公务员期刊网 精选范文 水务工程论文范文

水务工程论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的水务工程论文主题范文,仅供参考,欢迎阅读并收藏。

水务工程论文

第1篇:水务工程论文范文

1.1二级污水处理费用模型参数的确定污水处理厂建设投资处理规模越大总投资也越高,但是污水处理存在规模经济效益,污水处理厂的规模越大,则单位基建费用越低。因此不同规模的费用模型参数不同。根据《市政工程投资估算指标(排水工程分册)》所列的2008年有关污水处理厂二级处理的费用指标,采用最小2乘法,进行线性回归,求得不同规模污水处理系统费用模型中的待估参数a、β,并最终确定不同规模污水处理系统经济费用模型,如表2所示。

1.2再生水深度处理费用模型参数的确定由于集中再生水深度处理工程建设应用在我国还处于初始阶段,工程数量较少,不容易按规模分类。通过对图1中4个不同规模的再生水深度处理费用的拟合分析,得到再生水回用深度处理建设总投资模型的待估参数a为1128.1,β为0.8751。

2污水处理厂运行成本费用模型

运行成本费用是指在运营期内生产产品或提供服务所发生的全部费用,依据生产要素估算法得到污水处理厂运行费用的计算公式为:总成本费用=外购原材料、燃料及动力费+职工薪酬+折旧费+摊销费+修理费+财务费用+尾水、尾气、污泥处置费用+其他费用。各部分费用具体函数表达形式如表3所示。Ey1、Ey2为污水二级、再生水回用深度处理工程年总药剂费用,万元/年;ai为第i种药剂(包括混凝剂、助凝剂、消毒剂等)的平均投加量,mg/L;bi为第i种药剂的单价,万元/t;Ed1、Ed2为污水二级、再生水深度处理动力费用,万元/年;e为电费单价,元/kW•h,取0.65元/kW•h;f1为污水二级处理的单方水耗电量,kW•h/m3,取0.34kW•h/m3污水之间;f2为再生水处理的单方水耗电量,kW•h/m3,一般取值在0.10~0.15kW•h/m3污水之间;K为固定资产折旧,万元/年;T为污水水处理工程的折旧年限,为20年;Ex为修理费;b为排水工程修理费率,取2%~3%;Z为职工薪酬;n为职工定员(人);Zr为年人均职工薪酬(元/人•年);Ew为污泥处理费,万元;t为年产生污泥量,t/年;c为每吨污泥处理所需费用,万元/t;Eg为其他制造、管理、营业费,万元/年;d为排水项目其他费用综合费率,取8%~12%。E为污水处理厂总成本费用,万元/年。

3模型的应用与分析

常州某污水处理厂处理规模为4万m3/d,氧化沟工艺,无再生水回用处理系统,实际建设投资费用8600万元,污水处理运行成本为1元/m3。二级处理外购原材料包括混凝剂投量10mg/L,单价0.15万元/t;污泥浓缩剂0.1mg/L,单价0.20万元/t。职工人员共20人,每人薪资6万元/年。采用以上形成的经济费用模型对该污水处理厂费用进行估算,计算结果见表4.将经济费用模型计算所得建设投资与运行费用与实际调研的数据相比较,如表5。从污水处理厂建设投资和运行费用估算值与实际值对比可看出,建设投资的费用误差率较低只有1%,说明污水处理厂建设投资费用模型选用的形式及参数确定较合理,可以作为项目投资估算的有效依据。运行成本费用的误差率相对较大,其原因分析主要是应用运行费用模型时没有包括摊销费用,因为摊销费用是通过无形资产、其他资产与摊销费率相关参数计算而得,本文无法对无形资产进行准确的估算,因此没包括这部分费用。所以运行成本费用模型估算的运行费用与实际费用有一定的差距。

4结语

第2篇:水务工程论文范文

按照水利工程项目法人制的要求,成立公益性水利工程项目法人,由项目法人履行公益性水利工程业主的职能,在工程具体管理上,项目法人只负责政策处理、维护运行管理经费筹措、防汛抗旱调度、工程安全及资产保值增值的监督管理,不直接承担具体的工程维护运行管理,具体的工程维护运行管理工作由项目法人向社会招标,由专业化的水利工程管理单位(物业管理公司)来承担。

二、公益性水利工程物业管理模式的建立

1.进一步落实公益性水利工程项目法人制

水利工程项目法人制已推行数年,但大多数水利工程项目特别是公益性水利工程项目没有很好的落实,实质上仍沿袭着传统管理模式,建设阶段临时抽调人员组建工程指挥部,工程建成时,通过组织调动,招工等形式组建水管单位,工程建设与管理的项目法人还没有完全统一,这样势必造成项目法人重复设置,人财资源浪费,管理水平得不到有效的提高。去年国务院批转了国家计委、财政部、水利部、建设部《关于加强公益性水利工程建设管理若干意见》,规定新建公益性水利工程要按照建管一体的原则组建项目法人,由项目法人作为工程建设与管理的责任主体,负责工程建设与管理。按照这个要求,应根据经营性和非经营性水利工程项目的不同特点,区别对待,组建不同类型的项目法人。

按照建立项目法人制的要求和经营性与公益性水利工程的不同特点,组建项目法人的基本框架:经营性水利工程项目可参照国企改革,进行转制或按公司法组建项目法人;公益性水利工程项目可根据管辖职责范围,按区域建立公益性水利工程项目法人,负责对区域内所属的公益性水利工程项目实施监督管理。

由于水利工程大多数具有公益性,若每个项目均成立一个项目法人,在实际操作中有很大的难度,一方面众多的项目法人,势必造成人才、资源浪费,增加了财政和受益区群众的负担;另一方面由于单个项目规模小,不利于提高水利工程管理水平。而当今科学管理技术发展迅猛,网络技术、信息技术等现代管理技术使得水利工程按区域远程管理成为现实。因此,公益性水利工程项目法人可按区域成立,按照管理权限,可成立省、市、县、乡(镇)公益性水利工程管理站(所),作为项目法人,对区域内所属的公益性水利工程项目进行项目管理。

2.改组现有的水管单位,培育一批专业化的水利工程物业管理队伍走向市场

大力培育水利工程管理市场,在建立水利工程项目法人制的同时,要培育一批专业化的水利工程管理队伍(物业管理公司)进入市场,并对水利工程物业管理公司要实行资质管理。首先要改组改造现有的水管单位,对大中型水利工程管理单位可按企业化直接改组成物业管理公司,并根据其目前规模、技术管理力量等核定资质等级,允许其在资质范围内对外承揽水利工程维护运行管理业务。对改组后的富裕人员要进行妥善安置,可以采取分流,一是达到一定年龄的职工实行内部退休;二是分流到经营实体;三是停薪留职;四是内部待岗,以后可再参加竞争上岗,同时若干时间内发给生活费;五是自谋职业;六是参照国企改革的办法,对职工身份进行置换。还可以因地制宜,充分发挥水利资源优势,创办高效农业示范园区,安置水管单位富裕人员。其次,允许有条件的单位如设计单位、施工单位、监理单位等成立水利工程物业管理公司或兼承水利工程维护运行管理业务。同时,要大力开展水利工程管理培训工作,提高水利工程管理人员的素质,对关键岗位实行持证上岗,造就一批专业化的高素质的水利工程物业管理队伍。

3.建立公益性水利工程管理专项基金

经营性水利工程由经营单位负责管理,其维护运行管理经费由企业营业收入负担,经费来源比较明确;而公益性水利工程维护运行管理经费若全部由财政预算来安排,显然比较困难,因此,公益性水利工程管理模式改革要重点解决好公益性水利工程运行维护管理经费问题,这是建立公益性水利工程物业管理模式的基础。从目前来看,公益性水利工程维护运行管理经费不可能全部由财政来承担,但可以通过多渠道、多元化筹集,建立公益性水利工程维护运行管理专项基金,专项资金主要来源:一是每年财政预算安排一部分;二是有关规费收入;三是经营性水利工程项目的转制收益;四是无偿划拨受益区内一定的土地等资源,通过资源的出租、出让、承包、股份合作开发等形式取得的收益;五是按国家有关规定在受益区征收;六是有关单位、人士捐赠。专项基金存入财政专户,实行收支两条线,专款专用。

