前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的通信电源发展论文主题范文,仅供参考,欢迎阅读并收藏。
(一)供电系统的现状
通信电源是通信系统必不可少的重要组成部分,其设计目标是安全、可靠、高效、稳定、不间断地向通信设备提供能源。通信电源必须具备智能监控、无人值守和电池自动管理等功能,从而满足网络时代的需求。通信电源系统由交流配电、整流柜、直流配电和监控模块组成。
(二)通信电源设备的更新换代
近年来,随着技术的进步,特别是功率器的更新换代,新型电磁材料的不断使用,功率变换技术的不断改进,控制方法的不断进步,以及相关学科的技术不断融合,通信电源在系统的可靠性、稳定性,电磁兼容性,消除网侧电流谐波、提高电能利用率、降低损耗、提高系统的动态性能等等方面都取得长足的进步。
(三)现行通信电源的电路模型和控制技术
目前通信电源的变换电路拓扑结构主要采用双单端电路,半桥电路和全桥电路,各有优缺点。一般认为,在中、小功率场合,采用双单端电路或半桥电路是适宜的;在大功率场合则采用全桥变换电路。
二、通信电源发展趋势
(一)开关器件的发展趋势
电源技术的精髓是电能变换,即利用电能变化技术将市电或电池等一次电源变换成适用于各种用电对象的二次电源。其中,开关电源在电源技术中占有重要地位,从10kHz发展到高稳定度、大容量、小体积、开关频率达到兆赫兹级,开关电源的发展为高频变化提供了硬件基础,促进了现代电源技术的繁荣和发展。
(二)通信直流电源产品的技术发展市场需求发展
在需求与技术的共同推动下,通信直流电源产品体现了如下的发展态势:
体系架构相当长的一段时间内维持稳定。通信直流电源在相当长的时间内还是维持现有的交流配电、整流器模块(并联)、直流配电、监控单元、蓄电池等为主要组成部分的架构;功率变换模式也将维持现有的高频开关模式,暂时不会出现类似从线性电源到开关电源的阶跃性的变化。
功率密度不断提高。通信一次电源的核心部件整流器的功率密度不断提高,推动了通信直流电源整机的功率密度不断提高,但配电器件、蓄电池等密度基本维持稳定,一定程度制约了整机系统的功率密度的提高比率。
更高的可靠性。高可靠性是通信电源的最基本要求。随着器件技术、通信电源技术的成熟,以及各通信直流电源设备厂家在可靠性研究上大力投入,通信直流电源产品可靠性呈不断提高的趋势。
按照TRIZ理论(“创造性解决问题的理论”的俄语缩略语)描述的技术系统发展进化规律,一般而言,技术的生命周期包含四个阶段:婴儿期、成长期、成熟期和衰退期,种种迹象表明,通信直流电源的核心技术,开关电源技术基本上开始步入成熟期:效率的提升变得缓慢和困难、而电源损耗不能大幅度降低限制了功率密度的进一步提高,未来几年甚至十几年内,通信直流电源产品将进入一个缓慢发展的阶段,直至有一天,一种新的电源变换技术出现,通信直流电源产品就会再出现一个阶跃性的发展,就像开关稳压技术替代线性稳压技术,给电源带来了革命性的变化。
(三)通信用蓄电池技术研究的新进展
通信用蓄电池作为通信系统后备的能源供应手段,其研制、生产和应用技术一直备受世界各国通信行业的重视。随着科技的发展和技术的不断进步,国外正在研制和试验新一代的通信用蓄电池,有的已经进入商用化阶段。这些新的蓄电池,由于其材料、结构和技术上的先进性,在性能上具有传统的VRLA电池无可比拟的优越性。
[论文关键词]:通信电源通信网现状发展趋势
[论文摘要]:通信电源是向通信设备提供交直流电的电能源,是整个通信电信网的能量保证。通信电源系统由交流供电系统、直流供电系统和相应的保护系统构成。通信电源系统的设备多,分布广,不仅单个电源设备的可靠性会影响系统的可靠性,电源系统的总体结构也会对自身的可靠性造成很大的影响。
一、通信电源的发展现状
(一)供电系统的现状
通信电源是通信系统必不可少的重要组成部分,其设计目标是安全、可靠、高效、稳定、不间断地向通信设备提供能源。通信电源必须具备智能监控、无人值守和电池自动管理等功能,从而满足网络时代的需求。通信电源系统由交流配电、整流柜、直流配电和监控模块组成。
(二)通信电源设备的更新换代
近年来,随着技术的进步,特别是功率器的更新换代,新型电磁材料的不断使用,功率变换技术的不断改进,控制方法的不断进步,以及相关学科的技术不断融合,通信电源在系统的可靠性、稳定性,电磁兼容性,消除网侧电流谐波、提高电能利用率、降低损耗、提高系统的动态性能等等方面都取得长足的进步。
(三)现行通信电源的电路模型和控制技术
目前通信电源的变换电路拓扑结构主要采用双单端电路,半桥电路和全桥电路,各有优缺点。一般认为,在中、小功率场合,采用双单端电路或半桥电路是适宜的;在大功率场合则采用全桥变换电路。
二、通信电源发展趋势
(一)开关器件的发展趋势
电源技术的精髓是电能变换,即利用电能变化技术将市电或电池等一次电源变换成适用于各种用电对象的二次电源。其中,开关电源在电源技术中占有重要地位,从10kHz发展到高稳定度、大容量、小体积、开关频率达到兆赫兹级,开关电源的发展为高频变化提供了硬件基础,促进了现代电源技术的繁荣和发展。
(二)通信直流电源产品的技术发展市场需求发展
在需求与技术的共同推动下,通信直流电源产品体现了如下的发展态势:
体系架构相当长的一段时间内维持稳定。通信直流电源在相当长的时间内还是维持现有的交流配电、整流器模块(并联)、直流配电、监控单元、蓄电池等为主要组成部分的架构;功率变换模式也将维持现有的高频开关模式,暂时不会出现类似从线性电源到开关电源的阶跃性的变化。
功率密度不断提高。通信一次电源的核心部件整流器的功率密度不断提高,推动了通信直流电源整机的功率密度不断提高,但配电器件、蓄电池等密度基本维持稳定,一定程度制约了整机系统的功率密度的提高比率。
更高的可靠性。高可靠性是通信电源的最基本要求。随着器件技术、通信电源技术的成熟,以及各通信直流电源设备厂家在可靠性研究上大力投入,通信直流电源产品可靠性呈不断提高的趋势。
按照TRIZ理论(“创造性解决问题的理论”的俄语缩略语)描述的技术系统发展进化规律,一般而言,技术的生命周期包含四个阶段:婴儿期、成长期、成熟期和衰退期,种种迹象表明,通信直流电源的核心技术,开关电源技术基本上开始步入成熟期:效率的提升变得缓慢和困难、而电源损耗不能大幅度降低限制了功率密度的进一步提高,未来几年甚至十几年内,通信直流电源产品将进入一个缓慢发展的阶段,直至有一天,一种新的电源变换技术出现,通信直流电源产品就会再出现一个阶跃性的发展,就像开关稳压技术替代线性稳压技术,给电源带来了革命性的变化。
(三)通信用蓄电池技术研究的新进展
通信用蓄电池作为通信系统后备的能源供应手段,其研制、生产和应用技术一直备受世界各国通信行业的重视。随着科技的发展和技术的不断进步,国外正在研制和试验新一代的通信用蓄电池,有的已经进入商用化阶段。这些新的蓄电池,由于其材料、结构和技术上的先进性,在性能上具有传统的VRLA电池无可比拟的优越性。
1.钒电池(VanadiumRedoxBattery)。钒电池(VRB)是一种电解值可以流动的电池,目前正在逐步进入商用化阶段。
2.燃料电池。燃料电池是一种化学电池,也是一种新型的发电装置,它所需的化学原料由外部供给,如氢氧燃料电池,只要外部供给氢和氧,经过内部电极、催化剂和碱性电解液的作用,就能产生0.9V电压的直流电能,同时产生大量的热能.
