前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的智能化农业灌溉主题范文,仅供参考,欢迎阅读并收藏。
1 物联网灌溉基本情况
随着我国水资源的日渐紧缺,我国的水资源供需矛盾也逐渐表现出来,而农业作为用水大户,其发展节水型农业已经成了农业未来发展势在必行的方向[2]。目前节水农业主要采取了滴灌、喷灌、微灌等节水灌溉措施,虽然相对于大水漫灌而言,已经实现了较高的用水效率,但综合分析,其精准度依旧不够,无法根据农作物的具体需水要求进行灌溉。物联网技术结合农业的发展诞生了物联网智能灌溉系统,不仅提高了灌溉精准度,同时也减轻了人力劳动,实现了远程控制,全面提高了农业生产的生产效率。物联网智能化农业灌溉是指不需要人进行其实控制,系统能够自动的感知对农作物何时进行灌溉,以及为农作物灌溉多少的问题。物联网智能化灌溉可以根据农作物的数据采集结果自动开启灌溉系统。物联网灌溉技术是目前我国从传统农业向现代化农业转型的重要技术支撑,也帮助农业生产实现了向远程化、精细化、自动化、虚拟化的转型[3]。物联网智能灌溉系统提高了灌溉的综合管理水平,将原本最需要人的经验才可以进行生产的农业,转变成了科技化生产模式,不仅杜绝了人为操作的盲目性与随意性,同时提高了全面管理水平,实现了一个人对上万亩地的管理。由此可见,推广物联网智能化节水灌溉,不仅可以有效地缓解我国的水资源短缺危机提高我国农业现代化的水平,改变原先粗放式的灌水模式,同时也可以实现农业管理水平的提升,提高农业生产效率,减少人力劳动,全面优化农业生产方式。所以基于物联网的农业节水灌溉技术,必然成为今后农业灌溉的发展趋势。
2 基于物联网的节水灌溉体系
为了全面实现我国农业高效灌溉系统的建设,必须要大力推广基于物联网技术的农业灌溉应用,这就需要建立基于物联网的节水灌溉体系[4]。利用物联网的节水灌溉体系首先应该利用物联网技术通过传感器采集土壤的温度、湿度、墒情、光照强度、二氧化碳浓度等基本信息,然后通过适合的无线传感设备,将采集的基本信息转化为数字信号,并通过无线通讯方式将这些信息的数字信号传递给计算机系统进行分析处理,计算机系统会将采集的信息进行智能化判断,根据需要及时的控制相关的智能灌溉设备的驱动,对,农作物进行智能化、精细化的灌溉。从而做到灌溉水量、灌溉时间和灌溉周期的三准确,提高水资源的利用率,达到灌溉用水的智能化控制。且由于物联网传感器的网络具有信息互递、自主组建网络、网络通讯时间同步等特点,因此可以对整个灌溉区域与灌溉节点的数据进行综合对比分析,即便个别数据出现问题,也可以对数据进行更正[5]。同时采集的数据也可以直接上传到网络,经过相关技术人员的分析,可以根据分析结果对灌溉数据进行更正,从而确保灌溉的准确性与高效性,如果发现农作物发生病虫害,也可以通过灌溉系统对农作物进行除病害作业。同时随着农业物联网平台的建设,也可以将这些数据上传到平台进行管理,对于构建一个高效、低耗、低投入、多功能的农业灌溉节水平台就这十分重要的意义,然后也对平台采集的信息进行分析,并根据分析的结果进行灌溉,甚至可以对预期将会发生的天?獗浠?进行预防性灌溉,提高农作物对灾害的抵抗能力,这也是未来物联网智能化灌溉发展的必然要求。
关键词:农业灌溉;智能节水;设计分析;单片机
目前,农业智能节水灌溉系统主要是把AT89C52单片机作为主控芯片,而又是有多个传感器以及电路共同组成,主要包括:湿度传感器、超限警报电路、数据处理电路和LED动态显示电路等。该智能节水灌溉系统主要是通过由湿度传感器监测土壤的湿度,然后将湿度值报告给单片机,单片机再根据预先设定的湿度值控制其它系统对土壤输送水分,待达到规定的湿度值后,系统则自动停止补充水分,让土壤始终保持最合适的湿度,进而促进农作物的快速生长。
1 智能节水灌溉系统的整体设计
智能节水灌溉系统是把型号为AT89C52的单片机作为系统的主控芯片,在土壤中安装多个湿度传感器,由它来监测土壤中水分含量。当土壤中含量低于标准值时,湿度传感器则将这个信息转化成电流信号,再通过信号处理电路进行一系列的处理后就变成了可用的电压模拟性信号,然后通过A/D转换器将它转化为数字信号,直接传输到主控芯片单片机中,单片机就对整个系统进行合理地调控,在数码管上会显示出湿度值。一旦湿度值发生了变化,该智能节水灌溉系统就会自动控制水泵开关。农业智能节水灌溉系统结构框图如图1所示:
图1 智能节水灌溉系统结构图
2 单片机的最小系统
AT89C52单片机具有功耗低、性能高的优点,在农业智能节水灌溉系统中得到较为普遍的应用。该单片机在工作时的额定电压为5V,在单片机的内部存在一个256B的RAM和一个8kB的PEROM,这就保证单片机能够与标准MCS-51指令系统共同控制运作,这主要是运用了由ATMEL公司研制出的高密度生产技术和非易失性存储技术,在单片机内部还分布着Flash存储单元和8位CPU,芯片为40个引脚,这就包括了32个外部双向I/O口、2个全双工串行通信口、2个外部中端口、2个16为可编程定时计数器。该芯片不仅能够实现常规编程,还能够实现在线编程,依靠可反复擦写的Flash存储器与MCU将其有机结合,这就直接使得芯片的灵活性得到大幅度提升,还减少了系统的制造成本。
3 时钟电路
单片机的内部结构从根本上分析也即是同步时序逻辑电路,其核心就是时钟电路,主要依赖于时钟信号对时序逻辑系统进行有效控制,并且CPU具备的不同种指令功能即是在由时序单路生成的时钟信号控制下逐一实现的。其中,MCS-51型号的单片机中所含有的时钟信号可以分为两种方式:通过外部电路生成;通过单片机内部的振荡电路生成。
4 复位电路
为了确保CPU与其它相关的功能部件均可以从某个确定的状态开始工作,因此,单片机在每一个开机时都必须重新复位,此时,复位电路就起到了关键作用。复位电路一般分为按键复位和上电复位等形式。在对MCS-51型号的单片机进行复位时,主要是由外部复位电路来完成,其工作原理为:当按下按钮之后,就使得RC电路进行充电,且RESET端发生高电平,此时只要将高电平始终维持在10ms以上,即可完成单片机的复位工作。
5 数据采集处理电路
由传感器监测到的模拟信号是非常微弱的,并且此时存在很多干扰信号,所以信号在传输到主控芯片之间就必须通过滤波、信号放大以及模数转换等步骤。该智能节水灌溉系统通过运算放大器U2、U3把信号进一步放大,进而能适应之后A/D转换器的工作要求。
ADC0809主要包括一个A/D转换器、一个8通道模拟开关、一个三态输出锁存器和一个地址译码锁存器等,该数据采集处理系统可以同时允许8个模拟信号传输,并实现A/D转换器的转换共享。
6 LED显示系统电路
在采用单片机的系统中,一般所采用到的显示器件包括数码管和显示器。这两种器件具备的优势十分明显,包括价格便宜、配置容易、与主控芯片接口简便等。可以在农业智能节水灌溉系统中采用共阴极数码管,实现动态显示。把数码管的LED的引出端与单片机I/O口的8位线进行连接,调节共阴极数码管的高电平使之有效,再选择8位并行输出端,则就可以在LED显示器上实时显示不同的数值。
7 超限警报电路
如果该智能节水灌溉系统的运行环境超出预置的范围,就需要设置一个超限警报电路来提醒使用者,以便及时采取有效措施加以解决,现今普遍采用的报警电路主要包括:蜂鸣报警、闪光报警及语音报警等。例如,采用语音报警装置,则一般选择采用1SD1420型号的语音报警芯片,由A/D转换器传出的数字信号经过主控芯片的P0接口输送到主控芯片内,然后由主控芯片对信号进行智能化处理并与配置值作对比。如果比预置值要小,那么P2.1口将会输出低电平,单片机就会控制语音芯片发出报警信号;反之,那么P2.1口将会输出高电平,系统不会出现语音报警信号,则系统运行正常。
8 结束语
本文简要介绍了农业智能节水灌溉系统设计组成,这体现了自动化技术在我国农业灌溉中的有效应用,同时也体现了我国农业科技水平的显著提高。而目前,我国农业灌溉的智能化水平在整体上看来偏低,这需要国家农业部门进一步加大农业智能化研发力度,在农田灌溉方面设计出高度智能化、自动化的供水系统,既能节约大量的水资源,还能促进农作物快速成长。
参考文献
[1]张水利.集散型智能节水灌溉控制系统的设计与实现[D].中国海洋大学,2008.