第3篇:水务工程论文范文

当前,城市水资源污染处理问题已经受到我国大部分城市的严重关注。各地先后建成了污水处理厂家应对水资源污染问题。但与人们期望相反,多数污水处理厂并未充分发挥其处理城市水资源污染处理方面的应有作用,污水处理的效率与质量并不高。主要有以下几个方面原因。

1.1基础设施有待完善

许多城市污水收集管网配套率不高,具体有以下两种情况:(1)只重视排水管网主干道与污水处理工厂的建造规模,忽视结户支管与收集支管的建造,导致原有污水收集管网无法有效利用,不能充分发挥收集污水的作用。(2)一些较老城区的排水管道有很多都是雨水与污水共用管道,在雨水管道中还包含着大部分的城市生活污水,致使污水管网结户支管改造后还不能与污水处理网相互配套,城市生活污水无法顺利接入主干道。

1.2前期工作有待加强

编制可行性研究报告是建设水资源污染处理相关项目重要的前置要件之一。可行性研究报告涵盖了项目投资额度的大小,实施步骤的可操作性及建成后的营运效率等重要内容。其成果直接昭示着项目的未来发展和最终结果。但是,当前许多地区依然存在重视形象,重视政绩,忽视实际的问题。很多项目前期可行性研究做得不充足,缺乏考量实际状况就盲目开工。甚至某些项目为了能够尽快通过审查上马开工,使用虚假数据编制可行性报告,导致可行性研究失去本来的意义。许多规模庞大,投资巨大的污水处理项目自建成之日起就面临污染水资源缺乏的情况。

1.3管网后期维护工作没有跟上

排水管网既承担着排放污水职责,也是收集城市污水的重要设施。使用过程中,管道发生破损,需及时修复以保障管网的正常使用。在实际工作中,管网维护工作做得很不够。远离市区或偏僻地方的管网,常常面临损坏而无人修理的局面,而市政设施建设导致管网破损,有时也得不到及时修理。

1.4污水处理结果不能满足规范标准

部分污水处理设施由于地处郊区,没有收到应有重视,其排放水体的管道被其他设施占用,加上配套的污水网管缺乏,导致这些设施处理后所排放出来的污水质量远远达不到相关标准的要求。

2做好城市环境工程污水治理工作的建议

2.1科学规划城市污水处理项目

按照城市建设总体规划,合理规划污水处理设施的布局,按照近期与远期相结合、现状与发展相结合、区域环境与水质要求相结合、处理水源体与周边环境保护相结合的方针,分布实施污水处理项目。污水处理厂的选址不能轻易改变。污水处理设施尤其是污水输送主干管及收集系统和接户管要与城市基础设施相配套。污水输送主干管与道路等基础设施不能一次形成的,按规划分期分阶段实施。近期不能确定收集支管和接户管的,要在主输送干管适当位置按规划预留接口,待区域位置明确后,再行接入。建设污水处理厂,要科学规划、合理布局,要实事求是,根据当地具体条件进行深入论证后再予以实施,否则只能是劳民伤财,对环境保护和社会发展留下不和谐的音符。

2.2加强污水管网配套建设

提高城市污水处理水平,不能单纯加大污水处理设施规模,更重要的是要充分发挥已有设施的作用,提高污水处理效率。首先,要充分掌握已有在使用中的设施情况,及时解决存在问题,保障现有设施的正常使用。其次,要梳理污水来源途径,对新建污水输送主干管但缺乏收集支管和接户管的地方,分片建设配套管网,防止个别区域污水不能进入主干管现象的发生。对仍使用污水雨水混合管道的老旧城区,有计划地实施分流制改造,把生产、生活污水引至污水处理厂,从而实现城市污水处理厂对城市各方面污水的全方位接纳。

2.3做好管网后期维护

管网维护的好坏直接影响到污水处理效率。如果管网发生截断或破损而得不到应有的维护,就会妨碍污水得到及时收集与处理,污水处理厂也不能发挥应有的作用。因此,为充分发挥污水处理厂的作用,更好地保证当地居民的生活环境质量,特别是在城郊结合处等偏僻地区,必须做好管网的后期维护工作。对于因市政工程施工而受到破坏的污水管网要做好应急处理工作,不能让污水管道长期处于无人治理的状态。

2.4采用新的污水处理工艺及提高污水再生效率

污水处理工艺直接关系着城市污水处理效率。污水处理工艺越先进,污水的处理效率越高。目前我国城市污水处理一般采用活性泥污染法。该法具有较强的降低有机负荷的能力,优点是能耗少,运行成本低。但是我们仍然需要发展一些高效低耗、环境友好型的处理工艺。城市污水再生效率的提高不仅可以节约淡水资源,还能进一步促进污水处理技术的发展。

3协调处理环境保护与城市发展的关系

要统和地理位置、风俗文化、城市风格等各方面因素,科学制定城市发展规划,合理布局发展产业。城市环境是整个规划的基础前提。它不仅包括自然与地理环境、人文风俗、气象水文等,还包括城市经济发展水平等内容。实施环境勘测需要综合评价大气、水文、噪音等环境数据以及城市历来的污染物来源情况等,这些都是城市环境规划的基础组成。城市的规划发展,体现着整体与局部协调统一的辩证关系,是科学发展观的重要体现。正确把握城市发展方向,需要从整体上考虑城市的建设与发展,坚持区域化、节点化,积极学习借鉴周围城市规划的成功经验,保障城市规划科学性和可行性。良好的生存环境是人类生活的根本保证。在社会化大工业生产高速发展的今天,环境问题已经成为制约国民经济与社会发展的重要因素。无论城市污水处理,还是城市发展规划,亦或环境保护问题,其根本都是自然和人类发展之间的关系问题。和谐共存,协调发展是当今世界发展的主流思想。环境保护,节约资源,需要我们所有人长期不懈的努力。

4结束语

第4篇:水务工程论文范文

摘要:马尾快安万吨日污水处理厂是福州经济开发区为民办实事的项目,污水处理厂建成后每天可处理1万吨生活和工业排放污水。在工程建设中,监理工程师在“三控”、“二管”、“一协调”方面发挥了应有的作用,加强了质量、进度、投资的控制,使工程进展顺利、进度、投资的控制,使工程进展顺利,工程质量得到保证,实现了原定的监理目标,该工程获得福建省水污染治理优秀工程的提名。现结合该工程对环保工程监理工作谈几点体会。

关键词:监理职能监理程序环保工程监理机制业主

一、必须建立健全环保工程建设监理机制

推选工程建设监理是我国工程建设体制中一项重要改革。近几年随着市场经济体制的逐步建立和完善,工程监理重要组成部分的环保工程监理,近几年在全国已有一定的发展。但是由于在环保工程建设中仍未建立健全工程建设监理机制,在环保工程建设存在问题比较多,以福建省四大重点污染源限期治理为重点的“99环保行动”检查结果为例,地方政府于1996年下达限期治理任务并且投入了大量的环保专项资金,然而3年时间过去了,仍有一些企业治理迟迟未能完成,至今仍然向闽江排放未经处理的污水,造成严重的水体污染。究其原因,在很大程度上就是缺乏有效的行政和环保工程建设监理。因此要加强环保工程建设监理,必须制订、颁布环保工程建设监理的法规,尽快建立健全环保工程建设监理制,才能形成环保市场三方主体相互制约、相互协作、相互促进的运行机制。只有建立健全了环保工程建设监理机制,才能做到以招投标制、建设监理制、项目法人制为中心,以工程建设监理为对象,以政策法令、技术标准、工程合同为依据,才能有效地控制投资,确保工程质量,对加快工程进度起到积极效果。马尾快安万吨/日污水处理厂正是实施了环保工程监理,通过业主、设计、施工与监理四方的共同努力,工程施工质量、工程进度、合同支付均得到有效的控制,同时为优质工程奠定了良好的基础。

二、发挥监理职能

认真执行监理程序环保工程建设监理是对工程实行全方位、全过程的监理。环保监理单位必须严格履行监理合同,对承接的环保工程建设监理项目负责。监理单位有机地把建设项目的业主责任制、招投标、承(发)包合同制连接起来,以经济合同为纽带,以提高工程建设水平的目的,实行“投资、质量、工期”三控制,做为“合同、信息”两管理及工程项目间各方的组织协调,充分发挥环保监理职能。监理工程师在明确监理任务的情况下,根据完成的项目内容和要求,制定了监理工作大纲、监理条例与监理实施细则。为了保证监理工作的质量,除了具备各自的专业知识外,还应熟悉有关合同和法律方面的知识。在实施进度控制中,要求施工单位按合同编制总工期和每月施工计划,报监理批准执行。在实际进度与计划进度发生矛盾时,根据实际情况利用定期的每周“现场协调会”和每月的“工地例会”等形式,在保证工程质量的前提下,合理安排对工程进度的调整。

