石灰桩法,碎石桩法等等都是常见的置换法。④利用外界力,向软地基灌入水泥,石灰等化学材料,土体和材料固结后形成的地基可以大大提高地基的强度,这种方法叫胶结法。高压喷射注浆法,灌浆法等都属于胶结法的范畴。
3软地基大体积箱涵顶进施工
3.1软地基大体积箱涵顶进施工方法根据施工地地质特点,对于顶进影响范围内的路基都要进行加固,注浆,这样可以预防在顶进的过程中发生包括侧面和正面在内的塌方现象。底板以上的注浆要穿插加固,以此提高地基的承载力,加固的范围要求达到地基底以上2米。注浆加固时,地层的压力是0.3~0.5mpa。采用灌注桩支护的方法制作工作坑。钻孔灌注桩的直径为100cm,相邻桩距在150cm左右。采用人工开挖建造滑板,要求滑板的表面平整,光滑,高程的误差小于3mm。
为确保后背土体的抗力能满足顶力,后背桩采用钻孔桩,这样可以增加后背土体的密实,后背梁河滑板成为一体,预防顶进施工过程中,滑板断裂。顶进过程中需要采用加固措施。
3.2软土地基大体积箱涵的顶进软土地基大体积箱涵的顶进需要掌握以下原则:①箱体的顶进原则。在箱体预置成形以后,框架主体和保护层强度必须达到设计强度100%的时候,同时进行了线路的加固以后才能进行顶进施工。②钢刃脚的安装。采用20mm的钢板制成钢刃角。采用焊接连接各个刃角,要求焊缝高度大于等于8mm,焊接过程中要预防翘曲。安装底刃角的时候,底面和桥涵表面成仰角,这样可以便于切土,预防桥涵扎头。而侧刃角较桥涵端面应该较大一些,降低顶进的阻力。③顶镐的顶力一般情况下按顶镐额定顶力的60%计算,顶镐通常情况下采用对成式的分布。④在进行顶进施工过程中,开动高压油泵就是进行框架桥顶进。利用顶镐的顶力在反力作用下推动框架桥前进,实际上正常情况下每次顶程是顶镐行程的80%左右。在完成一个顶程的时候,需要回镐,并且把分配横梁归位,如此进行循环,直到框架桥就位。
桥于滑板上空顶的时候,要按照偏差及时的进行调整箱体两侧顶力,使得桥体可以严格按照设计轴线进入路基。由于桥体在进入路基以后,大部分形成了孔道,再进行纠正是十分困难的。在顶进的过程中,墙体的土方采用人工开挖方式进行,其他的土方利用小型挖掘机开挖,采用装载机、汽车配合运输。洞内挖土利用挖掘机,在必要的时候,人工配合。装载机倒运并且装车,采用自卸车运土。挖土和其他措施要和千斤顶调整结合使用,这样能收到更好的效果。如果桥体左偏,那么减少左半边边墙,降低左侧阻力,使桥体左侧的顶进速度大于右侧,同样的当桥体右偏时采用上述方法进行调整。
3.3软土地基大体积箱涵顶进的控制软土地基大体积箱涵顶进的控制需要掌握以下原则:①在顶进的前端采用钻孔灌注桩的方法设置迎头桩,桩基参数与围护桩需要一致。工作坑开挖前利用钢丝绳和线路另一侧支撑桩进行拉锚的处理工作。设置迎头桩可以保障道路路基的稳定也减小了吃土顶进的距离,有利于控制箱涵的偏差。②路基下注浆可以保障在顶进施工过程中线路前方和侧方不出现塌方,也是大体积进框构的持力层。顶进施工以前,需要确定各个施工的参数,同时,检测试验段注浆效果,承载力满足要求才能施工。③箱体预制和箱体顶进施工之间还有一段时间,所以地基加固效果影响到箱体是否会出现下沉现象。④为了防止顶进过程中出现扎头现象,滑板面做成头高尾低的形式。⑤挖土的过程中,顶进挖土时,两边的墙外侧是不能挖空的,同时测量工作对于箱体的顶进是十分重要的,因此在顶进施工过程中,需要测量高程和左右方向偏差,采取科学的措施,进行调整,以保证箱体的顺利就位。
4结束语
根据不同的顶进形式,确定合适的加固措施,结合工程的实际情况采用科学的顶进方法,这样可以保证工程顺利、安全实施,同时,本文为大体积箱涵在软土地基中顶进施工提供了一定的参考依据。
参考文献:
[1]董铁梅.软土地基大体积箱涵顶进施工技术[J].天津建设科技.2009.6:43-46.