3.电源监控系统的发展。随着互联网技术应用日益普及和信息处理技术的不断发展,通信系统从以前的单机或小局域系统逐渐发展至大局域网系统或广域网系统,大量人力、物力被投入到网络设备的管理和维护工作上。不过通信设施所处环境越来越复杂,人烟稀少、交通不便都会增大维护的难度,这对电源设备的监控管理提出了新的需求,保护通信互联网终端的电源设备必须具备数据处理和网络通信能力。此时,数字化技术就表现出了传统模拟技术无法实现的优势,数字化技术的发展逐步表现出传统模拟技术无法实现的优势.
4.通信电源的环保要求。环保问题,一方面的指标是通信电源的电流谐波要符合要求,降低电源的输入谐波,不但可以改善电源对电网的负载特性,减少给电网带来严重污染的情况,还可减少对其他网络设备的谐波干扰。另一个重要方面,是材料的可循环利用和环境的无污染,这方面需要产品满足WEEE/ROHS指令。
在通信电源开发、生产早期,人们主要集中研究电源的输出特性,较少考虑到电源的输入特性。例如:传统的在线式电源输入AC/DC部分通常采用桥式整流滤波电路,其输入电流呈脉冲状,导通角约为π/3,波峰因数大于纯电阻负载的1.4倍。这些谐波电流大的电源给电网带来了严重的污染,使电网波形失真,实际负荷能力降低,对于三相四线制的电网来说,还很有可能因中性线电流过大而出现不安全隐患。
参考文献:
[1]朱雄世,《通信电源的现状与展望》.
[2]《浅析全球通信电源技术发展趋势》.
[3]《通信直流电源发展趋势》.
[4]孙向阳、张树治,《国外通信用蓄电池技术研究的新进展》.
[5]《通信电源技术发展趋势及标准研究方向》.
[6]曾瑛,《浅谈通信电源》.
[7]王改娥、李克民,《谈我国通信电源的发展方向》.
[8]王改娥、李克民,《我国通信电源的发展回顾与展望》.
[9]侯福平,《UPS系统在通信网络中使用的特点及要求》.
[10]《全球通信电源技术发展呈现五大趋势》.
[11]《通信电源需求现状分析》.
[12]唐勇伟,《通信电源技术的发展》.
【关键词】 电力通信 电源系统 池维护
一、电力通信电源系统运行维护意义
2.1电源系统维护的背景
目前电力通信系统中电网存在的最大价值就是完成两种资源的互换工作,这也是其最优秀的一项特性。维护中国电网的稳定是每一个通信人员最主要的职责,那么怎样才能确保中国电力领域的稳定,建设出一个安全、可信的电力通信系统,变成了当前中国最关注的方向。其中,电力通信领域最关键的环节:电力电源体系,演变成为监管和维护的重点,也是最难改善的一个环节。由于中国科技水平的提升,现代化理念的诞生,使得大数据时代有了更好的管理模式,但是不得不说,这其间必然少不了电源体系的贡献。因此,维护电源体系的发展史历史发展的必然,也是时代进步的需要。
1.2电源系统维护的必要性
根据以往的数据可以看出,中国电力通信电源系统的发展现状并不景气。尤其是管理人员的分配环节,经常会面对人才匮乏的现象,无法完成组队监管的任务,而是在问题发生之后在做处理。对于建设费用的投入,相关企业并未对电源系统的维护工作给出多余的资金,由于资金匮乏导致该环节的未来发展态势很难进行下去。一般情况下,如果缺少对蓄电池的检测和维护环节,长此以往,就会使得整个电源工作的使用寿命变短、具体特性也会减弱。
二、电力通信电源系统维护的措施
2.1电源系统维护的方法
根据数据研究表明,最常见的几种电源体系的监管方案的出发点都很统一,具体规整为以下几个要点:第一点,想要创建监管体系,就必须先确保运营管理模式的顺利进行,这样一来,才能确保方案的可行性。一般来说,全面、标准的建设规范,不但可以避免监管的危险事故发生,又可因每隔一段时间的设备检查而及时发现存在的隐患;第二点,想要确保设备连接的安全,就必须要确保电缆连接准确,可以对其采用每隔一段时间的检测方式,判断其是否安全;第三点,巡回检查。所谓巡回检查就比较普遍了,每一个环节都需要进行检验工作,对于电源体系检验工作的主体为地电缆的连接,必须要保证连接的稳固性。第四点,按照属性不同,对于设备的检测方式也不同,这就要求操作人员要分工进行。
2.2电源系统维护的检测
若想保持电源系统的正常运行,必不可少的最后一个环节就是监管,期间的工作内容只要分为以下几点:操作人员要确保蓄电池的电压数值是国家规定的数据、蓄电池插口处保持稳固、安全开关使用正常,周边没有散落的渗酸和酸雾、电池外壳保持原型未出现异常等等。除此之外,监管人员确保维修整顿后的蓄电池可以正常进行低洼放电。
2.3电源系统维护的注意事项
减少蓄电池长时间放置、失去使用价值的现象;避免蓄电池长时间浮充但不使用的现象;避免蓄电池使用时间过长、超出自身供电能力;禁止用纹波较大的充电机对蓄电池进行充电的现象;等等。
三、结束语
电力通信电源体系已经成为中国电网领域中至关重要的一个部分,其具有很高的存在价值。因此,对其所进行的具体操作方案一定要合理、全面。首当其冲的就是要确保相关的方案必须建立在现实的基础上,具有存在的价值;继而要保证方案的创建融合时代的特点,不断强化具体的技术工艺,并关注每一点细节,确保面面俱到。这篇论文内容简短精炼,简述了几种最常见的维护监管方案,但是在该环节依然留有大量的空白,急需电力通讯领域内的技能人员不断创新,从实际的操作中发现问题,给出可行的改进方案。当然,虽然创新方案的实施迫在眉睫,但操作人员一定要注重主体,认清改进的方向
。对于电源体系的维护工作来说,就需要操作人员从蓄电池维护、电源模块性能维护和电力通信电源系统设施的角度入手。对于整体的改进虽然并不容易,只要改进的内容可实行/具有存在的价值,就必然要进行下去。只有正常运作的监管系统,才能为整个电力领域提供安全保障,才能将更好地服务提供给广大人民,所以说,操作人员要不断改进现状,将现代的先进技术和理念融合其中。
参 考 文 献
[1]费世刚. 电力系统直流电源开放式通信系统的研究与应用[D].南华大学,2014.