质量控制是工程建设项目监理工作的核心,是工程建设成败的关键,是实现建设监理三大目标的重点,而施工阶段的质量控制又是工程建设项目质量控制的重点。在质量控制的整个环节,监理部门应采取有效的质量监控手段,对施工进行全过程的质量监控。在审查开工申请时做到三个不准:即人力、材料、机械设备准备不足不准开工,未经检验认可的材料不准使用,前道工序未经检验合格后道工序不准进行。在工程施工监理中,一般采用旁用旁站监理和巡回检查,在关键工序即浇注桩基混凝士的连续施工中,监理人员就要不分昼夜、全天候进行旁站监理。质量不合格的则下令采取必正措施。在监理过程中,监理工程师的各种指令都要有文件记载,使各项事情处理都有据可查,如现场质量检验单,质量进度问题通知单,备忘情况纪要等。

在合同支付过程中,监理部门以合同文件为依据,工程质量为基础,施工质量为保证,测量核实为手段,进行结算签证。对所有的工序,依据技术规范,验收评定标准,对质量进行验收,其检测试结果要求表格化、数据化,合格地签署质量认可书,并以此作为指令和支付凭证。无监理开工或质量合格签证手续的,暂缓支付或不予结算。对质量检验不合格的工程项目,则下达指令支付结算。监理部门必须坚持裙带求是,充分发挥监理职能,公正地维护业主和承建单位的利益,有效地促进施工承包合同的履行。

三、正确处理好业主、施工单位和监理三方的关系

第5篇:水务工程论文范文

投资问题多年来一直是污水治理工程的最实质问题,它的大小,直接关系到企业治理污染的积极性.同时又是衡量工程本身有无实用价值的关键。在水处理达到一定指标即我们获得一定的环境、经济、社会效益后,投资的大小成了衡量工程成败的重要指标。若以很欠的投入而得到极少的产出(指环境、经济、社会效益)则说明投资是低效的。无论是七、八十年代的生化处理法还是九十年代的化学处理法,都存在投资高的问题。生化处理法,由于是由生物对污水中的污染物进行作用,将其转化为生存、发展所需的能量,故而降解速度慢,时间较长,占地面积较大,土建投资较高日处理800吨污水的污水处理厂,两座沉淀地、一座曝气池等,土建规模近1000立方米,投资10万元左右,加曝气设备,管线等投资超过50万,而COD的降解量只有300一500mg/L。对于现在常用的混凝气浮一活性炭吸附技术,日处理500吨污水规模的设备投资就30-70万,加调节池、污泥池、厂房、管线等,共需投资约50万元。这样的投资COD降解量一般为40omg/IJ左右。处理好的污水除毛纺行业能用于洗毛工段外,其它行业很少能回用.至于冲厕、冲洗车间地面等,又因管线架设复杂、投资高也并无实用价值。因此,得到的只是环境效益和社会效益,而经济效益不明显。这样的投资状况对我国现有的大部分企业来说并无积极性可言,对有些企业来说甚至是一种包袱。投资过高问题严重阻碍了污染治理的进展,也是水环境状况得不到明显改善的原因之一。

2运转费用企业难以承受

运转费用的高低是水处理设备能否正常运转的关键。运转费用一般说来由药剂费、人工费、电费、设备折旧费,维护保养费等几部分组成。它们的高低直接反应设备、技术的可靠程度,同时又是直接影响水污染治理效果的重要原因。我国现有的常用技术工艺运转费用就比较高,对于经济效益不太好的我国大多数企业来说水处理负担过重。致使水污染治理不能达到预期效果。究其原因主要有以下四方面(1)药剂费售价太高。如1吨碱式氯化铝价格在1800一2500元之间,硫酸铝为800元左右。(2)工艺中动力消耗过大,电费太高。(3)设备自动化程度低,所需操作人员太多,人工费太高。(4)设备本身及所配电机、水泵质量太差,维护费用太高。

以混凝气浮一活性炭吸附工艺为例对COD500omg/l一的低浓度纺织印染污水,处理至COD100mg/L左右仅药剂费、电费、人工费就要在0.5-0.6元对COD1200mg/L的高浓度的纺织印染污水,处理费用则要达1.0元左右。这样处理过的污水也只是达到排放标准,不能循环使用,经济效益不明显。更有甚者,运转费用之高超过治理污水以前的排污费。这对于经济效益第一位的企业来说是一种负担。由于运转费太高.企业承受不了,污水处理设备时开时停,不能正常运转.有的干脆直接不用,治理设备成了应付环保部门检查的幌子。几十万、上百万的投资就是为“环保局检查时说得过去”,治理污染成了种形式,出现污染源越治越多,环境质量不断恶化的现状。这应当引起环境管理部门和技术服务单位的重视。

3设备使用寿命短

使用寿命过短可以说是现有污水治理设备的通病,投巨资上的设备多则使用七、八年,少则三、四年。还有极少数的设备由于设计、制作存在严重问题,不等调试运转正常就报费的。分析其原因,主要有以下几方面:

(l)水质恶劣。由于污水中时常含有酸性、碱性物质,有的还含有较强的氧化剂等,使污水有较强的腐蚀性,设计时考虑不周全就大大降低设备的使用寿命。

(2)产品质量低劣。由于技术服务单位偏面追求经济效益,设备在设计、制造过程中就存在问题。如设计时选取的保险系数过小,制造时选用的原材料质量较差,达不到标号,生产过程中偷工减料等。另外,还有选用的配套产品质量不合格等原因。

(3)工艺选择不合理。工艺选择不合理是导致设备使用寿命短的又一重要原因。常见的主要是活性炭吸附和离子交换处理单元。这两种技术对所处理的污水都有一定的要求,若进水污染物浓度过高,活性炭和交换树脂就会很快饱和,失去活性,就需要反冲洗活化.随着反冲洗次数的增加,饱和周期越来越短,以致全部失去作用。因此设计中要充分考虑到设备的使用条件,以延长使用寿命。

4重点污染源难以治理

尽管造成水环境污染的不仅仅是一个企业一个单位,但从成百上千单位的排水状况来看,污水排放量大.污染物浓度高的重点污染源却是造成水环境恶化的罪恶之魁。虽然它们的数量不多,但它们对环境造成了相当大的威协,左右了区域内的污染状况。重点污染源主要是造纸、酿酒、石油化工等。从滨州地区1992年的统计分析来看,12家重点污染源排放废水量占到全区总量的近75%,其中一家造纸厂就占1/5,而污染物COD的排放量竟占到l/3。因此搞好重点污染源的治理是保护水环境的关键措施。但从我国的水污染防治技术和经济状况来看.对污染严重的造纸、酿造等行业的污水治理还未见有可行的技术。对造纸行业曾经提倡过的碱回收工艺,对减少污染物排放量的确起到一定作用。但本方法只使用于规模宏大的造纸厂,对中小厂家来说是行不通的。投资巨大运转费用高,出现严重的负效益。即使是大型造纸厂,运转情况也不理想,普遍存在运转费高于回收碱价格的现象。而对于利用黑液提取木质素磺酸钠的工艺,也存在技术不完善、投资高,管理复杂、产品销售不好的原因而一直未能推广。只有白水回收技术工艺简单、投资少,经济效益较为明显,而有一定的实用价值。但白水不是造纸污水的重点,它的回收对减少污染物排放量影响不大。因此,并不能从根本上消除污染。致于酿酒、石油化工等行业的污水处理也没有可靠实用的技术重点污染源难以有效控制是造成水污染的根本原因。治理重点污染源便成了今后改善水环境状况的根本出路所在。

5几点对策

从水处理工程的目前状况来看,水环境前景实在令人担忧,但究竟如何加以控制,有识之士提出了许多切实可行的建议,并取得了一定的成效,下面笔者就水污染防治工程谈几点看法。

首先水污染应该防与治结合。单纯强调治理不仅投资巨大,收效也往往不太明显。污染物从根本上来讲是生产过程中设备、技术落后而浪费的原材料,排放的污染物越多,原材料浪费就越多,经济效益和环境效益就越差。因此,水污染一定应该从生产工艺上进行预防,提高工艺的科学性能和设备的先进性能,尽可能多地将原材料转化为成品,既可提高经济效益又能减轻污染。与污染治理有关的管理制度如“三同时”限期治理,环保目标责任制等,应当在政策上督促和鼓励将单纯对污水进行治理同改革工艺、设备,加强生产管理结合起来.减少生产中的浪费现象,选择无污染工艺、设备。同时,环保货款也应带有倾斜性,给予支持帮助,鼓励对污水进行防治结合的项目上.