[2]王秀霞.智能节水灌溉系统的设计[J].电子技术,2013,09:62-64+61.
[3]黄建锋.蔬菜节水灌溉系统的设计与应用[J].宁波农业科技,2003,02:26-28.
[关键词]自动控制技术 农业自动化
中图分类号:TD823.8 文献标识码:A 文章编号:1009-914X(2014)10-0256-01
由于历史、观念和技术等方面的原因, 我国传统农业机械与发达国家相比有很大差距, 已远远不能适应农业的科技进步。近些年来, 自动化的研究逐渐被人们所认识, 自动控制在农业上的应用越来越受到重视。例如,把计算机技术、微处理技术、传感与检测技术、信息处理技术结合起来, 应用于传统农业机械, 极大地促进了产品性能的提高。我国农业部门总结了一些地区的农业自动化先进经验(如台湾地区的农业生产自动化、渔业生产自动化、畜牧业生产自动化及农产品贸易自动化)的开发与应用情况, 同时也汲取了国外一些国家的先进经验、技术, 如日本的四行半喂人联合收割机是计算机控制的自动化装置在半喂人联合收割机中的应用,英国通过对施肥机散播肥料的动力测量来控制肥料的精确使用量。这些技术和方法是我国农业机械的自动化装置得到了补充和新的发展, 从而形成了一系列适合我国农业特点的自动化控制技术。
一、已有的农业机械及装置的部分自动化控制
自动化技术提高了已有农业机械及装置的作业性能和操作性能。浙江省把自动化技术应用于茶叶机械上, 成功研制出6CRK-55型可编程控制加压茶叶揉捻机, 它利用计算机控制电功加压机构, 能根据茶叶的具体情况编制最佳揉捻程序实现揉捻过程的自动控制, 是机电一体化技术在茶叶机械上的首次成功应用。
1.应用于拖拉机
在农用拖拉机上已广泛使用了机械油压式三点联结的位调节和力调节系统装置, 现又在开发和采用性能更完善的电子油压式三点联结装置。
2.应用于施肥播种机
根据行驶速度和检测种子粒数来确定播种量是否符合要求的装置, 以及将马铃薯种子割成瓣后播种的装置等。
3.应用于谷物干燥机
不受外界条件干扰, 能自动维持热风温度的装置停电或干燥机过热引起火灾时, 自动掐断燃料供给的装置。
二、微灌自动控制技术
我国从20世纪年50代就开始进行节水灌溉的研究与推广据统计。到1992年, 全国共有节水灌溉工程面积0.133亿m2, 其中喷灌面积80万m2, 农业节水工程取得了巨大的进展。灌溉管理自动化是发展高效农业的重要手段, 高效农业和精细农业要求必须实现水资源的高效利用。采用遥感遥测等新技术监测土壤墒性和作物生长情况, 对灌溉用水进行动态监测预报, 实现灌溉用水管理的自动化和动态管理。在微灌技术领域, 我国先后研制和改进了等流量滴灌设备、微喷灌设备、微灌带、孔口滴头、压力补偿式滴头、折射式和旋转式微喷头、过滤器和进排气阀等设备, 总结出了一套基本适合我国国情的微灌设计参数和计算方法, 建立了一批新的试验示范基地。在一些地区实现了自动化灌溉系统, 可以长时间地自动启闭水泵和自动按一定的轮灌顺序进行灌溉。这种系统中应用了灌水器、土壤水分传感器、温度传感器、压力传感器、水位传感器和雨量传感器、电线等。
三、自动控制技术在精准农业中的应用
通河县地处黑龙江省中部,小兴安岭南麓,松花江中游北岸,幅员面积5675.5平方公里,素有“鱼米之乡”、“塞外明珠”等美誉。该县总人口24万,其中农业人口13万。全县耕地总面积180.56万亩,其中水田面积140.15万亩,农业人口人均10亩,居全国首位,是全省水稻生产大县。全县农业综合机械化程度达95%以上,水稻生产实现全程机械化。2013年全县粮食总产16.5亿斤,连续5年实现超亿斤增长,其中水稻总产达到14亿斤,农业总产值34.4亿元,农民人均纯收入11646元,2010年被评为全国粮食生产先进县。
稻米产业是通河的主导产业,也是该县农业优势产业。近年来,通河县委、县政府结合县情实际,把发展稻米产业作为农业和农村经济发展的中心任务,确定了把通河水稻生产大县建设成为水稻生产强县的目标,依托土壤、物候、水资源、农业基础设施等各种优势,科学决策、多方投入,积极调整产业结构,大力发展水稻种植业,在促进农业增产增效、引领农民增收致富上取得了良好成效。
独特的物候环境和丰富的水资源
为稻米产业发展提供良好的先决条件
水稻品质的优劣不但取决于水稻的品种,更重要的是它的生长环境。通河县地处第三积温带,属温带大陆性季风气候,年均气温2.4℃,年均降水量610毫米,全年日照时数2487小时,无霜期年均120天。通河土质肥沃,黑土层厚,是富饶的农业区。通河境内河流纵横,泡泽星罗棋布,松花江流经通河县域123公里,县境内有大小河27条,年均径流量15.2亿立方米。全县有大小沼泽275个,小型I水库8座,小型Ⅱ水库4座,塘坝820个,加上可开采量1.1亿立方米的地下水,全县水资源总量达16.3亿立方米。良好的自然环境给通河水稻种植提供了良好的条件,2013年,通河水稻种植面积已经发展到了135万亩,平均单产为每亩550公斤,总产量达到14亿斤。其中,有机水稻种植取得认证面积2万亩,绿色水稻达90万亩。
完善的农田水利基础设施建设
成为稻米产业发展的可靠保障
为进一步扩大水稻种植面积,提升稻米品质,近年来,通河县在农田水利建设上加大了控制性水利工程建设力度,依托松花江及大型水库,建提水泵站,修渡槽沟渠,引江河湖泊自然水资源灌溉水田,取得了良好效果。
李义是该县乌鸦泡镇依山村的农民,自2005年当地修建了依山灌区乌鸦泡提水站后,他家的几十亩水田就用上了松花江水,不但自家稻田用水有了保障,还比原来井水灌溉提高了稻米质量。当地的依山村、五四村、岔林河农场等6万亩水田都用上了松花江水。
据了解,为充分利用松花江水,该县拟沿江建设6个提水泵站。目前,该县境内松花江沿岸已建成太阳谷、依山两处大型提水泵站,设计灌溉能力达15万亩。洪太、中兴、东部灌区的沿江提水泵站建设已纳入“十二五”水利发展规划。总投资1.6亿元的太阳沟现代农业示范园区内的浓河镇提水泵站及灌区配套工程已经完工。负责此项工程的县水务局副局长孙为民介绍,太阳沟现代农业示范区工程采用现代化的控制管理设备,实现灌区科学配水调度,设计灌溉面积为5.12万亩,可改善现有2.1万亩水田灌溉条件,增加水田面积3.02万亩,示范区年可增加粮食产量940万公斤,增加效益2500万元。
现代化的水稻育苗基地建设
为稻米产业发展增添后劲