论文关键词:通信系统 电源设备 运行安全维护
论文摘要:通信电源系统是对通信局站各种通信设备及建筑负荷等提供用电的设备和系统的总称。主要由备用发电系统、高压供电系统、变压器系统、不间断电源系统、后备电源系统、直流系统、接地防雷系统以及动力环境监控系统等多个子系统组成。通信离不开电源,通信电源是通信的保障,所以保证通信电源系统的安全运行,对保证通信系统的畅通乃至通信的安全有着积极的意义。
1 加强通信设备的过电压防护
以大规模集成电路为核心的通信设备随着信息科学技术的发展而得到广泛应用,比分立元器件设备体积小、运行速度快、功耗小、故障率低、便于维护管理是其显著的优点。但它绝缘强度低,工作电压低,承受过电压能力弱,是属于低电平、微电流系列的电子设备。当受到电网过电压或雷电干扰时,电子通讯设备往往会受到较大的破坏。据有关研究显示,过电压对电子通信设备造成的故障损坏比重占到总事故的三至四成。因此加强通信设备的过电压防护,降低设备故障率,已经成为通信维修工作的重中之重。
1.1 加强电源设备的雷电过电压防护
电源是通信设备安全运行的基础,一个良好的电源系统,为通信设备的安全运行提供了坚实的基础。首先要消除由于雷电干扰引起的过电压对通信电源的不良影响。信息产业部了专门的通信电源防雷标准,对各种通信站的电源防雷提出了具体要求,主要是两条:一是电力电缆应有金属屏蔽层,且必须埋地进出通信站。其次是在电源上逐级全面加装电源防雷器,实现多等级防护。即在变压器的低压侧加装低压防雷器,高压端加装高压防雷器,在直流配电屏和交流配电屏分别加装直、交流防雷器。防雷设计是保证通信电源系统可靠运行的不可缺少的环节,雷电对信息设备产生危害的根本原因在于雷电电磁脉冲,这种雷电电磁脉冲包括雷电流和雷电电磁场。产生过电压的根源是雷电流,而雷电电磁场则是产生感应过电压的根源。对于通信设备来说,雷电过电压来源主要包括直击雷/感应雷过电压、雷电侵入波和反击过电压。在一般情况下,通信电源必须采取概率防护、系统防护和多级防护的防雷原则,通信电源系统应采用多级防雷体系。而采用防雷器件时还应该考虑到防雷器件对系统的影响,包括工工作电流、作电压、工作频率、谐波干扰、工作温度、绝缘等级、泄漏电流、插入损耗、结构形式、远程监控、操作与维护等,还有安规的影响等。
1.2 通信线路防止过电压
各种通信设备的入口和出口,必须通过通信电缆才能与用户发生联系,而设置保安配线柜(架) 则就是为方便安全配线。有的公司只用一个分线箱就进行出线、入线的汇接而没有安装保安配线柜(架),这种做法极易造成通信设备的损坏。通信的特点是可靠性高、容量小,通信电缆沿电力杆路架设强电、故受强电磁场干扰的概率大。特别是在住宅区,电话线沿电力杆路与照明线同杆架设和通信音频电缆,交叉处的绝缘层发生损坏,导致强电侵入。吊挂通信电缆的钢绞线,由于城区地形不一、一些照明线、灯箱线交错,容易引起强电侵入或干扰。雷电干扰或是一些线路故障、产生电流突变时,会产生瞬变强电磁场,从而造成对通信线路的强电磁感应过电压。有时会产生程控电话交换机大面积烧坏、停运的故障,因此,通信电缆进入机房务必得接入保安配线柜。保安配线柜应装有抑制电缆线对纵向对过电压、过电流的限幅装置。 压敏电阻或固体(气体)放电管与正温度系数热敏电阻,组成抑制过电压能力强,响应速度快,通流量大的保安单元。当一些通信线路与电力线接触时或遭受到雷电干扰,固体(气体)放电管放电(或压敏电阻限幅)将高压入地,使危险电压下降到安全范围。如线路遭受幅值在350mA以上电流时,正温度系数热敏电阻的阻值会迅速增加,使线路呈现断开状态,回路电流幅度减小,从而保护了室内通信设备。当过过电流、电压消除后,保安单元就会自动恢复正常。所以,保安配线柜的使用对于防止通信线路干扰过电压,降低设备故障率是非常必要的。 1.3 防止静电引起的过电压
静电是是一种处于静止状态的电荷。与流电相比,静电电量虽然很小但电位很高,静电能量累积到一定程度就可能干扰通信设备中内部电子元件工作甚至放电损伤通信设备。静电引起的通信设备过电压,主要通过静电对设备内部半导体器件或集成电路放电,这类似于直击。其次是静电的高电位引起设备信号地(直流地)电位较大变动,这类似于反击;静电的放电电流瞬时流经设备机壳,也可能使设备内部电子器件或集成电路等产生感应噪声,这类似于感应过电压;静电也能以过电压波形式通过信号线、电源线进入设备内部,这类似于过电压波入侵;静电放电时的接触部分产生的电磁波能对设备信号线产生辐射噪声,这类似于电磁脉冲过电压等等。静电过电压引起的设备故障往往是随机故障,重复性不强,一般不容易被维护人员觉察,因此更应该引起重视。所以在通信机房必须安装加湿器、空调、湿度计、挂设温;用湿抹布擦地,增加湿度,用湿棉抹布,降低静电产生的条件。在检修通信设备时,先带防静电手环,或者用手先摸机壳放电后,再进行设备检修,这些均能够有效地降低因静电引起的通信设备故障。
1.4 通信设备的接地
通信设备的接地,一般分为两类:工作接地和保护接地,工作接地是将电气设备外壳与大地直接连接,当发生漏电时,通过外壳传入地下,减小通过人体电流防止发生触电伤亡事故;保护接地是将电气设备在正常情况下不带电的金属部分,以大地作金属性连接,以保证人身安全。如结构架、金属外壳等。通信设备的接地,有屏蔽、均压、分流等作用。接地为各种干扰过电压、过电流的泄放,提供一个出口,是各种过电压、过电流保护的基石,因此是要引起足够的重视。相关规程规定:通信局(站)的接地方式,应按联合接地的原理设计,即单点接地方式。其优点是易获得较小的接地电阻、可以避免因接地之间产生的电位差产生干扰影响、起到相应的屏蔽作用等。在实际工作中,人们一般比较重视接地而不容易注意接地线的布放,从而造成地线上的电流不均衡、引起电路干扰、设备运行不正常、甚至造成设备损害。在通信机房内,防雷地线、工作地线、保护地线、配电盘(低压)的均应单独布放,并要在地线排上汇接,然后经过接地线到单点接地体入地。 要保证电力通信设备的安全运行,就必须要认真分析通信设备的运行状况,找出并克服危及运行的弱点。由事后性被动检修,转变成预防性主动维护,提高通信设备运行效率,保障电力通信网的畅通,确保电网安全、稳定、经济的运行。
2 建立健全新的维护机制和制度
要对大规模的通信网提供安全可靠的供电并保证通信不间断,同时在人员较少的清况下还要对种类繁杂、数量众多、分布广泛的电源设备进行日常维护和故障抢修,因此建立一套科学完善的通信电源维护机制和制度,实现维护工作效率最大化、科学化,使管理水平日益增高,以适应行业的更快速发展,就变得势在必行,这也是通信电源专业追求的目标。当前要结合以集中维护、集中管理、集中监控为特征的本地网一体化维护管理体制,利用动力和环境监控系统的平台来进行维护体制改革。不同地方可以按照自身不同的特征来设计属于自己的维护机制。在制度方面要完善的集中维护、集中管理、集中监控的维护制度,实行故障的集中报障和闭环处理的政策。把维护管理的重点放在维护规范的执行和落实方面。在基础管理工作上,务必倡导主动维护、预防性维护,以消除故障苗头为目标;在故障发现和抢修方面,要利用各种监控手段,及早发现故障,然后集中技术力量,以最快的速度处理,做到及早、及时以减少故障造成的损失。
参考文献
【关键词】计算机 网络化 UPS选型 电源设计
【中图分类号】 TP303【文献标识码】A【文章编号】1672-5158(2013)02-0293-02
1、UPS的选型理念