第6篇:水务工程论文范文

关键词:供水;水质;污染

城市供水安全分为水力安全和水质安全,其对城市各方面正常运行具有重要意义,水力安全指供水系统能够满足用户水量、水压,水质安全指供水水质能够满足国家现行《生活饮用水卫生标准》限值,具体包括无机毒害物、有机毒害物、放射性物质和生物安全性等的含量以及城市管网状况及其对水质影响,为了保证人们能够使用符合卫生标准的饮用水,对供水中存在的二次污染问题进行分析并提出解决对策至关重要。

一、二次供水污染因素分析

1.1给水管材的影响

(1)金属管道。原来城市管网大多采用铸铁管、钢管,而其输送介质水本身即为一种电解液,同时供水水厂为了保证供

水卫生指标而采取加大投氯量,同时也增加了水的侵蚀性,其极易引起管道的电化学腐蚀,即水在管内流动过程中易形成管内腐蚀、沉淀及结垢现象,并且随着使用时间延长其结垢层厚度也相应增加,因此管道有效截面逐渐缩小,当供水管网等原因导致内部流速突然改变时,铁锈就会从管道内壁脱落进入水体,导致水质恶化。

(2)混凝土管。该类管材包括混凝土管、预应力混凝土管及防腐混凝土管,该类管材一般用于排水工程,但也有少量用于给水管网,其具有强度高、无需防腐处理等优点,但该类管材连接部位所需的弯头、三通等配件仍不能生产,因此在该部位往往由于管材不同而导致污染。

(3)塑料管材。该类管材主要包括硬聚氯乙烯管、聚乙烯管、聚丙烯管以及玻璃纤维增强树脂塑料管等,其具有重量轻、耐腐蚀等系列优点,但该类管材在使用中可浸出化学物质而将管内水质污染。

(4)复合管。其大多是由工作层、支撑层和保护层构成,该类管材要求各种材料之间的亲和力较强,各种材料的物理性能较接近并有良好的接头方法,常见的复合管材有以铸铁作支撑材料内衬环氧树脂、以钢管为基体,在钢管内涂上各种材质的塑料以及以聚乙烯或交联聚乙烯为内外层,中间芯层为焊接铝管,并在铝管的内外表面涂覆胶粘剂与塑料层粘结等型式,该类管材在具有系列优点的同时,由于其与水接触的层面为化学类物质,因此易与水发生反应,产生对人体有害物质。

1.2水体自身物化反应

给水处理过程中,添加混凝剂后所形成的絮凝体虽绝大多数在沉淀和过滤过程中被截留,但难免有少量仍存留于水体内,在增大水的浊度的同时也加强了对水质的污染;管网水体内含有一定量的氯虽然对水体能够产生良好的消毒作用,但一旦其过量则会和管网二次污染物作用生成各类有机氯,该类有机物中部分为致突变物质,会诱发各类癌症;若管网内水体停留时间过长,则将导致余氯消失并导致细菌生长以及沉淀物增加,因此,对供水水体加氯量应严格合理控制,避免出现加氯不合理导致水质远离毒理学指标,而应保证加氯合理,使出厂水和管网水符合微生物指标和保持水的新鲜性。

1.3附属设施造成的污染

为了能够保证管网功能的正常发挥,在管网中应设置很多的控制水路的阀门及其它附属设施,该类设施往往长期置于地下井室内或直接露天设置,日积月累则易发生腐蚀损坏以及滴漏现象,同时管道在穿越已污染的地下水或污水地段若出现管道穿孔、阀门渗漏等问题而未能及时修复时,管网内一旦失压则会导致附近地下水被吸入而造成污染;管路冲洗阀门接口若低于排放水体水位或直接接入下水管道内,若阀门关闭不严,则会引起污水倒灌造成管网水污染;若管道发生爆裂,在关闸后管网则会形成负压一旦脏水吸入管内而在管道修复后脏水不能及时排清则也会造成污染;现代高层建筑中大多设蓄水池供水,但生活用水量所占比例一般为蓄水池容积的20%以下,而其余大部分水体则长期不用,因此靠生活用水量将蓄水池内水全部更新一次需要较长时间,导致池内水流动性很差,同时水体内余氯已经耗尽,往往会导致微生物滋生、水质腐败、水质下降。

1.4盲肠段污染

城市管网设计过程中,为了能够满足后期扩建的需要而在管网很多地方都设有预留口,该类预留口往往长期处于闲置状态而形成死水端,待死水段内氯消耗完毕后则内部水质迅速恶化发臭,在未涂衬或涂衬有缺陷的金属管道内产生“红水”“黑水”,因而对管网造成很大程度的污染。

1.5管道施工污染

管道施工包括维护修理、事故抢修和新装管道并网以及新铺装水管的施工等,多数情况下管道施工都需将管道停水断开而极易造成污染,尤其是发生大的爆管现象,爆管时涌水造成大量地面积水,止水后部分积水回流到管道造成污染;新装用水大户的用水、蓄水设施刚启动时,若消毒不严格则也会造成对管网内水的污染;未能对管网的死水区、线路终端等部位进行定期放水冲洗导致死水区水质下降;未能对管网定期进行清管、刮管和衬涂内壁,在管网维修或更换后急于供水而未按要求进行管道的消毒、清洗等。

二、防治策略

2.1提高出厂水水质

(1)强化稳定性。出厂水水质稳定性差是造成二次污染的根本原因,因此应提高出厂水的稳定性处理,一般采用调整pH值法,即在水出厂前投加稳定剂,将pH调整到7.0~8.5范围内,以提高水的化学稳定性。

(2)严格控制浊度。资料表明,当水体浊度降低到0.1NTU时,则内部绝大多数有机物可去除,致癌微生物及有机物含量也大大降低,因此在供水出厂前应严格控制其浊度。

2.2推广新型管材

在供水管网管材筛选过程中应进行水质析出试验,充分考虑材质对水质的影响,并通过经济技术分析来确定管网的建设规模,以充分保证管网的合理运行,目前国内已铺设的供水管网仍以铸铁管及球墨铸铁管管材为主,而给水PE管自上世纪投入使用以来,其材料性能不断改进而得到广泛应用,其具有连接可靠、不易发生渗漏、内壁光滑、管道水力条件好、水头损失小、重量轻、安装方便、卫生性能良好以及抗应力开裂性能好等系列优点,因此目前应尽量采用该类管材以保证水质。

2.3周期性冲洗管网

对管网进行清洗对提高管网水质、恢复管道通水能力、抑制腐蚀发生以及维护管网正常运行具有重要意义。通过管路冲洗可降低颗粒物在管道内壁的净积累量以将管网内水的浊度控制在标准值内,在冲洗过程中适当增加消毒剂可杀死冲洗后重新悬浮的微生物,冲洗后若投加腐蚀抑制剂则可促进管道内保护膜的形成,通过冲洗管道内壁的沉积和锈垢可提高通水能力,降低供水成本等。

2.4加强管理

对供水调节构筑物、二次增压设施,首先应完善其结构以避免虫类等进入;添加过滤装置,改装不合格的内壁涂衬材料,采用不锈玻璃钢、不含铅瓷片等;将进水管插入池底以解决死水问题,对停留时间超过12h的池水采取补充加氯或采取其他消毒方法以保证水质;采用氯胺等比自由氯更有消毒效果的消毒剂。

三、结束语

随着现代居民对自来水水质要求的逐步提高,改善供水管网以及优化净水工艺,完善净水设施提高出水水质,同时加强对输配水系统的有效维护管理,避免二次污染的形成,最终保证供水水质已成为关系民生的重要问题。