为加快发展水稻生产,2010年以来,该县相继在通河镇、祥顺镇、富林乡、三站乡建成了4处高标准智能化水稻育苗园区。水稻智能化育苗园区建设是实现水稻增产的重要举措。位于通河镇的该县首座水稻智能化育苗园区占地面积17万平方米,总投资1100万元。园区共分三个功能区,包括由200栋钢结构育苗大棚组成的智能化育苗区、单批次浸种催芽能力200吨的智能化浸种催芽车间、智能化集中控制区。大棚采用微喷供水、变频给水先进技术,工作人员坐在智能集中控制室内,通过操纵智能控制系统,就能监看各个大棚的温湿度、通风情况,还能控制整个园区的生产。去年春季,该园区为当地农业生产提供了1.24万亩水田用优质秧苗和12万亩水田用优质芽种,对解决农民育种、育苗难题,提高当地农业生产水平,为农民节本增效起到了积极作用。
据了解,采用智能技术育出的秧苗具有素质好、返青快、分蘖早、产量高的特点。如今,该县已建成4处水稻智能化育苗园区,水稻生产智能化率走在全省先进行列。此外,该县还建成水稻大棚育苗小区45处,育秧大棚2.85万栋,水稻智能化浸种催芽车间11处,单批次浸种催芽2100吨,可覆盖全县105万亩水田。
大型稻米加工企业的出现
成为拉动稻米产业发展的龙头
稻米产业发展必须有企业尤其是龙头企业的拉动,才能更有效促进稻米加工转化增值,进而带动农业增效、农民增收。据了解,通河稻米加工企业总的设计加工能力80万吨左右,现实际加工量每年约在45万吨左右。近年来,该县加大对粮食企业的招商引资力度,黑龙江省迎春粮油有限公司、北京万里利达集团、哈尔滨康源营养米业有限公司、哈尔滨秋丰粮油科技有限公司等一批大型稻米加工企业相继落户通河。目前,全县规模以上稻米加工企业达到21家,小型稻米加工企业43家,全县稻米仓储能力已达到100万吨左右,其中粮库仓储能力达60万吨。
农业部门积极为企业牵线搭桥,建立完备的企业农户联结机制,帮助企业找粮源,帮助农户搞销售。各企业积极同农户签订水稻收购合同,形成了稳定的定单农业。目前,全县已有9家稻米生产加工企业联结农户1000余户,涉及水稻种植面积约5万亩。
新型农业经营主体的产生
开辟稻米产业发展新途径
近年来,以农民专业合作社为主的新型农业经营主体在通河县渐渐形成,有效地提高了农民的组织化程度,在促进农业增效、农民增收及农产品生产和流通方面发挥重要作用。据统计,该县登记在册的各种农民专业合作社共628家。其中,农机专业合作社10家,水稻农民专业合作社297家。各种合作社成员总数6924户,出资总额15.6亿元,带动农户10296户,占农户总数的33%。合作社成员人均增收比非合作社成员高出约20%。
水稻农民专业合作社是该县发挥作用最明显、农民受益最大的合作组织。截至目前,全县注册登记的297家水稻农民专业合作社共有成员3788人,带动农户4821户,涉及种植面积27万余亩,其中经营1000~3000亩的合作社22家,3000~5000亩的合作社15家,5000亩以上4家。通河县五谷信合、华隆、柞树岗水稻农民专业合作社还被评为黑龙江省星级示范社。
李福民是清河镇西北河村村民,2009年加入通河县五谷信合水稻农民专业合作社。入社前,他都是自己零散买种子、化肥、农药等生产资料,不但质量得不到保障,还要多花钱。入社后,他和其他社员一样,由合作社集中统一购买生产资料,不但省心、省钱,生产资料的质量也都由合作社严格把关。2010年春季,他为自己的6公顷水田育的秧苗有一大半发生了病害,由于当时家里有事,没时间伺弄,秧苗眼看着一天比一天枯黄,李福民难过的要放弃。合作社工作人员得知这一情况后,立即介入,派技术人员帮忙补救,终于救活了秧苗,挽回了李福民近4千元的损失。徐金贵家住东胜村,在加入合作社前,每年1公顷水田只能收获一万四五千斤水稻。入社后,他通过合作社统一采购种子、化肥等生产资料,统一进行水稻种植技术指导等,1公顷水田每年能收获一万七八千斤水稻,增加了3000多斤。
优越的惠农政策为稻米产业发展提供强劲动力
1精细农业生产是现代农业发展必走之路
精细农业生产是由信息技术支持的根据空间变异来定位、定时、定量地实施一整套现代化农事操作技术与管理的系统,用户只要将手机或手持终端按下键盘,就能查看到设施农业实时的综合生态信息。精细农业生产实现了农业智能化、精确化生产。
2物联网技术是精细农业生产强大的技术支撑
物联网4大技术的组成和应用领域包括传感网、M2M、RFID和两化融合技术[1],物联网两化融合是指技术、产品、业务和产业衍生4个方面的融合[2]。在精细农业中的两化融合主要是信息技术、先进设备与农业生产、加工、销售等环节的融合,即农业信息化和农业产业化的融合,其为传统农业的发展提供了新的机遇,有助于加快农业现代化进程[3]。
3物联网精细农业自控系统在精细农业生产中的应用
物联网精细农业自控系统以先进的无线传感器、物联网、云平台、大数据及互联网等信息技术为基础[4],主要通过WIFI设备服务器与远端天线矩阵通讯,再通过第三代光载无线交换机,将数据实时地送到远程智能系统,再发送给各级用户,从而实现农业智能化和精确化的精细作业生产。
3.1物联网智能监测系统
3.1.1无线墒情监测系统无线墒情监测系统主要负责采集农业种植生产环境信息(见表1),并将结果传输到中心服务器,再将相应的数据反馈给用户,即墒情监测数据、旱灾预警数据、走势分析数据、报表分析数据、短信、信息及图形预警信息。
3.1.2苗情监测系统田间作物无线苗情监测系统,利用网络,定时采集作物、植物生长发育状态进行田间物候的远程连续定位摄像,并将图片自动上传到远程物联网监控服务平台,实现植保监测人员的远程物候观测。
3.1.3虫情监测系统虫情监测系统通过搭建在田间的智能虫情监测设备,能进行无公害诱捕杀虫,绿色环保;同时利用无线网路,定时进行远程诊断,采取相应防治措施,控制虫害。
3.1.4灾情监测系统用户通过视频系统可以清晰直观地查看种植区作物的生长及病虫害情况,并对突发性异常事件的过程进行及时监视和记忆,提供及时高效的指挥和调度,进行有效地防灾控灾。
3.2物联网智能传输系统智能传输系统是属于传输层层面的连接,其将物联网智能监测系统的感知层数据,发射到就近天线矩阵转换为光信号。
3.3物联网智能灌溉系统智能灌溉系统将这些环境参数进行实时监测采集,通过控制中心控制施肥罐、施水罐,实现节水灌溉,同时减少化肥使用,降低生产、人工成本。
3.4物联网智能预警预报系统在智能预警预报系统中设置农作物环境参数危害发生程度的安全值域,当监测到的数据超出安全范围时,报警系统启动,管理平台上的参数将会显现红色字样,并将危害状况通知用户。