对UPS进行选取,首先要掌握UPS的分类,目前市场一般按照其主电路结构的技术属性实施分类,并且广为用户认可,并以此作为标准,来判断UPS的优劣。第一类为后备式,主要有APC的BK500,山特的TG500;第二类为在线互动式,主要有APC的SmartUPS;第三类为在线双变换式,主要有MGE和EXIDE的大机;第四类为在线电压补偿式,主要有APC秀康DP300系列UPS。而具体描述UPS的技术性能指标有四大类:一是对电网的适应能力;二是满足负载要求的UPS常规输出指标;三是UPS的输出能力和可靠性;四是智能管理和通信功能。那么在这四大类指标中,比较和选择UPS应重点关注,一直是当前专家和行业大用户普遍认可的一些观点:
1.1 选择大功率UPS要慎重考虑UPS的输入功率因数和输入电流谐波
双逆变在线式UPS,其AC/DC逆变器多为整流滤波电路,它的输入功因数低,一般只在0.8左右,输入电流谐波大,达30%,加专门滤波措施后,也仅能降到10%。输入功率因数低,意味着输入无功功率大,输入谐波电流则干扰破坏电网,特别是三相大功率UPS这两项指标危害很大,形成所谓的电力公害,这会1)使由同一电网供电的变压器、电动机、电容器等产生附加谐波损耗、过热、加速老化;2)引起异步电动机转矩降低,振动加剧噪声增大;3)引起继电器和自动装置误动作,其次谐波对通讯线路、测量仪器产生辐射干扰,影响电能计量的精度等。所以,UPS的输入功率因数和输入谐波电流应被视为重要性能指标之一,应该把输入功率因数>0.95,输入电流谐波
欧美发达国家早已立例,严格限制用电设备对电网的污染。我国有关部门亦正制订相关法规,施行日期亦不会遥远,因此用户在购买UPS不间断电源时,若不考虑此因素,将会留下日后治理的诸多麻烦,造成经济上的重大损失,同时也会因为治理而产生系统效率降低,可靠性下降等副作用。作为UPS,相应有三类解决方案。
第一,对于带有整流滤波输入的传统双变换UPS,无论是采用相控或不控整流,从市电吸取能量的方式均不是连续的正弦波,而是以脉动的断续方式向电网吸取电流,使得这类UPS具有谐波电流,功率因数低、效率低,对电网造成较大的污染,若采用12脉冲整流及输入滤波器,虽然可以将输入功率因数改善到0.95,谐波电流小于5%,但系统的总效率降低到90%左右,且成本增加,可靠性下降。
第二,输入整流器采用高频化整流技术,输入功率因数≈1,输入总谐波电流
第三,采用双逆变电压补偿在线式的UPS,其输入端是一个四象限高频逆变器,从市电吸取的电流是连续的正弦波,且与输入电压同相位,因此其输入功率因数≈1,输入谐波电流≤ 3%,对电网无污染。 AC-AC总效率高达96%。
由上可见,目前只有采用双逆变电压补偿在线式UPS,才能在获得输入功率因数≈1,输入谐波电流
1.2 要考虑UPS的输出能力与可靠性。
输出功率因数、输出电流波峰系数、输出过载能力、输出不平衡负载的能力等指标,直接反映了UPS的输出能力,对这些指标的限制,说明了UPS输出能力的局限性和脆弱的一面,尽管在配置UPS容量时尽可以使负载满足UPS的要求,甚至留出很大的余量,但这些指标却直接反映了UPS的可靠性。过载能力强,允许输出电流波峰系数高的,对负载功率因数限制小的,在同样电网环境和负载条件运行,其可靠性必然高,这是毋容置疑的道理。
1.3 要考虑效率与可靠性
UPS的工作效率高时,意味着节省电能,这是绿色电源的标志之一。但还应该注意到效率与可靠性是密切相关的,效率高意味着电路技术先进,元器件选用得好,意味着功器件功率损耗小,功率强度小,温度低,这必然会增强元器件乃至整机的寿命和可靠性。
根据***镇政府的实际情况和未来网络设备扩容的需要,我们建议为网络中心机房选配一台APC秀康SL20KW ,它的延迟时间有2小时,充分保证网络中心机房设备的电源供给。
2、APC秀康SL20KW系列UPS的性能优势
秀康SL20KW系列 UPS有绿色电源之称,DELTA逆变器技术把电压补偿原理成功地运用到UPS主电路中,使Silcon UPS的指标在很多方面超过其它同类产品,就目前情况下,有的指标是其它方案的UPS无论如何也达不到的。
下面的八个指标体现了Silcon UPS的优越性:
2.1 输入功率因数等于1对于一般UPS而言,要提高输入功率因数,就必须加输入功率因数校正电路,成本很高。
但是,Silcon UPS却轻易实现了输入功率因数为1,它借助于DELTA逆变器对输入电流进行调制,使UPS的输入端对电网来说相当一个纯线性电阻,输入电流和电压完全同相。在整个负载电流范围内,输入功率因数都很高,这是其它校正技术难以实现的。
输入功率因数高的好处有两点:一是减少了无功电流对电网的污染;二是使输入无功功率为零,可降低电网功率容量,可用1.2(考虑效率和传输损耗)的电网容量和油机的功率容量向UPS配电,而一般功率因数低的UPS则需要1.5倍的电网功率容量或2.5-3倍的油机功率容量向UPS配电。同时还降低其它供电设备诸如开关、传输线、熔断器、变压器等的功率容量,降低设备投资成本。
2.2 对电网无高次谐波干扰
一般UPS的输入电压电流都有很大失真,输入端的可控整流电路可使电流谐波失真高达30%以上,既使增加外部滤波装置也仅能降至10%,而Silcon UPS的输入电流电压不仅同相,而且是纯正的正弦波,谐波电流可降至3%以下,这是其它UPS很难做到的。
效率高本身就意味着节省能源,降低能源成本,以100KVA的UPS为例,与一般双逆变器UPS相比,使用Silcon可把电能损耗降低7%,即7KW,如果常年连续运行,每年节约24(小时)x 365(天)x7KW=61320KWH。
2.3 UPS主机功率器件的寿命长,可靠性高
UPS主要器件的寿命可靠性是与它承担的功率(功率强度)有直接关系的,一个大功率半导体器件的寿命和可靠性直接与它承担的电压、电流、功耗和壳温有关,以功耗而言,在其额定功率范围内,实际使用功率如增大一倍,其平均寿命就降低20-30%(非线性关系)。
在市电存在的情况下,Silcon UPS主逆变器只承担了20%的负载功率,这与一般UPS(承担100%的负载功率)相差相当悬殊。功率器件的寿命和可靠性的提高是显而易见的。
在UPS选用的过程中,应当结合机房的具体条件来选用,例如机房系统规模、系统的形式、常规性的UPS单元容量等。在安装过程中,还要求有经验的操作人员进行,充分结合以往工程经验,以及主要供货商的产品规格对自己的机房进行选用、安装。同时安全性、稳定性是安装过程中最需要考虑的因素,充分保证工作连续性。
参考文献
[1]孙法文.浅谈UPS不间断电源的选配[A]第三届浙江中西部科技论坛论文集(第四卷电力分卷)[C],2006年
[2]刘晓静.林彬.深度探讨高校中心机房智能监控设备设计与实现[J];中国科教创新导刊,2010年04期
[3]丁习兵.和军平.延汇文.一种新型无源无损软开关UPS充电拓扑研究[J];电力电子技术,2010年01期
[4]陈浩.张昊然.体育场照明系统管理[A],第二十四届中国(天津) 2010’IT、网络、信息技术、电子、仪器仪表创新学术会议论文集[C],2010年
1.电力电子技术的发展
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
1.1整流器时代
大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
1.2逆变器时代