参考文献

第7篇:水务工程论文范文

目 录

设计任务书 设计说明与计算书

第一章 设计资料的确定及污水、污泥处理工艺的选择…………………………2 第

定………………………………………………………2

第二节 污水、污泥的处理工艺流程确定……………………………………2 第二章 污水处理构筑物的设计与计算………………………………………… 4 第

算…………………………………………………4 第

算………………………………………………7 第

算…………………………………………………8

第四节 沉砂池设计与计算………………………………………………… 10 第五节 辐流式初沉池设计计算…………………………………………… 13 第六节 传统活性污泥法鼓风曝气池设计计算…………………………… 16 第七节 向心辐流式二沉池设计计算……………………………………… 19 第八节 计量槽设计与计算………………………………………………… 22 第

算…………………………………………24

第一节 污泥量计算………………………………………………………… 24 第二节 污泥泵房设计计算………………………………………………… 24 第三节 污泥重力浓缩池设计计算………………………………………… 25 第四节 贮泥池设计计算…………………………………………………… 27

第五节 污泥厌氧消化池设计计算………………………………………… 28

第六节 机械脱水间设计计算……………………………………………… 29 第四章 污水处理厂的平面布置……………………………………………… 30

第五章 污水厂的高程布置…………………………………………………… 31

第一节 高程控制点的确定………………………………………………… 31

第二节 各处理构筑物及连接管渠的水头损失计算……………………… 31 第三节 污水处理系统高程计算…………………………………………… 32 第四节 污泥处理系统高程计算…………………………………………… 33 设

会 …………………………………………………………………………35 参

献 …………………………………………………………………………36 附:设计图纸

地下埋深7m ,水泵为自灌式。

设 计 说 明 与 计 算 书

第一章 设计资料的确定及污水、污泥处理工艺的选择 第一节 设计流量的确定

第二节

泵后细格1. 平均日流量

平均日流量为 Q 4 3

3

a = (2.5+82) ×10m d =7.50万m d

2. 最大日流量

污水日变化系数取K 日 = 1.20 ,而 Q d = K 日× Q a ,则有: 最大日流量 Q 3

d = K 日× Q a = 1.20×7.50 =9万m d 3. 最大日最大时流量(设计最大流量)

时变化系数取K 时 = 1.08 ,而 Q h = K 时× Q d 24,则有: 最大日最大时流量 Q 3h =K 时× Q d 24 =1.08× 924 =0.405万m =46) (3)栅槽有效宽度:B 0=s(n-1)+en=0.01×(46-1)+0.02×46=1.37m 考虑0.4m 隔墙:B=2B0+0.4=3.14m (4)进水渠道渐宽部分长度:

进水渠宽:

L B -B "1=

2tan α=

3.14-2.521

2tan 20︒

=0.85m

(其中α1为进水渠展开角,取α1=)

(5)栅槽与出水渠道连接处的渐窄部分长度

(6)过栅水头损失(,功率90kw ),四用一备,流量:Q "=

Q max 1.133

4

=4

=0.28m /s =1017m 3

/h

集水池容积: 考虑不小于一台泵5min 的流量:

W =

Q "3

60⨯5=

101760

⨯5=84.75m

取有效水深h=1.3m,则集水池面积为:

泵房采用圆形平面钢筋混凝土结构, 尺寸为15 m×12m, 泵房为半地下式

栅设计计

1. 细格栅设计说明

污水由进水泵房提升至

细格栅沉砂池,细格栅用于进一步去除污水中较小的颗粒

悬浮、漂浮物。细格栅的设计和中格栅相似。 2. 设计参数确定:

已知参数:Q ’=75000m3d ,K p =1.3,Q max =4050m3=92)

(3)栅槽有效宽度B=s(n-1)

+en=0.01(92-1)+0.01×92=1.83m

(4)进水渠道渐宽部分长度L B -B 11.271=

2tan α=

1.83-0.77

1

2tan 20︒

=

(其中α1为进水渠展开角,取α1=)

(5)栅槽与出水渠道连接处的渐窄部分长度

(6)过栅水头损失(=4格,每格宽取b=1.5m>0.6m,每组池总宽B=2b=3.0m (4)有效水深: =4。

F =

Q ⨯3600⨯36002

nq "

=

1.134⨯2

=508.5m

图5 辐流式沉淀池计算草图

2. 池子直径 D =

4F

π

=(D 取26m ) 3. 沉淀部分有效水深

设沉淀时间t = 2h ,有效水深: =4;沉淀时间T=2h 2. 沉淀池尺寸设计 (1)每组池子表面积为: (2)池子直径

(取32 m)

(3) 池子实际表面积

教师批阅:

实际的表面负荷

q =

Q nF =4Q n πD 2=4⨯972004⨯24⨯π⨯32

2=1.26m 3/(m 2⋅h )

图8 二

(4) 单池设计流量

Q 0=

Q 4=972004

=24

(5) 校核堰口负荷

q 1012. 5

1=

Q 02⨯3. π6D =

⨯23. ⨯π6⨯

校核固体负荷 q +R ) Q 0N w ⨯24

2=

(1F

=

(1+0.5) ⨯1012.5⨯3.3⨯24

803.84

=149.94kg/( m2

.d)

小于150 kg( m2.d ) ,符合要求 (6)沉淀部分有效水深

混合液在分离区泥水分离,该区存在絮凝和沉淀两个过程,分离区的沉淀过程会受进水的紊流影响,沉淀时间采用1.5-3.0h ,本设计取t=2.5h。

h 2=q ⋅t =1.26⨯2.5=3.15m

(7) 流入槽:

Q = 1012.5+ 0.5×1012.5=1518.75m 3

,刮吸泥机底部设有刮泥板和吸泥管,利用静水压力将污泥吸入污泥槽,沿进水竖井中的排泥管将污泥排至分配井中。排泥管采用DN200mm.

第七节 计量槽设计计算

污水测量装置的选择原则是精密度高、操作简单,水头损失小,不宜沉积杂物,污水厂常用的计量设备有巴氏计量槽、薄壁堰、电磁流量计、超声波流量计、涡流流量计。其中巴氏计量槽应用最为广泛且具备以上特点。

本设计的计量设备选用巴氏计量槽,选用的测量范围为:0.2-1.5m 3

s 计算草图如图9所示

图9 巴氏计量槽计算草图

教师批阅:

出水排放渠的设计考虑最佳水利断面:

==1.47m ,H B

1 = 2,因此计量槽上游水深为0.74 m。流量

取75000 m3 d =0.868 m3 s 。在自由流条件下,根据公式试算选取喉宽b = 0.90 m的巴氏槽。 1. 主要部分尺寸设计为:

渐缩部分长度:A 1 = 0.5b+1.2 =0.5×0.9+

1.2=

1.65m

喉部宽度: A2 = 0.6m

渐扩部分长度:A 3 = 0.9m

上游渠道宽度: B1 =

1.2b+0.48= 1.2×0.9+0.48 =

1.56m

下游渠

道宽度: B2 =

b+0.3=

0.9+0.30

= 1.20m 2. 计量槽总长度

计量槽应设在渠道的直线段上,直线段

的长度不应小于渠道宽度的8-10倍,在计量槽上游,直线段不小于渠宽的2-3倍,本设计取3;下游不小于4-5倍,本设计取5; 计量槽上游直线段长为: 计量槽下游直线段长为: 计量槽总长:

L =L 1+A 1+A 2+A 3+L 2=4.68+1.65+0.6+0.9+6.0=13.83m

教师批阅:

第三章 泥处理构筑物设计与计算

第一节 污泥量计算

1.曝气池内每日增加的活性污泥量:

∆X =Y (S 0-S e ) Q -K d VX v =0.6⨯(0.165-0.02) ⨯75000-0.077⨯14278.99⨯3.3 =2896.71kgd

2. 曝气池每日排出的剩余污泥量为 Q ∆X fX =3750.42

2=

8

=468.8m 3/d r 第二节 污泥泵房设计计算

1. 污泥泵房设计说明

二沉池活性污泥由吸泥管吸入,由池中心落泥管及排泥管排入池外套筒阀井中,然后由管道输送至回污泥泵房。 1.2. 回流污泥泵设计选型 (1)扬程:

二沉池水面相对地面标高为0.7m, 套筒阀井泥面相对标高为0.2m ,回流污泥泵房泥面相对标高为-0.2-0.2=-0.4m ,曝气池水面相对标高为1.8m ,则污泥回流泵所需提升高度为:1.8-(-0.4)=2.2m (2)流量:

设计回流污泥量为Q R =RQ,污泥回流比R=50%,即Q R =50%Q=468.8 m3

d= 130.22Ls 本设计四座曝气池设2台回流污泥泵。 (3)选泵:

选用L XB-700螺旋泵3台(2用1备),单台提升能力为300m 3

=63rmin, 功率N =30kW 1.3. 剩余污泥泵设计选型

选用L XB-700螺旋泵3台(2用1备),单台提升能力为300m 3=63rmin, 功率N =30kW

侧污泥泵房占地面积设计为10m ×8m 教师批阅:

第三节

采用带有竖向栅条污泥浓缩机的辐流式重力浓缩池,用带有栅条的刮泥机刮泥,采用静压排泥。计算草图如图10所示:

图10 浓缩池计算草图

1. 设计参数

污泥总量计算及污泥浓度计算

二沉池排放的剩余污泥量: =468.8m3

d

,本设计含水P 率取为99.2%,浓缩后污泥含水率97% ,污泥浓度C 为8gL ,二沉池污泥固体通量M 采用30kg(m2

·d) 。 采用中温二级消化处理,消化池停留天数为30,其中一级消

化20,二级消化10。消化池控制温度为,计算温度为。 2. 浓缩池面积

F =QC =468.8⨯10

24⨯1

=195.33m 2G

式中: C——流入浓缩池的剩余污泥浓度(kgs ),本设计取10kgm 3

Q——二沉池流入剩余污泥流量(m 3

— 污泥贮泥池个数,本设计采用1个;

— 污泥斗倾角,本设计取600. 3. 贮泥池的高度:

H =h 1+h 2+h 3=0.3+3+6.06=9.36m (本设计取9.5m ) 式中: ——消化池个数,本设计设置2座。 (3).各部分尺寸确定:

消化池直径D 采用19m ,集气罩直径d 1=2m,高h 1=2m,池底锥底直径d 2=2m,上锥体倾角=200,

上锥体高h D -d 12=tg α1(

2) =tg 200(19-2

2

) =3.09m ,本设计取3.0m , 柱体高度h 3应

D2=9.5m,本设计采用

10m 。

下锥体高

h d 24=tg α2(

D -2) =tg 100⨯(19-

2

(本设计取1.5m )

消化池总高度为: H= ——消化池个数,本设计设置1座。

由于二

级消化池单池容积与一级消化池相同,因此二级消化池各部份尺寸同一级消化池。

第四节

1. 污泥机械脱水设计说明:

污水处理厂污泥二级消化后从二级消化池排出污泥的含水率约95%左右,体积很大。因此为了便于综合利用和最终处置,需对污泥做脱水处理,使其含水率降至60%-80%,从而大大缩小污泥的体积。

(1) 污泥脱水机械的类型,应按污泥的脱水性质和脱水要求,经技术经济比较后选用。

(2) 污泥进入脱水机前的含水率一般不应大于98%。

(3) 经消化后的污泥,可根据污水性质和经济效益,考虑在脱水前淘洗。 (4) 机械脱水间的布置,应按规范有关规定执行,并应考虑泥饼运输设施和通道。

(5 )脱水后的污泥应设置污泥堆场或污泥料仓贮存,污泥堆场或污泥料 仓的容量应根据污泥出路和运输条件等确定。

(6) 污泥机械脱水间应设置通风设施。每小时换气次数不应小于6次。 2. 脱水机选择

本设计采用滚压脱水方式使污泥脱水 ,脱水设备选用我国研制的 教师批阅:

DY-3000型带式压滤机,其主要技术指标为:干污泥产量600kgL ,泥饼含水率可以达到75%~78%,单台过滤机的产率为24.6~29.4kg ( m 2 ×12m .

第四章 污水处理厂的平面布置

1. 总平面布置原则

该污水处理厂为四川绵阳市污水处理厂新建工程,主要处理构筑物有:机械除渣格栅井、污水提升泵房、平流沉砂池、辐流初次沉淀池、鼓风曝气池与二次沉淀池、污泥回流泵房、浓缩池、消化池、计量设施等及若干辅助建筑物。

总图平面布置时应遵从以下几条原则。

① 处理构筑物与设施的布置应顺应流程、集中紧凑,以便于节约用地

理。

② 工艺构筑物(或设施)与不同功能的辅助建筑物应按功能的差异,分别相对独立布置,并协调好与环境条件的关系(如地形走势、污水出口方向、风向、周围的重要或敏感建筑物等)。

③ 构(建)之间

的间距应满通、管道(渠)敷设、施工和运行管理等方面的要求。

④ 管道(线)与

渠道的平面布置,应与其高程布置相协调,应顺应污水

处理厂各种介质输送的要求,尽量避免多次提升和迂回曲折,便于节能降耗和运行维护。

⑤ 协调好辅建筑物,道路,绿化与处理构(建)筑物的关系,做到方便生产运行,保证安全畅道,美化厂区环境。 (2)总平面布置结果

污水由南边排水总干管截流进入,经处理后由该排水总干管排入河流。 污水处理厂呈长方形。综合楼、职工宿舍及其他主要辅助建筑位于厂区东北部,占地较大的污水处理构筑物在厂区西部,沿流程自南向北排开,污泥处理系统在污水处理构筑物的西部。厂区主干道宽7米,两侧构(建)筑物间距不小于15米,次干道宽4米,两侧构(建)筑物间距不小于10米 教师批阅:

该厂平面布置特点为:流线清楚,布置紧凑。鼓风机房和回流污泥泵房位于曝气池和二次沉淀池一侧,节约了管道与动力费用,便于操作管理。污泥消化系统构筑物靠近四氯化碳制造厂(即在处理厂西侧),使消化气、蒸气

输送管较短。节约了基建投资。办公室。生活住房与处理构筑物、鼓风机房、泵房、消化池等保持一定距离,位于常年主风向的上风向,卫生条件与工作条件均较好。在管线布置上,尽量一管多用,如超越管、处理水出厂管都借道雨水管泄入附近水体,而剩余污泥、污泥水、各构筑物放空管等,又都与厂内污水管合并流人泵房集水井。第二期工程预留地设在一期工程右侧。 具体布置见附图1

第五章 污水厂的高程布置

污水处理厂高程布置的任务是:确定各处理构筑物和泵房等的标高,选定各连接管渠的尺寸并决定其标高。计算决定各部分的水面标高,以使污水能按处理流程在处理构筑物之间通畅地流动,保证污水处理厂的正常运行。

第一节 控制点高程的确定

1. 进厂管有两根,每根流量为0.565m 3

S ,选用800mm 的钢筋混凝土圆管,

进厂端设计管内底标高为61.2m 。

2. 考虑将出厂水水通过重力自流排入附近的涪江。涪江20年一遇的洪水位为64.4m 。因而可以确定出厂管的管内底标高,出厂管选用1200mm 的钢筋混凝土圆管一根,出厂水排放点距涪江3km ,总水头损失为3.38m ,出厂水排放点的

水位标高应不

64.40m+4.38m=67.78 m ,拟取

67.9m 。

面标高

70.00m ,由此向两边推算其他构筑物高程。计算结果见下表2 教师批阅:

表3 构筑物及管渠水面标高计算表

计算结果是出水口水面标高

64.73m ,高于最高洪水为64.4m ,满足排放要求。污水高程布置图见附图2 锻炼来提第四节 污泥系统高程计算

1. 初沉池排泥系统的管道长度为L=250m,管径选用D=200mm,污 泥在管内呈重力流,流速为v=0.8ms,水头损失为:

h 1.85f =2.49(

L D 1.17

)(v C ) 1.85=2.49⨯2500.8

1.77⨯(71

) =2.6m H 0.2式中: CH ——污泥浓度系数,本设计C H =71。 2. 污泥处理构筑物的水头损失

当污泥以重力流排出池体外时,污泥处理构筑物的水托损失以各构筑物出流水头计算,初沉池,浓缩池,消化池取1.5m ,二沉池取1.2m 。 2. 污泥高程布置

消化池高度较高,可以满足后续脱水机房的需要,考虑土方平衡,确定一级消化池泥面为地上6.0m ,即74.2m 。从污水高程可知初沉池液面标高和二沉池液面标高。

计算结果见下表,污泥高程布置图见附图2. 教师批阅:

表4 连接管道水头损失

表5 污泥处理构筑物计管渠水面标高计算表

教师批阅:

设 计 体 会

通过这次课程设计,我对我们给水排水工程专业的任务及目

前的形势有了更深刻的了解。我还掌握了很多关于给水处理方面

的知识,巩固了所学的理论知识,把理论知识和实践结合起来,

培养了解决实际工程问题的能力。同时也为下学期做毕业设计做

好基础.