3.5物联网智能专家系统该系统将农业专家信息及联系方式全部集中到一起,用户可联线或以短信、QQ和微信的方式咨询专家各种病虫害防治难题,亦可将自己的防控经验分享到系统中。
3.6物联网智能信息管理应用平台该管理应用平台利用WEB服务器及PC终端应用层专业控制软件,用户可在本地数据库调用现场实时视频录像。
4小结
关键词:农产品产业园、物联网、信息系统、数字一体化精准管控系统
近年来,我国数字化农业技术取得了一些进展,主要表现在:农业传感器微型化、农业灌溉智能化、实时监控农作物生长、农业信息可移动化、农产品质量追溯化等已成为主流。这得益于农业生产信息化技术的成熟和发展,尤其是农产品种植、加工智能化技术的应用。
国内关于农业园区应用物联网技术的相关研究主要涉及温度监控、光温智能控制、精准灌溉等方面。如,浙江大学等单位对农业物联网信息感知、传输和应用等方面进行研究,主要涉及智能化程度、肥水利用率及农产品安全等问题。取得了一系列成果。但总体来看,数字化技术在农业生产中的集成应用研究还比较少。本文提出构建完全数字化的生鲜农产品产业基地,该基地基于总线技术集成,由统一的信息系统进行集中管理和统一调度,充分运用物联网和现代信息技术,加强数据处理及控制,合理布局传感器(温度传感器、湿度传感器、养分传感器、土壤成分传感器等),实现完全数字化。
一、生鲜农产品产业园区数字一体化精准管控系统的实施意义
1.加速信息化。农业发展越来越受到信息技术的影响,信息化成为我国加快实现农业现代化的必然选择。随着物联网技术和农业信息技术的广泛应用,现代农业高速发展,新的农业科技革命即将到来。
2.提高数字化。数字化有利于发展我国自主产权的农业高技术体系,对于我国在世界范围内新的农业科技革命中占有一席之地,以及提升我国农业科技在国际上的整体竞争力,具有战略意义。
3.提高生产效率。传统的手工劳作、粗放型、分散型农业产业模式已不适应时展,我国经济进入规模经济时代,设施的效率决定了生产的效率,也体现了生产力的发展水平。
4.节能减排。精准农业在高新技术的基础上,充分利用现代信息技术,成为现代农业的一种先进生产形式和管理模式。为能自动感知、获取并分析作物生产的环境因素实际存在的时间和空间差异信息以及实现自动诊断和监测,确立起按需投入,在技术上和经济上可实施的应对方案,对物联网技术提出了系统化的理念和技术要求。
二、生鲜农产品产业园区数字一体化精准管控系统的构成
如图1所示,基于物联网技术的生鲜农产品产业园区的数字一体化精准管控系统,主要包括设备执行层、通讯层、调度监控层和信息管理层等四个层级。整个管控系统由计算机管理调度系统(中央控制系统)、水肥一体自动控制系统、自动通风控制系统、无线传感器系统、卷帘控制系统、诊断与监测预警系统等六个子系统组成。
1.计算机管理调度系统(中央控制系统)
生鲜农产品产业园区数字一体化精准管控系统,是在系统总体规划的原则下,为实现农产品种植基地的智能化、数字化、精准化管控而进行的计算机软、硬件系统设计,在信息自动化统一软件平台的基础上,结合农作物生产经验,开发农产品种植系统,采用面向对象的分析、设计和开发手段。充分考虑系统的柔性,并为系统的全面集成留有接口。
系统由管理层信息系统集中管理和统一调度,在监测与预警系统的监控下获取数据采集层下各类型传感器所提供的作物成长环境的物理参数,如:空气温湿度、土壤水分含量、PH值、CO2浓度等,再经通讯层传输到管理层中央控制器,农产品种植系统对感知的信息进行融合处理,智能对比适宜农作物生长的最佳环境变量,并形成完整的按需配给策略,由通讯层到达发出控制指令的具体分管控制器,完成对农作物的按需供给,保障农作物的健康成长环境。
整个管控系统形成了一整套完全智能化、数字化和精准化的管理理论和实践方法,对智能并联调度系统、诊断与监测预警系统、水肥一体化精准管控系统等新技术模块进行了研究应用。
系统结构分为四个层次,即:信息管理层、通讯层、调度监控层和设备执行层。其中,计算机系统始终贯彻整个系统的运行中,从整体调度到具体信息的收集与传输、指令信息的下达,涵盖信息管理层、通讯层、调度监控层的所有业务以及设备执行层的大部分业务,上联中央控制系统,下联设备执行层。
系统硬件模型,如图2。
2.水肥一体自动控制系统
水肥一体自动控制系统是一项现代农业新技术,该技术可以精确控制灌溉和施肥的数量与时间,以微灌系统为基础,根据农作物的需水需肥规律及土壤状况,运用计算机技术自动对水和肥料进行调配和供给。
在滴灌、渗灌、微喷灌等工程节水的基础上,通过布置在田间的水分传感器、养分传感器、土壤成分传感器等多种类别传感器,测得土壤各指标的基本状况,经传感器将信号传到电脑,再由程序智能指导灌水施肥。
由于系统没有非常复杂的运算,需要低功耗和具有较强抗干扰性,因此采用单片机作为自动控制中心模块,用来处理灌溉区的信号输入等工作。由于水灌溉自动控制系统对水位的控制精度要求不高,将自制水位传感器安装到要求的液位,直接感知液位信息。由液位信息控制电磁阀,从而实现精准施灌。系统中的很多资料需要长期保存,同时需要在系统断电时仍能保存信息,根据自动控制系统以及用户信息存储大小需求,选用双备份磁盘阵列为该系统的存储设备。
水肥一体自动控制系统包括两大类。即叶面施灌和根系施灌,前者采用喷雾头施灌,后者采用滴灌。
系统将各种农作物的特征需求数据、种植历史经验数据、专家知识等集成、组构、融合,编制成生鲜农产品种植专家系统,将测定的实时信息与生鲜农产品种植专家系统的参数对比后,可计算出灌溉时长、施加肥液时长和肥液配比等值。控制程序得到开始工作指令后立即运行,系统运行过程的数据均可查阅。系统主程序流程,如图3。
3.自动通风控制系统
自动通风控制系统综合性能优于传统通风系统,可以自动调控风机转速与风量,感应空气品质,从而改善空气质量,提高通风安全,实现运行管理智能化。该系统主要由智能中央控制子系统及空气品质感应子系统等组成,还包括通风管道、可调节的风口末端及数字化节能风机等。
4.无线传感器子系统
WSN(WirelessSensorNetwork,无线传感器网络)由多个部分组成,其主要构成:无线传感网络基础设施、网络应用支撑层和基于该网络应用业务层的一部5y.等,参见图4。将WSN应用于培养种植农作物,可提高农业数字化水平。其工作原理为:在监察区域设置大量廉价的微型传感器,通过传感器感知并收集所需监察对象的信息,这些信息经过处理后发送给观察者。
5.卷帘控制系统