七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
1.3变频器时代
进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
2.现代电力电子的应用领域
2.1计算机高效率绿色电源
高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。
计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日“能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。
2.2通信用高频开关电源
通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。
因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。
2.3直流-直流(DC/DC)变换器
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。
通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
2.4不间断电源(UPS)
不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。
现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。
目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。
2.5变频器电源
变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。
国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。
2.6高频逆变式整流焊机电源
高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。
逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。
由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。
国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。
2.7大功率开关型高压直流电源
大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。
自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。
国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。
2.8电力有源滤波器
传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓“电力公害”,例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。
电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。
2.9分布式开关电源供电系统
分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。
八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。
分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。
3.高频开关电源的发展趋势
在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。
3.1高频化
理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统“整流行业”的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为“开关变换类电源”,其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。
3.2模块化
模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于“标准”功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了“智能化”功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了“用户专用”功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。另外,大功率的开关电源,由于器件容量的限制和增加冗余提高可靠性方面的考虑,一般采用多个独立的模块单元并联工作,采用均流技术,所有模块共同分担负载电流,一旦其中某个模块失效,其它模块再平均分担负载电流。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。
3.3数字化
在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在
六、七十年代,电力电子技术完全是建立在模拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在
八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。
3.4绿色化
电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。这些为2l世纪批量生产各种绿色开关电源产品奠定了基础。
关键词:电力电子技术;开关电源
现代电源技术是应用电力电子半导体器件,综合自动控制、计算机(微处理器)技术和电磁技术的多学科边缘交又技术。在各种高质量、高效、高可靠性的电源中起关键作用,是现代电力电子技术的具体应用。
当前,电力电子作为节能、节才、自动化、智能化、机电一体化的基础,正朝着应用技术高频化、硬件结构模块化、产品性能绿色化的方向发展。在不远的将来,电力电子技术将使电源技术更加成熟、经济、实用,实现高效率和高品质用电相结合。
1.电力电子技术的发展
现代电力电子技术的发展方向,是从以低频技术处理问题为主的传统电力电子学,向以高频技术处理问题为主的现代电力电子学方向转变。电力电子技术起始于五十年代末六十年代初的硅整流器件,其发展先后经历了整流器时代、逆变器时代和变频器时代,并促进了电力电子技术在许多新领域的应用。八十年代末期和九十年代初期发展起来的、以功率MOSFET和IGBT为代表的、集高频、高压和大电流于一身的功率半导体复合器件,表明传统电力电子技术已经进入现代电力电子时代。
1.1整流器时代