同时,我发现了自己专业理论基础还不够扎实,观察不仔细,

考虑问题不全面等方面的不足,认为还需要通过进一步的学习和

高自己。

总之,这次课程设计加深了我对本专业的了解,更加增添了我对本专业的信心。 教师批阅:

考 文 献

1. 给排水教研室编. 排水工程(二)课程

设计任务、指导书。 2. 张自杰,

林荣忱,

金儒霖

编. 排

水工程

(下册)

(第四

版). 北京:中国建筑工业出版社,1999

3. 李圭白编. 水质工程学. 北京:中国建筑工业出版社,2004

4. 韩洪军,杜茂安主编. 水处理工程设计计算. 北京:中国建筑工业出版社,2006

5. 南国英,张志刚主编. 给水排水工程工艺设计. 北京:化学工业出版社, 2004

6. 尹士君,李亚峰等编著. 水处理构筑物设计与计算. 北京:化学工业出版社,2004

7. 张智,张勤等编著. 给水排水工程专业毕业设计指南. 北京:中国水利水电出版,1999

8. 化学工业出版社. 水处理工程典型设计实例. 北京:化学工业出版社. 9. 中国市政工程西南设计院编. 给水排水设计手册:第1册,北京:中国

建筑工业出版社,1986

10. 中国市政工程西南设计院编. 给水排水设计手册:第5册,北京:中国

建筑工业出版社,1986

11. 中国市政工程西南设计院编. 给水排水设计手册:第9册,北京:中国

建筑工业出版社,1986

12. 中国市政工程西南设计院编. 给水排水设计手册:第11册,北京:中国

第8篇:水务工程论文范文

关键词:水电站;工程;总体布置;建筑物;设计

中图分类号: S611 文献标识码: A 文章编号:

1工程概况

汶水一站水电站工程位于广东省广宁县古水河境内,为古水河梯级开发的第7级水电站。电站以发电为主,总装机容量2500kW,设计水头8.0m,年发电量945万kW.h。

2 设计依据

2.1工程等别及建筑物级别以及相应的洪水标准

汶水一站水电站以发电为主,装机容量为2500kW,校核洪水位时的总库容为280.0万m3。按照《水利水电工程等级划分及洪水标准》SL252-2000的规定,工程属Ⅳ等工程,小(1)型规模。电站的永久建筑物(泄水闸、泄水建筑物、厂房)均按4级建筑物设计,导流围堰等临时工程按5级建筑物设计。

根据《水利水电工程等级划分及洪水标准》规定,电站建筑物的洪水标准如表2-1-1所示。

表2-1-1洪水标准

2.2设计基本资料

1、水文气象

古水河流域自上游至下游主要气象参数为:多年平均气温20.8℃,最高气温39.1℃~39.4℃,最低气温-3.9℃~4.2℃.多年平均相对温度81%,多年平均风速0.9~1.1m/s,最大风速13~5.3m/s。

3 坝轴线的选择及工程总体布置

3.1坝轴线的选择

汶水一站水电站坝轴线的选择受河床宽度和厂房尾水畅顺影响,考虑到上游永隆水电站下游尾水位、汶水二站水电站开发时上游正常蓄水位衔接,选择Ⅰ线和Ⅱ线两个方案比较。

3.1.1Ⅰ线方案

(1)地形、地质条件。Ⅰ线内无较大的断层通过,未见次级褶皱,地质构造较不发育。(2)工程型式、布置。Ⅰ线方案拟于横石口村上300m处河段修筑拦河坝,并在河床左岸布置厂房及附属建筑物,属河床式开发方案。拦河坝左岸为公路。(3)工程量、施工条件。线基岩露头较明显,上部覆盖层较薄,开挖方量不大且对主要交通线没有造成破坏;河床相对较宽,填筑方量较大。厂房布置在河流左岸,离公路较近,施工方便,工程量和投资也不大。

3.1.2Ⅱ线方案

(1)地形、地质条件。坝轴线两岸植被茂密,自然边坡基本稳定,物理地质现象不发育。

(2)工程型式、布置

Ⅱ线的河床段修筑拦河坝和发电厂房及附属建筑物,在河床的右岸筑坝挡水,河床的左岸布置厂房和附属建筑物,属河床式开发方案。

3.1.3坝轴线比较和方案选择

I线坝址区基岩均属硬质岩石,岩面埋深和岩石风化均较浅,无较大的不良地质现象,工程地质与水文地质条件较好。II线坝址区左岸边坡较缓,右岸边坡较陡,岩面埋深和岩石风化相对1线均较深。下游有一小型滑坡体不利于坝体的稳定及防渗。综上所述,Ⅰ、Ⅱ线的工程地质与水文地质条件均可满足建坝的要求,但从施工安排及对环境的影响考虑,I线优于II线。因此,选定I线方案为本工程的推荐方案。

3.2枢纽布置选择

本电站水头较低,选定坝址处没有引水或其他布置的地形条件,所以厂+房采用河床式布置。总体布置采用右河床厂房还是左河床厂房方案,主要取决于对外交通条件。现有沥青公路已通往河流左岸,可通大汽车,且工程砂、碎石等材料主要取在左岸沙滩上,如果厂房布置在右岸则材料运送相对困难,费用增大,不利于降低工程投资。经综合分析,工程选定右岸布置溢流坝,左岸布置厂房的总体布置方案。

3.3挡水建筑物

3.3.1泄水闸坝

1)溢流闸坝布置

溢流坝全长50m,设4扇弧型闸门,闸门的尺寸为:10×7.5m(宽×高),堰顶高程为84.8m,堰高4.7m,闸门顶高程为92.30m。

本水电站为径流式水电站,根据电站的坝上Z-Q关系曲线图查得,设计洪水位为92.00m,校核洪水位为94.60m。

2)坝顶高程

坝顶高程的确定,是在各种运行情况水库静水位加对应风浪高程和安全超高中选取最大值。

坝顶至水库静水位的高度的计算公式为:

Δh=2hL+ho+hc

Δh――闸墩顶距水位的高度m;

Hc――闸墩安超高,设计洪水位时取0.3m校核洪水位时取0.2m;

Ho――交通桥梁高(m),取0.8m;

其中风浪要素按《水工建筑物》(高校教材第三版)公式计算。公式如下:

2hL=0.0166V5/4D1/3

式中:D――吹程,取为550米。

V――设计风速,在正常水位及设计洪水位情况用最大风速的1.5倍,校核洪水位于情况用最大风速。

波浪中心线至水库静水位的高度ho按下式计算:

4лhl2лHo

ho=--------cth--------

2LlLl

式中:2Ll――波长,2Ll=10.4(2hl)0.8;其它符号的意义同前。Ho――闸前水域的平均水深。安全超高hc:正常运行情况取0.3m,非常运行情况取0.2m。(h-坝顶距水库静水位的高度(m)即为风浪高+安全超高)上述成果表明,坝顶高程由校核洪水位控制,定为95.60m,最大坝高15.50m,坝顶长度62.00m。

3)消能设计。根据下游水位较高的情况,采用底流式消能。参照重力坝设计规范的补充规定:“对消能防冲设计的洪水标准,原则上可低于大坝的泄洪标准,鉴于本枢纽拦水建筑物的建基面建在弱风化岩石上,本工程的消能防冲按10年一遇洪水进行设计。消能计算采用水利水电工程设计程序集中的D-3程序进行计算。消能按10年一遇洪水计算。根据计算,消力池的长度为33m,高程为80.10m,护坦的长度为15m。岸坡采用护坡处理,其护砌长度33m,护坡顶高程为10年一遇洪水位。

4)基础处理。坝的建基面均开挖至弱风化层下0.3~1.0m,由于地基内没有规模较大的断裂构造,无须特殊处理。由防渗计算可知,对基础的防渗措施采用在溢流坝上游与下游端均设齿墙,齿墙深1.5m,厚为1.5m,前端顺坡度延伸到与高程80.10m齐平处,下游齿墙厚1.5m,成梯形状,上游闸底板与消力池间设置止水。

5)稳定计算。(1)计算荷载。①坝体自重及固定设备重;②水重;③静水压力;④扬压力;⑤风浪压力;⑥侧向水压力;⑦土压力(或泥沙压力);(2)荷载组合。①上游正常蓄水位,下游无水;②上游设计洪水位,下游设计洪水位;③上游校核洪水位,下游校核洪水位。(3)抗滑稳定及地基应力计算。