当前使用的温室大棚卷帘机大部分存在安全隐患,其主要原因是动力源为现场人工送电,不论温室中是否有劳动任务,管理人员都必须到现场操控设备,造成了时间和人力资源的浪费。
为解决上述问题,可以通过自动远程控制,实现卷帘机的升降,不仅可以减少安全隐患,而且降低劳动强度,提高效率。其主要做法为.在设备中嵌入一个模块,利用处理器的指令控制来实现GSM系统的短信息服务。该方法实施方便、操控简单、成本低,有较高的应用率。
6.诊断与监测预警系统
在农作物种植基地采用诊断与监测预警系统,主要针对系统中关键设备的开关和运行情况进行监测,发现异常情况并及时处理,从而尽量避免损失的发生。
为了加强监测和预警,该系统设计并充分应用无线结构健康监测试验仪器。基于成本和便捷性,该仪器主要应用ISM(IndustrialScientificMedical)频段,这是因为:ISM频段耗能低、成本少,组网方便且无需授权申请,非常适合无线结构的健康监测使用。其覆盖范围,如图5。
诊断与监测预警系统涵盖整个系统,实时监测各系统的运行状况,并根据系统的实际情况经传输系统反馈给中央控制系统,对整个系统的健康运行具有重要意义。
关键词:现代农业;农业机械;自动化;技术
传统农业体系中,人工是农业生产的基础,但随着社会经济的发展,农业产品市场需求增加,人工生产模式已经无法满足现代农业的生产要求。在此背景下,农业机械化、自动化概念应运而生,转变了现代农业生产模式,在各类自动化农机设备的使用中,农业生产效率明显提升,为建设精准化现代农业生产模式提供较大可能性。
1农业机械自动化概述
农业机械自动化是基于现代互联网信息技术,将自动控制技术、计算机软件、大数据分析技术高度整合在农业机械生产研发中,使其能够在具体使用时,高效率地处理各类农业生产、管理事务。现代农业体系中,农业机械自动化趋势逐渐明朗,其在农业生产中的推广、应用价值愈发突出。在此背景下,农机设计中的自动化程度不断提高,自动化技术成为创新、完善农机功能的核心技术,可以帮助农业生产人员优化调整生产模式,智能、有效地管控农业机械设备,最大限度地改善农业生产条件[1]。随着现代农业体系的完善,农业机械自动化可以满足新时期农业高效、高质量生产的基本要求,并且对解决农村劳动力问题、转变农村传统劳作及生产模式有着不可忽视的作用。一方面,农业机械自动化能够进一步提升现代农业生产效率,节约农作物成长期间的劳作时间,同时有助于减少人力、财力成本,落实各种有利于农业生产的新兴技术。另一方面,基于农业机械自动化,农业生产模式改变,农业生产人员可借此构建信息化、自动化的农业生产管理系统,全方位地监控农产品生产链条,逐步地落实“精准农业”的理念。
2现代农业的发展现状分析
现阶段,农业机械自动化成为“现代农业建设”的基本内容,但在提升现代农业自动化程度时,仍存在较多问题,具体可体现在以下几方面。首先,农业机械设备先进性不足。机械设备的实际性能、机械自动化水平直接关系着现代农业生产创新的效果,但根据当前农村地区对农业机械的使用情况可知,多数农村区域,农民所使用的农机设备较为落后,缺乏先进性。设备功能、设备自动化程度均不符合现代农业的生产需求,制约着现代农业的生产效率、生产模式。导致现代农业在机械化、自动化发展中,农业体系中的生产观念、生产流程、区域农业发展均受到较多限制,使得农业机械自动化的推广、宣传范围难以持续扩大。对此,相关农业部门还应基于农作物生产的现状,加大对自动化农机的宣传力度、政策扶持力度,促进农业生产模式的转型与升级[2]。其次,农业生产中农机设计的科技水平低。目前,现代农业体系中,农业生产中的各类农机的自动化水平逐渐提升,但农业机械中的科技含量较低,其所包含的技术优势不明显,设备功能创新性较弱,使得我国农业机械化、自动化发展中,完善农产品生产模式的进程缓慢。所以相关研究人员还应及时借鉴国外成熟的农业机械研发技术,针对性分析农业机械化、自动化发展需求,逐步地融入各类先进技术,提高农机设备中的科技含量。最后,农业机械自动化区域发展不均衡。我国土地资源丰富,国土辽阔,农业种植区域大、分布广,但不同区域的农业经济增长速度、区域经济水平存在较大差异,继而使得农业机械自动化推广、应用受到较多影响,各个区域内农业机械自动化发展呈现出不均衡的特点。
3现代农业中农业机械自动化的具体应用
3.1生产监测自动化
现代农业生产中,农业机械自动化在具体应用时,能够实现农业生产监测的自动化。具体来说,在农机设备自动化设计后,计算机成为自动化控制农业生产设备的核心工具,在农业生产活动中,计算机可操控农机设备的运行与管理,将其投入农业生产活动中获取相关数据,而系统可自动化分析农业生产中的各项信息,对农机设备下达指令,使其自动调节农业生产设备功能[3]。例如,在现代农业中,农产品种植、栽培场所逐渐改变,对于生长在温室内的农产品,农业机械设备的自动化技术,可以利用功能完善的感应装置,监控农业生产区域内的含水量、温度,评估现有的温湿度是否符合农作物萌芽、抽芽、生长要求。与此同时,相关人员可基于计算机技术,自动化地分析处理温室内的各项数据,智能调节农业生产中的光照、温度,为农作物提供更为适宜的生长环境。比如,在农业机械自动化发展中,GPS技术被应用在现代农业生产中。该技术可自动收集农作物生长数据,改善农作物生长条件,并在与GIS技术联合应用的过程中,准确获取农作物土壤结构内的营养元素,使农业生产人员可以依据土壤数据,精准除草、施肥、浇水灌溉,夯实农作物生产基础。不仅如此,农业机械自动化在现代农业中的应用,同样可将“生产监测自动化”渗透在农作物的整个生命周期内,从农作物萌芽、生长、成熟、收割等各个环节进行自动化监控。部分农业机械设备可及时对农作物进行采摘、初步清理、存储,及时清空农作物生长区域,为后期种植做好准备,全面地提升农业生产效率。
3.2农业灌溉自动化
灌溉是农作物生产中的重要环节,在将农业机械自动化技术应用在现代农业时,部分农机设备可实现农业生产中排水灌溉的自动化。具体来说,在全球范围内,水资源短缺问题尤为突出,而农业生产中的水资源却属于不可缺少的生产要素。在农业灌溉中应用农业机械自动化技术,不仅是为了提升农业生产灌溉效率,更是为了通过精准地控制农业灌溉时的用水量,以节约农业生产中的水资源,将“节约用水”理念渗透到农业生产活动中[4-5]。在此背景下,现代农业体系中的灌溉设备功能逐步完善,正式灌溉农作物前,相关人员可根据农田面积、农田内农作物的密集度以及农作物生长需求,自动化分析每亩农田的需水量,继而通过现代农机设备的精密控制,科学地对农田进行灌溉,落实自动化的农业生产灌溉技术。在此期间,农业灌溉所用的农业机械设备包括农机传感设备、大数据监控分析平台、计算机系统,是自动化控制技术与现代农业相互融合的载体,对节约农业生产中的水资源、灌溉成本意义重大。农业生产人员可利用农业生产灌溉的自动化,进一步改善农作物生产条件,使其健康成长,保障农作物生产质量、生产效率。