大功率的工业用电由工频(50Hz)交流发电机提供,但是大约20%的电能是以直流形式消费的,其中最典型的是电解(有色金属和化工原料需要直流电解)、牵引(电气机车、电传动的内燃机车、地铁机车、城市无轨电车等)和直流传动(轧钢、造纸等)三大领域。大功率硅整流器能够高效率地把工频交流电转变为直流电,因此在六十年代和七十年代,大功率硅整流管和晶闸管的开发与应用得以很大发展。当时国内曾经掀起了-股各地大办硅整流器厂的热潮,目前全国大大小小的制造硅整流器的半导体厂家就是那时的产物。
1.2逆变器时代
七十年代出现了世界范围的能源危机,交流电机变频惆速因节能效果显著而迅速发展。变频调速的关键技术是将直流电逆变为0~100Hz的交流电。在七十年代到八十年代,随着变频调速装置的普及,大功率逆变用的晶闸管、巨型功率晶体管(GTR)和门极可关断晶闸管(GT0)成为当时电力电子器件的主角。类似的应用还包括高压直流输出,静止式无功功率动态补偿等。这时的电力电子技术已经能够实现整流和逆变,但工作频率较低,仅局限在中低频范围内。
1.3变频器时代
进入八十年代,大规模和超大规模集成电路技术的迅猛发展,为现代电力电子技术的发展奠定了基础。将集成电路技术的精细加工技术和高压大电流技术有机结合,出现了一批全新的全控型功率器件、首先是功率M0SFET的问世,导致了中小功率电源向高频化发展,而后绝缘门极双极晶体管(IGBT)的出现,又为大中型功率电源向高频发展带来机遇。MOSFET和IGBT的相继问世,是传统的电力电子向现代电力电子转化的标志。据统计,到1995年底,功率M0SFET和GTR在功率半导体器件市场上已达到平分秋色的地步,而用IGBT代替GTR在电力电子领域巳成定论。新型器件的发展不仅为交流电机变频调速提供了较高的频率,使其性能更加完善可靠,而且使现代电子技术不断向高频化发展,为用电设备的高效节材节能,实现小型轻量化,机电一体化和智能化提供了重要的技术基础。
2.现代电力电子的应用领域
2.1计算机高效率绿色电源
高速发展的计算机技术带领人类进入了信息社会,同时也促进了电源技术的迅速发展。八十年代,计算机全面采用了开关电源,率先完成计算机电源换代。接着开关电源技术相继进人了电子、电器设备领域。
计算机技术的发展,提出绿色电脑和绿色电源。绿色电脑泛指对环境无害的个人电脑和相关产品,绿色电源系指与绿色电脑相关的高效省电电源,根据美国环境保护署l992年6月17日"能源之星"计划规定,桌上型个人电脑或相关的设备,在睡眠状态下的耗电量若小于30瓦,就符合绿色电脑的要求,提高电源效率是降低电源消耗的根本途径。就目前效率为75%的200瓦开关电源而言,电源自身要消耗50瓦的能源。
2.2通信用高频开关电源
通信业的迅速发展极大的推动了通信电源的发展。高频小型化的开关电源及其技术已成为现代通信供电系统的主流。在通信领域中,通常将整流器称为一次电源,而将直流-直流(DC/DC)变换器称为二次电源。一次电源的作用是将单相或三相交流电网变换成标称值为48V的直流电源。目前在程控交换机用的一次电源中,传统的相控式稳压电源己被高频开关电源取代,高频开关电源(也称为开关型整流器SMR)通过MOSFET或IGBT的高频工作,开关频率一般控制在50-100kHz范围内,实现高效率和小型化。近几年,开关整流器的功率容量不断扩大,单机容量己从48V/12.5A、48V/20A扩大到48V/200A、48V/400A。
因通信设备中所用集成电路的种类繁多,其电源电压也各不相同,在通信供电系统中采用高功率密度的高频DC-DC隔离电源模块,从中间母线电压(一般为48V直流)变换成所需的各种直流电压,这样可大大减小损耗、方便维护,且安装、增加非常方便。一般都可直接装在标准控制板上,对二次电源的要求是高功率密度。因通信容量的不断增加,通信电源容量也将不断增加。
2.3直流-直流(DC/DC)变换器
DC/DC变换器将一个固定的直流电压变换为可变的直流电压,这种技术被广泛应用于无轨电车、地铁列车、电动车的无级变速和控制,同时使上述控制获得加速平稳、快速响应的性能,并同时收到节约电能的效果。用直流斩波器代替变阻器可节约电能(20~30)%。直流斩波器不仅能起调压的作用(开关电源),同时还能起到有效地抑制电网侧谐波电流噪声的作用。
通信电源的二次电源DC/DC变换器已商品化,模块采用高频PWM技术,开关频率在500kHz左右,功率密度为5W~20W/in3。随着大规模集成电路的发展,要求电源模块实现小型化,因此就要不断提高开关频率和采用新的电路拓扑结构,目前已有一些公司研制生产了采用零电流开关和零电压开关技术的二次电源模块,功率密度有较大幅度的提高。
2.4不间断电源(UPS)
不间断电源(UPS)是计算机、通信系统以及要求提供不能中断场合所必须的一种高可靠、高性能的电源。交流市电输入经整流器变成直流,一部分能量给蓄电池组充电,另一部分能量经逆变器变成交流,经转换开关送到负载。为了在逆变器故障时仍能向负载提供能量,另一路备用电源通过电源转换开关来实现。
现代UPS普遍了采用脉宽调制技术和功率M0SFET、IGBT等现代电力电子器件,电源的噪声得以降低,而效率和可靠性得以提高。微处理器软硬件技术的引入,可以实现对UPS的智能化管理,进行远程维护和远程诊断。目前在线式UPS的最大容量已可作到600kVA。超小型UPS发展也很迅速,已经有0.5kVA、lkVA、2kVA、3kVA等多种规格的产品。
2.5变频器电源
变频器电源主要用于交流电机的变频调速,其在电气传动系统中占据的地位日趋重要,已获得巨大的节能效果。变频器电源主电路均采用交流-直流-交流方案。工频电源通过整流器变成固定的直流电压,然后由大功率晶体管或IGBT组成的PWM高频变换器,将直流电压逆变成电压、频率可变的交流输出,电源输出波形近似于正弦波,用于驱动交流异步电动机实现无级调速。
国际上400kVA以下的变频器电源系列产品已经问世。八十年代初期,日本东芝公司最先将交流变频调速技术应用于空调器中。至1997年,其占有率已达到日本家用空调的70%以上。变频空调具有舒适、节能等优点。国内于90年代初期开始研究变频空调,96年引进生产线生产变频空调器,逐渐形成变频空调开发生产热点。预计到2000年左右将形成。变频空调除了变频电源外,还要求有适合于变频调速的压缩机电机。优化控制策略,精选功能组件,是空调变频电源研制的进一步发展方向。
2.6高频逆变式整流焊机电源
高频逆变式整流焊机电源是一种高性能、高效、省材的新型焊机电源,代表了当今焊机电源的发展方向。由于IGBT大容量模块的商用化,这种电源更有着广阔的应用前景。
逆变焊机电源大都采用交流-直流-交流-直流(AC-DC-AC-DC)变换的方法。50Hz交流电经全桥整流变成直流,IGBT组成的PWM高频变换部分将直流电逆变成20kHz的高频矩形波,经高频变压器耦合,整流滤波后成为稳定的直流,供电弧使用。
由于焊机电源的工作条件恶劣,频繁的处于短路、燃弧、开路交替变化之中,因此高频逆变式整流焊机电源的工作可靠性问题成为最关键的问题,也是用户最关心的问题。采用微处理器做为脉冲宽度调制(PWM)的相关控制器,通过对多参数、多信息的提取与分析,达到预知系统各种工作状态的目的,进而提前对系统做出调整和处理,解决了目前大功率IGBT逆变电源可靠性。
国外逆变焊机已可做到额定焊接电流300A,负载持续率60%,全载电压60~75V,电流调节范围5~300A,重量29kg。
2.7大功率开关型高压直流电源
大功率开关型高压直流电源广泛应用于静电除尘、水质改良、医用X光机和CT机等大型设备。电压高达50~l59kV,电流达到0.5A以上,功率可达100kW。