抗滑稳定计算:拦河坝建基面高程为79.80m,根据地质报告,该高程岩性的风化程度为弱风化,参照地质报告力学参数建议值,取f=0.55。

抗滑稳定采用抗剪强度公式计算:K=f(W-u)/∑P

式中K――按抗剪断强度计算的抗滑稳定安全系数;f――坝体砼与坝基接触面的抗剪摩擦系数,取0.55;∑W――作用于滑动面以上的力在铅直方向投影的代数和KN。∑P――作用于滑动面以上的力在水平方向投影的代数KN。

地基应力计算

坝基应力采用材料力学公式计算:

бy=∑w/B±6∑M/B2

式中бy――坝基面垂直正应力;∑W为――作用于计算截面以上全部荷载的垂直分量的总和;∑M――为作用于计算截面以上全部荷载对截面形心力矩的总和;B――为坝体计算截面面积。

根据设计要求,在各种运行情况下,计入扬压力影响,坝体上游面不得产生拉应力。计算分两种情况考虑,计算结果表明,各种情况均能满足规范要求。坝体尺寸由溢流面体型和满足应力需要控制。

3.4发电厂房

厂房布置在河床左侧,为河床式厂房,厂房基础座落在微风化基岩上,地基无需进行特殊处理。进水口设主闸一道,由固定式启门机启闭。检修门与拦污栅共门槽,由门机启闭。进水口长度由设备及交通要求确定。厂房进水口前设拦沙坎一道。升压站布置在厂房的左侧。主变压器1台,布置在厂房升压站的右侧。进厂公路由下游进入厂房,进厂坡度为2%。

4结语

通过对汶水一站水电站工程的总体布置方案比较及主要建筑物设计,对于低水头电站来说,设计水头非常重要,在水工建筑物布置设计时,进(引)水断面要达到设计要求,尾水段流态要保持平稳畅顺,这样才能使电站机组运行工况和出力达到设计要求。

参考文献:

[1]《水利水电工程等级划分及洪水标准》SL252-2000

[2]《混凝土重力坝设计规范》SDJ21-78(试行)

[3]《溢洪道设计规范》SL253-2000

[4]《水库设计规范》SD133-84

第9篇:水务工程论文范文

1.1管理观念问题首先对管理落后的认识不足。严格来讲,我国目前仍然处于从计划经济体制向市场经济体制的转型时期,尤其在水资源管理方面。其次对人与自然的辨证关系认识不足。我们一直把人放在自然的对立面,对自然无休止地索取,人也就必然受到自然的惩罚。如为解决粮食问题,不加控制地超采地下水而出现地下漏斗;为防洪排涝,一味加高堤防。

1.2行政体制问题由于水资源的开发、利用和保护,纵向涉及中央和地方的权益,横向涉及水利、农业、建设和环保等部门的权益,重复管理现象严重,责任不明,“政出多门”,不但增加了政府的管理成本,减弱了财政资金的使用效果,而且不利于水资源的统一管理、统筹兼顾、优化配置、节约保护和高效利用,违背了水的自然规律,尤其在流域管理和城市水务管理问题上矛盾更为突出。

1.3管理职能问题管理上仍然存在严重的“越位”和“缺位”现象。“越位”主要指该由市场来解决的问题仍由政府来承担。如水资源合理配置问题,其中最典型的是我国北方缺水地区水资源分配问题。“缺位”主要指宏观调控不到位。如政策、法规的透明度、统一性和预见性较差;水资源监测、评价水平偏低;政策引导、信息服务跟不上等。

2改革的分析

2.1改革目标的分析水资源行政管理改革必须以适应社会主义市场经济发展为基本原则,以建立水市场为中心,把行政管理体制及其运行机制的改革作为重点,以实现水资源的合理配置,提高水的利用效率,最终实现以水资源的可持续利用支持我国社会经济的可持续发展。

主要包括:①加快水法、节水法等水法规体系的建设;②在明确水权的基础上,建立流域水资源统一管理机构;结合城市供水及水处理市场的对外开放形势,积极推行城市水务一体化管理;③以水价政策改革为契机,建立和完善水市场规制体系;④启动水利资产管理运行机制,提高水利建设融资和水利国有资产增值保值能力。

2.2改革动力与阻力的分析

2.2.1改革的动力。改革的动力一方面是利益的驱动,另一方面是现实的需要。

①客观形式的需要。所谓客观形势主要是指:我国水资源所面临的危机已经严重制约社会经济的正常发展,水利部门的改革显然已经到了“不改不行”的地步,需要进一步开放水务市场等。

②履行职责的需要。供水价格偏低,造成水资源浪费严重;众多供水企业以及相关水管单位经营失败、普遍亏损等等。问题的解决取决于水资源行政管理改革的深度和进程,因此,履行职责的需要也是改革的推动力之一。

2.2.2改革的阻力。水资源行政管理改革的阻力,一方面来自既得利益者,另一方面来自传统观念的束缚和习惯势力的制约。

只注重了水资源的开发利用,而忽视了水资源的合理配置、水资源的节约和保护。由于人们对水资源危机的认识不足,同时又由于改革的道路是艰难而曲折的,需要社会以及个人付出一定代价,因此,旧观念的束缚对改革是一种无形障碍。同时,习惯势力的影响也对改革形成阻碍。在计划经济条件下,人们通常认为水利是福利事业,理应由国家投资和无偿用水和排污。在这样一种思维定式下,要想确立新的水资源观念、水市场观念,其难度是显而易见的。

3改革的构想

3.1行政体制改革水资源行政管理体制改革的总体思路是:以加强流域水资源统一和城市水务一体化管理为突破口,构建现代水资源行政管理体制,以保证政府职能系统效益最佳,保证中央、地方以及社会组织对科学合理开发利用和保护水资源的积极性的发挥。

3.1.1流域水资源实行统一管理。设立流域管理委员会,其成员由中央政府代表、地方政府代表、用水户代表、专家代表;委员会主席由选举产生;流域委员会依法拥有对流域水资源的分配权,依法对流域水资源进行统一规划、统一管理,实现流域水资源的优化配置。

3.1.2城市水务实行一体化管理。对供水企业、水处理企业实行出租或转让;对经营性水务工程实行资产管理;将用水许可与排污许可有机结合起来,推进城市节水。

3.2建立水市场

3.2.1水权管理改革。水权管理的核心是产权的明晰和确定。将水资源的所有权和使用权分离开,是促进水资源优化配置的前提,是建立水市场的基础。

建议通过法律的形式,首先确定以占有优先权原则为主、河岸优先权及惯例水权原则为辅的优先权原则,再结合水资源现状,因地制宜,制定相关法律法规及实施细则。第二,设定总量控制、保障生活用水和环境用水,旱情调度预案、水污染防治的事权划分等限制条件。第三,实行以水资源规划为先导,有计划、分类分批地进行水资源使用权登记并公告社会。第四,建立水资源使用权招投标、使用权拍卖等管理机制。通过以上努力,逐步建立起适应我国社会主义市场经济发展的水权制度。

3.2.2水价政策改革。改革现行的水价制定方法,按提高公众参与程度,即由政府代表、用水户代表、供水企业以及有资质的独立审计事务所共同协商确定水价;水价应计入资源水价、工程成本、利润;资源水价应在政府统一评估基础上允许在合理的范围内浮动;利润不再以工程成本及运行成本加成的方式计算,而是以国家的社会平均利润率和资本金来计算;水价的确定要兼顾公众承受能力和政府的财政能力。

3.3改革管理模式

3.3.1资产管理。要尽快调整政府及水利部门在水利工程建设及管理中的定位。水务企业完成企业自我发展的公司制经营实体,经营性、科研性、开发性的事业单位要逐步转制为企业。依据不同的情况和条件,对原有的水利工程要逐步实行企业化管理。

3.3.2节约用水。在国家宏观调控与市场机制下,水价是调节供需方矛盾最敏感的经济杠杆。国外研究表明,水价提高10%,将使家庭用水减少3%~7%,同时如果水费没有占到市民收入的1%以上,人们就不会注意节水问题。

因此,政府应在建立和完善相关法律法规、调整产业结构、制定相关用水标准及定额、推进节水技术发展的同时,以改革水价政策、提高全社会节水意识为重点,运用信息技术等现代管理手段,在建立节水型社会过程中充分发挥政府的宏观调控作用。

4结论