3.3农产品装检机械化
现代农业体系不仅包括农作物生产,农产品产销、包装均属于现代农业的生产管理工作。所以农业机械自动化的应用不仅局限于农作物生产,同样可以应用在农产品包装、质量检测等方面。首先,农业机械自动化会促进现代农业生产结构的创新,优化农业生产管理流程,并根据市场对农产品的实际需求,改进农产品质量检测、农产品包装模式。在传统农业生产管理中,农业机械化、自动化技术水平低,人工是农产品包装与质检的主体。而随着农业机械自动化发展,相关人员研发出“自动检测包装设备”,该设备的核心技术是自动控制技术,可以自动检测农产品外观、大小,合理地对农产品进行分类包装。其次,在农产品装检机械化中,相关人员同样可借助自动化影像技术,实时监测农产品生长中的各项指标,全面监控农作物种植区域。然后,利用计算机软件,整理农作物生产数据、成长信息,构建可视化的三维立体模型,为农业收割、采集、包装、质量检验提供详细的参考数据,使相关人员在农业生产实践中制定出更为科学的管理方案[6]。最后,在农业机械自动化发展中,现代农产品的装检机械化趋势愈发明显,并且在现代农业创新发展中,农产品包装、质量检测等流程呈现出“集约型”的管理特点。各个农业生产区域中,农业机械自动化推广效应不断扩大,集约化的农产品分拣、包装会突破传统农业生产管理困境,使非生产环节的农业机械自动化水平不断提高,促进了现代农业结构、农业机械自动化技术的相互融合,进一步增强现代农业生产人员的专业能力、综合素质,为我国农业经济的发展创造有利条件。
3.4农业管理精准化
农业机械自动化应用于现代农业时,可促进农业管理精准化。首先,农业生产人员可基于计算机技术,开发农田管理软件,该软件在与UPS接收器连接后,能够绘制农田地图,记录各个区域中的农作物产量,汇总UPS卫星数据。之后,在农业生产管理中,农业生产人员可检测农田土壤样本,测定农田中的土壤成分,并根据农作物叶子颜色、植株颜色判断农作物生长情况。与此同时,在农作物生长过程中,该软件具有获取农田航拍图像的作用,可以按照农作物健康状况的检测结果,精准地确定各个区域农作物施肥需求量、农作物种植的合理密度[7-8]。其次,UPS接收器与自动化农业生产管理软件融合后,可监测农田内拖拉机、深耕设备、收割机等农用机具的位置,便于农业生产人员精准地管理农作物施肥、打药、收割、播种工作,精准地管控各环节的操作成本,有效地改善农作物周围的生态环境。另外,现代农业体系中,农业机械自动化能够更为准确地定位农机,甚至可以自动化控制农机操作过程。比如,在使用农业机械播种、施肥、打药时,UPS接收器与计算机管理软件可精准地将种子、农药或肥料投入对应的区域,实现高效收割、高效播种、高效施肥等精准化管理目标,突出农业机械自动化在现代农业中的应用优势。
4基于农业机械自动化的现代农业发展趋势
4.1农业生产模式智能化发展
随着农业机械自动化的推广与应用,农业生产模式的智能化发展趋势会更加明显。基于互联网信息技术的各类先进技术,将成为农业生产的技术支撑,所以在农作物播种、生产管理、收割、运输、销售等环节中,农业活动的智能化水平会逐步提高。在未来农业体系中,农业机器人会被广泛应用在现代农业生产中,用以监控、预测农业生产参数,获取完整、真实且准确的农业生产数据。而农业生产人员可利用智能化管理平台,远程记录、分析农业生产数据,提前做好病虫害、排水灌溉、施肥等工作,人工下田操作会逐渐减少,农业机械设备会代替人工,有序地完成农业生产任务[9-10]。不仅如此,在现代农业中,农业机械化、自动化水平会持续提高,农机生产、研发中可利用的先进技术增多。相关人员可进一步完善农机性能,使其具有智能操控、自动控制的基本能力,农业生产人员可利用升级后的农机设备,改善农业生产条件,构建智能化、自动化的农业生产管理系统,高效率、精细化地完成农业生产管理工作,满足现代农业的发展需求,促进农业经济增长。
4.2精准化农业生产模式逐渐完善
农业机械自动化发展中,农业生产流程、生产管理等操作更为“精准”,所以在未来“精准化生产模式”会更加完善,农业生产活动会在农业科技水平的提升中不断优化。农作物生长周期内,农业生产人员对浇水、施肥、除草、病虫害防治等工作的控制更为精准,可以有效提升未来农业生产管理质量,使农作物健康成长。另外,基于“精准化生产模式”,农业机械自动化会支持市场上农产品品质、品种的创新,从而带动农业经济发展,有利于夯实我国社会经济建设基础,增强我国农业在国际市场的竞争力。
5结语
综上所述,为在现代农业发展中有效地应用农业机械自动化技术,相关人员还应积极创新农业机械设计,将更多先进、新颖的自动化技术融入农业生产中,从而为农业发展构建完善的技术体系。与此同时,相关农业部门还应顺应时展趋势,强化农业机械自动化推广、宣传力度,在坚持因地制宜原则的基础上,扩大区域范围内的农业机械自动化应用范围,建设精准化的现代农业,助力我国农业经济可持续发展。
参考文献:
[1]梁瑞仪.先进适用农机技术在农业生产中的应用策略思考[J].南方农业,2019,13(12):156-157.
[2]李艳杰.农业机械自动化技术的应用与推广策略[J].农机使用与维修,2020(3):54.
[3]刘博.基于PLC自动化技术的农业机械电气控制应用[J].南方农机,2020,51(22):50-51.
[4]张珍,赵书玲.自动控制技术在农业机械中的应用探讨[J].产业与科技论坛,2019,18(14):57-58.
[5]孟庆亮,陈亦军,范巍挺.自动控制技术在农业机械中的应用[J].农机使用与维修,2020(10):130-131.
[6]岳建林.试探机械工程自动化当中的农业智能化技术[J].农民致富之友,2020(2):99.
[7]尹辉录.农业机械技术在现代农业中的作用研究[J].经济技术协作信息,2021(5):88.
[8]李晓玲.现代农业中农业机械技术的推广作用分析[J].南方农机,2020,51(23):94-95.
[9]白跃辉.农业机械设计制造工艺与精密加工技术分析[J].时代农机,2020,47(4):91-93.