自从70年代开始,日本的一些公司开始采用逆变技术,将市电整流后逆变为3kHz左右的中频,然后升压。进入80年代,高频开关电源技术迅速发展。德国西门子公司采用功率晶体管做主开关元件,将电源的开关频率提高到20kHz以上。并将干式变压器技术成功的应用于高频高压电源,取消了高压变压器油箱,使变压器系统的体积进一步减小。
国内对静电除尘高压直流电源进行了研制,市电经整流变为直流,采用全桥零电流开关串联谐振逆变电路将直流电压逆变为高频电压,然后由高频变压器升压,最后整流为直流高压。在电阻负载条件下,输出直流电压达到55kV,电流达到15mA,工作频率为25.6kHz。
2.8电力有源滤波器
传统的交流-直流(AC-DC)变换器在投运时,将向电网注入大量的谐波电流,引起谐波损耗和干扰,同时还出现装置网侧功率因数恶化的现象,即所谓"电力公害",例如,不可控整流加电容滤波时,网侧三次谐波含量可达(70~80)%,网侧功率因数仅有0.5~0.6。
电力有源滤波器是一种能够动态抑制谐波的新型电力电子装置,能克服传统LC滤波器的不足,是一种很有发展前途的谐波抑制手段。滤波器由桥式开关功率变换器和具体控制电路构成。与传统开关电源的区别是:(l)不仅反馈输出电压,还反馈输入平均电流;(2)电流环基准信号为电压环误差信号与全波整流电压取样信号之乘积。
2.9分布式开关电源供电系统
分布式电源供电系统采用小功率模块和大规模控制集成电路作基本部件,利用最新理论和技术成果,组成积木式、智能化的大功率供电电源,从而使强电与弱电紧密结合,降低大功率元器件、大功率装置(集中式)的研制压力,提高生产效率。
八十年代初期,对分布式高频开关电源系统的研究基本集中在变换器并联技术的研究上。八十年代中后期,随着高频功率变换技术的迅述发展,各种变换器拓扑结构相继出现,结合大规模集成电路和功率元器件技术,使中小功率装置的集成成为可能,从而迅速地推动了分布式高频开关电源系统研究的展开。自八十年代后期开始,这一方向已成为国际电力电子学界的研究热点,论文数量逐年增加,应用领域不断扩大。
分布供电方式具有节能、可靠、高效、经济和维护方便等优点。已被大型计算机、通信设备、航空航天、工业控制等系统逐渐采纳,也是超高速型集成电路的低电压电源(3.3V)的最为理想的供电方式。在大功率场合,如电镀、电解电源、电力机车牵引电源、中频感应加热电源、电动机驱动电源等领域也有广阔的应用前景。
3.高频开关电源的发展趋势
在电力电子技术的应用及各种电源系统中,开关电源技术均处于核心地位。对于大型电解电镀电源,传统的电路非常庞大而笨重,如果采用高顿开关电源技术,其体积和重量都会大幅度下降,而且可极大提高电源利用效率、节省材料、降低成本。在电动汽车和变频传动中,更是离不开开关电源技术,通过开关电源改变用电频率,从而达到近于理想的负载匹配和驱动控制。高频开关电源技术,更是各种大功率开关电源(逆变焊机、通讯电源、高频加热电源、激光器电源、电力操作电源等)的核心技术。
3.1高频化
理论分析和实践经验表明,电气产品的变压器、电感和电容的体积重量与供电频率的平方根成反比。所以当我们把频率从工频50Hz提高到20kHz,提高400倍的话,用电设备的体积重量大体下降至工频设计的5~l0%。无论是逆变式整流焊机,还是通讯电源用的开关式整流器,都是基于这一原理。同样,传统"整流行业"的电镀、电解、电加工、充电、浮充电、电力合闸用等各种直流电源也可以根据这一原理进行改造,成为"开关变换类电源",其主要材料可以节约90%或更高,还可节电30%或更多。由于功率电子器件工作频率上限的逐步提高,促使许多原来采用电子管的传统高频设备固态化,带来显著节能、节水、节约材料的经济效益,更可体现技术含量的价值。
3.2模块化
模块化有两方面的含义,其一是指功率器件的模块化,其二是指电源单元的模块化。我们常见的器件模块,含有一单元、两单元、六单元直至七单元,包括开关器件和与之反并联的续流二极管,实质上都属于"标准"功率模块(SPM)。近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了"智能化"功率模块(IPM),不但缩小了整机的体积,更方便了整机的设计制造。实际上,由于频率的不断提高,致使引线寄生电感、寄生电容的影响愈加严重,对器件造成更大的电应力(表现为过电压、过电流毛刺)。为了提高系统的可靠性,有些制造商开发了"用户专用"功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接,这样的模块经过严格、合理的热、电、机械方面的设计,达到优化完美的境地。它类似于微电子中的用户专用集成电路(ASIC)。只要把控制软件写入该模块中的微处理器芯片,再把整个模块固定在相应的散热器上,就构成一台新型的开关电源装置。由此可见,模块化的目的不仅在于使用方便,缩小整机体积,更重要的是取消传统连线,把寄生参数降到最小,从而把器件承受的电应力降至最低,提高系统的可靠性。这样,不但提高了功率容量,在有限的器件容量的情况下满足了大电流输出的要求,而且通过增加相对整个系统来说功率很小的冗余电源模块,极大的提高系统可靠性,即使万一出现单模块故障,也不会影响系统的正常工作,而且为修复提供充分的时间。3.3数字化
在传统功率电子技术中,控制部分是按模拟信号来设计和工作的。在六、七十年代,电力电子技术拟电路基础上的。但是,现在数字式信号、数字电路显得越来越重要,数字信号处理技术日趋完善成熟,显示出越来越多的优点:便于计算机处理控制、避免模拟信号的畸变失真、减小杂散信号的干扰(提高抗干扰能力)、便于软件包调试和遥感遥测遥调,也便于自诊断、容错等技术的植入。所以,在八、九十年代,对于各类电路和系统的设计来说,模拟技术还是有用的,特别是:诸如印制版的布图、电磁兼容(EMC)问题以及功率因数修正(PFC)等问题的解决,离不开模拟技术的知识,但是对于智能化的开关电源,需要用计算机控制时,数字化技术就离不开了。
3.4绿色化
电源系统的绿色化有两层含义:首先是显著节电,这意味着发电容量的节约,而发电是造成环境污染的重要原因,所以节电就可以减少对环境的污染;其次这些电源不能(或少)对电网产生污染,国际电工委员会(IEC)对此制定了一系列标准,如IEC555、IEC917、IECl000等。事实上,许多功率电子节电设备,往往会变成对电网的污染源:向电网注入严重的高次谐波电流,使总功率因数下降,使电网电压耦合许多毛刺尖峰,甚至出现缺角和畸变。20世纪末,各种有源滤波器和有源补偿器的方案诞生,有了多种修正功率因数的方法。
总而言之,电力电子及开关电源技术因应用需求不断向前发展,新技术的出现又会使许多应用产品更新换代,还会开拓更多更新的应用领域。开关电源高频化、模块化、数字化、绿色化等的实现,将标志着这些技术的成熟,实现高效率用电和高品质用电相结合。这几年,随着通信行业的发展,以开关电源技术为核心的通信用开关电源,仅国内有20多亿人民币的市场需求,吸引了国内外一大批科技人员对其进行开发研究。开关电源代替线性电源和相控电源是大势所趋,因此,同样具有几十亿产值需求的电力操作电源系统的国内市场正在启动,并将很快发展起来。还有其它许多以开关电源技术为核心的专用电源、工业电源正在等待着人们去开发。
参考文献:
[1]林渭勋:浅谈半导体高频电力电子技术,电力电子技术选编,浙江大学,384-390,1992。
论文关键词:开关电源,纹波,滤波器
1.引言