1.1加紧实训教师培养、聘任工作目前,基地配备专兼职教师38人,其中40%为农业相关专业,35%为计算机相关专业,25%具有机电及复合型知识结构。实训基地建设师资是关键,学院狠抓实训基地的教师培养,努力提升教师队伍素质,有计划地选派专业教师到现代农业企业实践、考察,培养技师型教师,多次组织教师到区内外智能化农业技术先进的现代农业企业考察、调研,从企业选聘有丰富实践经验的业务骨干或技术人员担任实训教师,保证实践教学顺利开展。这些措施有效培养了学生的创新精神和实践技能。
1.2校企合作开发现代农业技术课程体系学院按照项目建设方案,结合现代农业企业工作过程,抓紧组织项目相关教师制定智能化农业技术实训基地运作的生产、建设、服务、管理目标,确定实训项目设置、运作和岗位能力培养。在课程建设中,专业教师深入企业进行调研,使课程、课件的相关内容真实反映企业生产经营实际。并根据生产实际要求,抓紧组织开发现代农业技术课程。目前已经开发了农务信息管理、农产品质量溯源等课程,并编写了《农务信息管理》、《农产品质量溯源》等教材,这两本教材同时还作为广西农垦岗位培训用书。
1.3校企合作建设现代农业技术服务平台学院与合作企业单位组建服务广西农垦的甘蔗糖业信息化技术服务平台、农产品质量追溯系统信息数据处理与动态监控平台,直接为广西地方及农垦企业提供农业标准化生产技术、甘蔗糖业农务信息管理、农产品质量检测、农产品质量溯源、现代设施农业技术等多项新技术服务,针对企业需要每年开出相关的企业培训项目,按照企业特点和要求选派高水平的专业教师承担企业员工和管理人员的业务培训工作,每年为企业员工开展农业职业资格的培训和技能鉴定工作。
2建设成效
2.1推进校企合作开展高职教育教学改革近几年来,学院与广西农垦集团企业、广西百色国家农业科技园区、广西乐业县顾式茶有限公司、广西绿大洲农业开发有限责任公司等12家企业签订了产学研合作协议。校企合作积极开展作物生产技术专业人才培养模式和课程体系改革,按照能力递进的人才培养规律,学院与企业共同成为人才培养的主体,校企共同设计、实施“模拟承包+生产项目驱动”工学结合人才培养模式改革,引入无公害芒果生产技术规程等行业技术标准和高级果树园艺工、高级花卉园艺师、高级茶园园艺工等职业标准,由行业企业技术骨干和专业教师共同开发农产品质量溯源、现代企业经营管理、农务信息管理等课程。农产品检验室与广西三达环境监测有限公司达成了合作协议,共同进行环保部门及企业提供的环境样品的分析检验,把农产品检验室作为他们的第二实验室(已挂牌),利用检验室的大型仪器如液相、气相色谱仪等承担部分样品的分析任务。自2009年来,依托智能化农业技术实训基地加强高职实践教学改革研究,与企业共同承担智能化农业技术实训基地建设的研究与实践、亚热带经济作物标准化生产实训基地建设的研究与实践、蔬菜栽培基质次生盐渍化治理技术研究、广西高职农类专业质量评价指标体系研究、行动导向教学法在高职植物造景课程中的应用研究、珍稀植物红皮糙果茶快速繁育技术及其园林应用的研究与示范等8项厅级教改立项课题。在项目实施过程中,共发表教改文章9篇。到位的仪器设备都已正常使用,各个实训室都正常开课。智能化农业技术实训基地每年承担了90多门课程约3000学时的教学工作量。
2.2充实了实训设备项目的建设实现了学院农科实训条件从原来的传统农业向现代农业、智能化农业的转变。项目对原有的玻璃温室进行了改造,增加室内光、温、水的控制设备,实现了智能控制的功能;对原有生产茶园辅助设计节水灌溉设施和监控设备,实现了室外生产场所的远程监控;对原有实验室进行整合、重新规划设计,进一步完善其设备功能,新建环境生态监测实训室、农务信息管理、质量溯源和农产品质检实训室,具备农产品质量检测、水环境和大气环境分析监测、土壤检测、配方施肥、农务信息管理和质量溯源等功能。新增了环境监测仪、节水灌溉信息采集与控制系统、气质联谱仪、农务专家系统、溯源系统、农业智能系统、数字化农业信息系统等成套大型设备13台套,仪器设备总值698万元。
2.3作为学院对外交流的窗口智能化农业实训基地建设项目建成后,积极开展对外交流,作为学院对外交流的窗口,接待了许多相关单位的参观和指导,2011年共接待36批395人次的参观。在参观的过程中许多同行对这一建设项目很感兴趣,对项目的组织、实施和成效给予了充分肯定。
2.4师资队伍整体素质得到了提高项目有计划地选派教师外出培训,每年安排6-8名骨干教师参加各种学习培训,共培养了28名骨干教师,其中邓朝辉派到农业部参加农产品质量追溯系统培训,廖旭辉、麻文胜老师参加了日本岛津公司在北京举办的气相——质谱联用仪的培训,教师的专业能力有明显提高。另一方面,在项目的建设和运行过程中,进一步加深了学校与企业的联系,到企业兼职的教师其动手能力也得到了提高。通过社会服务,许多骨干教师提高了学术水平,取得了较多的科研成果和较广泛的社会资源。
2.5拉动了招生近年,在农业类招生困难的大背景下,学院对农类专业进行了整合,实行农科大类招生,依托智能化农业技术实训基地共享和辐射作用,广泛发动宣传,搞好课程改革,提高教学质量,夯实内涵建设,2008年专业大类招生164人,2009年招生182人,2010年招生196人,2011年招生252人,专业招生有了明显回升。5年来农业类专业就业率达到98.6%,就业对口率达到80%。
2.6提升了工学结合质量实施工学结合教学,依托智能化农业实训基地,教学中的大部分项目来源于真实的为企业承担的项目。学生在以项目为载体的学习和项目开发实践中得到职业能力的锻炼,专业人才培养质量进一步提高。以作物生产任务为载体,第二、第三学期根据蔬菜、果树、花卉等作物从春季到冬季生长的季节周期性和管理要求,在老师指导下进行一个季节周期的“模拟承包”实训;第四、第五学期采用统一安排和学生选择相结合的方式,到合作企业进行2次交替专业实训,每次1个月;在第六学期学生进入企业顶岗实习,具备职业岗位能力,与毕业后就业岗位对接。
2.7专业教育质量与职业技能培训得到加强项目的建设使校内实训基地得到充实、提升,扩大了实训功能。在完善原有实训项目的基础上,新增32个实训项目、356个工位,可以在实训基地完成智能化农业技术相关专业主要工作岗位的实训和相关职业技能的培训,使专业教学中的实践教学与理论教学的比例、新技能与传统技能的比例、心智性专业技能与动作性专业技能的比例得到进一步提高。同时,积极组织学生参加自治区和国家职业技能比赛,在自治区级以上职业技能比赛中有6人获奖。本专业近三年毕业生获“双证书”比例达100%。同时,为社会提供2000多人的职业技能培训服务。
2.8社会服务成绩利用智能化农业技术实训基地的综合优势,为三农服务,使农民增收,使企业增加经济效益,实现持续发展。近年,学院与广西农垦糖业集团合作申报了广西科技厅项目“甘蔗糖业信息技术服务体系建设示范”,获80万元专项经费支持,还申报了国家科技支撑计划课题“糖厂农务管理信息技术服务应用示范(2007BAD30B06)”,获国家专项经费支持315万元,目前项目已通过科技部结题验收。梁裕教授主持的广西科技厅项目“糖厂农务管理信息技术服务体系建设示范”(桂科攻0895003-2-3)获广西科技厅专项支持40万元,项目已通过科技厅验收并完成成果鉴定。这些项目实施完成后,服务广西、云南等示范蔗区320万亩,惠及26家制糖企业、30多万蔗农,使原料蔗从砍蔗到入榨平均缩短10.6个小时,折合降低蔗糖分损失0.31%,示范区年新增甘蔗产值19800万元,增加工业产值37125万元,税金6326万元,得到合作企业及蔗农的好评。
学院参与完成农业部农垦司“广西农垦质量溯源建设项目”,与广西农垦局科研处合作建立了广西农垦农产品质量追溯数据中心,搭建省级农产品质量追溯平台,完成了广西农垦水果、生猪、茶叶农产品9个追溯试点,经农业部验收达到优秀等级。依托广西农垦农产品质量追溯数据中心,主持开发广西农垦生产信息管理平台,实现广西农垦企业单位远程生产数据填报及自动统计功能,在垦区92家企业推广使用,得到广西农垦科技产业处的好评。2008——2010年主要参与完成了广西教育厅科研课题“农产品质量追溯网络系统平台的开发与应用”,项目已结题验收。2010开始与百色国家农业科技园区合作开展芒果等特色果蔬质量溯源体系研究,共同联合申报课题,共同开发质量溯源系统。同时为农业企业开发茶叶新品种、改造生产工艺,为企业增收8778万元,桑茶技术创新使桑农每亩增收6000元,为桑蚕产业的发展和桑农的增收开创了一条新路;为茶叶企业设计加工机械,使企业节能增效每年达到22.11~24.66万元;为食品企业研发新产品,企业技术转让每年获税利16万元。
3特色与示范
关键词 无线传感器;网络技术;农业自动化
中图分类号 TP393文献标识码 A文章编号 1674-6708(2010)18-0129-02
1 无线传感器网络研究背景以及发展现状
随着半导体技术、通信技术、计算机技术的快速发展,90年代末,美国首先出现无线传感器网络(WSN)。WSN是由布置在监测区域内传感器节点以无线通信方式形成一个多跳的无线自组网(Ad hoc),其目的是协作的感知,采集和处理网络覆盖区域中感知对象的信息,并发送给观察者。传感器、感知对象和观察者是WSN的三要素。将Ad hoc技术与传感器技术相结合,人们可以通过WSN感知客观世界,扩展现有网络功能和人类认识世界的能力。WSN技术现已经被广泛应用。
2 WSN技术在农业生产自动化中的应用
2.1 我国农业发展现状
农业生产的发展过程受到了社会以及自然两方面的影响。我国是农业大国,建国初期,为了解决粮食供应短缺问题,在农业生产上,注重产量,当前我国温饱问题基本得到解决,农业生产应该用经济效应来衡量,注重产业效率,我国大部分地区农业生产相当的落后,仍然靠人力、畜力耕种,限制了劳动力,提高了生产成本。因此我国农业发展趋势应走向自动化,高效率,高精度的机械化,智能化生产。
2.2 WSN技术在农业生产中的应用
2002年,英特尔公司在饿勒冈建立了世界上第一个无线葡萄园,将无线传感器结点人工分布在葡萄园中,对园中土壤的温度以及养分含量等作物生长条件进行实时监控。杭州齐格科技有限公司与浙江农科院合作研发了远程农作物管理决策平台,该平台利用了WSN技术实现对农田的温度、湿度、光照等信息的监测。北京市“蔬菜生产智能化网络传感器体系研究与应用”项目,将WSN应用于温室蔬菜生产中。将温室作为一个监控区,使用WSN技术对温度、PH值、含水量、光照强度等进行测量,根据实际需要,对温室条件进行调整,以达到农作物生长的最佳条件,增加作物产量。在大规模部署传感器节点时可以通过飞机播撒,人工设置,火箭弹射等方式部署在预设区域。无线传感器网络具有的实时性监测,无线通信特点,使其在农业生产上有很大发展前景。典型应用如下:
1)农业灌溉自动化控制技术
我国是个贫水国家,水资源总量居世界第4位,人均仅为第121位。农业用水占总用水量的七成,但我国农田灌溉十分落后,水的实际利用率很低,浪费严重,与发达国家相比仍有差距。采用自动灌溉系统,在土壤中人为安放水分传感器、温度传感器,对农作物的生长条件进行监控,根据实际,进行自动供水和自动按一定顺序进行灌溉。
2)温度自动调控
蔬菜生产中,温室生产规模正在逐步扩大,传统温室监控系统成本高,移动性差等问题很突出。近年来,节能高效的WSN技术正在温室监控领域兴起。基于WSN的温度监控系统由汇聚节点和子节点构成。将传感器分布在温室中监控温室内土壤温度、湿度、PH值、光照强度等,通过无线网络传到汇聚结点,汇聚结点对数据进行处理,将命令通过无线网络下发给调控节点,调控节点根据所得命令对灌溉设备、加热器等进行控制,改变温室条件。汇聚节点还可接受人工控制,与互联网连接,使用户可以进行远程监控。
3 WSN在农业生产中的应用
3.1 WSN实际应用中的问题
在实际农业生产中,节点工作环境恶劣,网络规模较大,节点数目多,在保证网络规模的同时,要考虑网络成本,为了实现实时监控,传感器的施放位置很难定位,节点能量有限,节点可能会失效,WSN在实际应用中的问题如下:
1)网络规模较大
节点必须尽可能大规模高密度部署,保证监控区域的覆盖范围和连通度,否则无法实施网络的自组和数据汇聚,而大规模组网,使生产成本增加,降低了经济效益,影响网络实际应用。
2)对于网络容错的解决
农业生产中,各传感器网络所监控到的数据的准确性对农业生产非常关键。及时了解节点的状况,进行网络容性处理对农业生产的影响十分重要,而网络容错所要处理的问题主要是节点检测和节点恢复。节点检测则需要GPS对其定位,若在大范围的布置GPS设备,会提高成本,保证节点定位同时保证经济效益是需要解决的问题。节点恢复,常常用冗余的节点替换失效的节点功能的方法解决,但对冗余节点的位置与数量有一定要求。
3.2 WSN的关键技术
由WSN的结构特殊性,对于WSN在实际应用中应该掌握以下关键技术:
1)节点定位
定位技术是位置未知节点根据少数参考节点,根据特定的机制确定自身位置,包括节点自定位和网络区域内的目标定位跟踪。节点自定位是指确定网络中节点自身位置,是部署组网的基本要求。目标定位跟踪通过网络中节点之间的配合完成对网络区域定目标的定位和跟踪,一般建立在节点自定位的基础上。常用方法用三边测量法,三角测量法和极大似然估计法。
2)与其它网络的融合
WSN与现代网络融合将大大提高WSN的实际应用功能,将WSN与移动通信网络、Inter网融合,一方面WSN可以借助着两种传统网络进行通信;另一方面可以利用传感信息实现新的发展。
4 结论
WSN络融合了嵌入式技术、计算机网络技术和通信技术等现有的先进技术,自主实现对各种信息的采集、传输和处理,是一种有广泛发展前景的监控网络技术。为人们提供了一种全新的信息采集、信息处理和信息利用的方法,具有自主性,实时性特点,适合农业生产管理。文章通过对WSN的组成、体系结构和关键技术的简介和其在实际农业生产应用实例,说明WSN在推动农业生产自动化中的作用。
参考文献
[1] 孙利民,李建中,陈渝,等.无线传感网络[M].1版.清华大学出版社,2005,5.
[2] 年海,王志华,李晓华. 无线传感器网络技术及其在新疆农业的应用研究[J].新疆师范大学学报:自然科学版,2009,28(3).
[3] 袁玲芝.浅析我国农业机械自动化技术与应用[J]. 黑龙江科技信息 ,2009(17)
.