开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,纹波系数通常要大一些,但是纹波系数又是开关电源的一项重要指标,如果纹波大就会影响电子电路的正常工作,出现信号源的不纯净,放大器噪声与过载等问题。本文针对开关电源的纹波进行研究,并提出抑制开关电源纹波的方法。
2.开关电源的原理
开关稳压电源的核心是电压深度负反馈的脉冲宽度调制器,功率器件工作于开关状态,因此功率低,效率高。开关电源因省去了笨重的工频变压器而使体积和重量都有不同程度的减少和减轻,被广泛地应用在许多输出电压、输出电流较为稳定的场合,开关电源的主电路图如图1。
图1开关电源主电路图
由电路图可以看出,市电经整流滤波后变为311V高压,经K1K4功率开关管有序工作后,变为脉冲信号加至高频变压器的初级,脉冲的高度始终为311V。当K1、K4开通时,311V高压电流经K1正向流入主变压器初级,经K4流出,在变压器初级形成一个正向脉冲,同理,当K2、K3开通时,311V高压电流经K3反向流入主变压器初级,经K2流出,在变压器初级形成一个反向脉冲。由于开关电源的工作原理,使其纹波噪声不可避免,而开关电源发展的重要方向是高频、高可靠、低纹波。为了抑制干扰纹波,减少在感应回路中的电压,防止电源纹波影响下一级电路的性能有必要先分析一下开关电源纹波产生的原因。
3.开关电源纹波产生的原因
我们最终的目的是要把输出纹波降低到可以忍受的程度,达到这个目的最根本的解决方法就是要尽量避免纹波的产生,随着SWITCH的开关,电感L中的电流也是在输出电流的有效值上下波动的。所以在输出端也会出现一个与SWITCH同频率的纹波,一般所说的纹波就是指这个。
另外,SWITCH一般选用双极性晶体管或者MOSFET,不管是哪种,在其导通和截止的时候,都会有一个上升时间和下降时间。这时候在电路中就会出现一个与SWITCH上升下降时间的频率相同或者奇数倍频的噪声,一般为几十兆赫。
如果是AC/DC变换器,除了上述两种纹波(噪声)以外,还有AC噪声,频率是输入AC电源的频率,为50~60Hz左右。还有一种共模噪声,是由于很多开关电源的功率器件使用外壳作为散热器,产生的等效电容导致的。
4.开关电源纹波抑制方法
对于开关电源纹波,理论上和实际上都是一定存在的。为了实现开关电源的低纹波输出,对低频电源噪声必须采取滤波措施;对于高频噪声,开关电源需要依靠功率器件对输入直流电压进行高频变脉宽波斩波而后整流滤波实现稳压输出的。受功率器件开关损耗的限制,电源的开关频率一般取20KHz-100KHz,开关频率越高,电感电容越大,则输出波纹越小。在其输出端含有与斩波频率同频的高噪声,其大小主要和开关电源的开关频率及输出滤波器的结构和参数有关。下面我们提出抑制或减少电源纹波的有效方法:
1.加大电感和输出电容滤波
根据开关电源的公式,电感内电流波动大小和电感值成反比,输出纹波和输出电容值成反比。所以加大电感值和输出电容值可以减小纹波。
同样,输出电容Co与纹波电压Vp_p的关系:Co=Ipk(Ton+Toff)/8Vripple(p_p),可以看出,加大输出电容值可以减小纹波。通常的做法,对于输出电容,使用铝电解电容以达到大容量的目的。但是电解电容在抑制高频噪声方面效果不是很好,而且等效串联电阻(ESR)也比较大,所以会在它旁边并联一个陶瓷电容,来弥补铝电解电容的不足。同时,开关电源工作时,输入端的电压Vin不变,但是电流是随开关变化的。这时输入电源不会很好地提供电流,通常在靠近电流输入端,并联电容来提供电流。
2.二级滤波,再加一级LC滤波器。
LC滤波器对噪纹波的抑制作用比较明显,根据要除去的纹波频率选择合适的电感电容构成滤波电路,一般能够很好的减小纹波。但是这种情况下需要考虑反馈比较电压的采样点。采样点选在LC滤波器之前,输出电压会降低。因为任何电感都有一个直流电阻,当有电流输出时,在电感上会有压降产生,导致电源的输出电压降低,而且这个压降是随输出电流变化的。
采样点选在LC滤波器之后,这样输出电压就是我们所希望得到的电压,这样的缺点是在电源系统内部引入了一个电感和一个电容,有可能会导致系统不稳定。
3.开关电源输出之后,接低压差线性稳压器(LDO)滤波。
这是减少纹波和噪声最有效的办法,输出电压恒定,不需要改变原有的反馈系统,但也是成本最高,功耗最高的办法。任何一款LDO都有一项指标:噪音抑制比。对几百千赫的开关纹波,LDO的抑制效果非常好。但在高频范围内,该LDO的效果就不那么理想了。
4.正确合理的印制电路板(PCB)布线
开关电源PCB排版是开发电源产品中的一个重要过程。
对减小纹波,开关电源的PCB布线也非常关键,许多情况下,一个在纸上设计得非常完美的电源可能在初次调试时无法正常工作,原因是该电源的PCB排版存在着许多问题。开关电源的纹波太大,或者开关电源产生的电磁干扰影响到其电子产品的正常工作,所以正确合理的电源PCB排版就变得非常重要。注意PCB的布局、布线和接地,可以减少开关电源波纹。
在选用滤波元件时,一般只说要满足脉动要求,在安装尺寸容许的前提下,采用较大的L较小的C或采用较小的L较大的C均可。但是在实际中需要考虑输出电压冲击值及其动态响应特征,电感量愈大,冲击值越大,动态响应也越大。
滤波器的计算式复杂的,在设计中,常常是按照一定的范围选取L和C,通过在线路中试验,测试各项指标,并根据测试值修正元件值,以选取合适的元件,电容器要选高频性能好的无感聚苯乙烯电容、陶瓷电容、铝电解电容等。
5.结束语
开关电源由于功耗小效率高,体积小,重量轻,稳压范围广,电路形式灵活等特点,广泛地应用于计算机、通信等各类电子设备。本文提出的抑制开关电源波纹方法我们在设计开关电源的时都有研究及使用,这些方法有各自的优缺点,选择合适的方法关键是根据自己的设计要求,比如产品体积,成本,开发周期等。
参考文献
1 孟建辉.开关电源的基本原理及发展趋势[J].通信电源技术,2009.6
2 郑宪龙,和军平等.DC/DC开关电源共模EMI滤波器的研制[J].电力电子技术,2007.12
3 张国安,翟长生.冲量控制技术消除开关电源低频波纹的研究[J].电力电子技术,2009.4
关键词:PLC;远程监控;故障诊断;方法
0前言
PLC远程监控系统的设计从其结构和控制要求上实现了系统工作环境、感染源种类因素分析和电源及软件抗干扰能力的优化,利用串行通讯协议实现前端机与PLC的串行通信强化了系统信息传输的安全性和精准性。近几年随着PLC远程监控的应用范围越来越广泛,如何利用故障诊断方法强化PLC远程监控系统的应用作用,为我国设备运行和使用提供技术保障成为了研究的主要侧重点,具有典型性。
1PLC远程监控
PCL远程监控中主要是利用PLC实现设备远程控制程序编写,进而实现PLC远程故障诊断,完后才能网络技术相关数据的传输和通讯,并且利用设备现场传感信息采集和数据运行来实现数据系统的信号转换和信号处理,利用数据信号的信息分析能力完成及设备的运行情况,及时完成故障的诊断处理[1]。PLC远程监控的应用领域较为广泛,近几年随着4G网络技术的逐渐发展,PLC能够有效的实现远程现场设备的终端信息采集处理,进而完成数据传输工作的数字化和可视化处理,完成设备故障的诊断和维护[2]。PLC远程监控在工业上的应用主要是以工业集成化、自动化、规模化和高效化发展为方向,完成对设备故障诊断的精确性优化。
2PLC远程监控的特诊
从特征性的角度出发对PLC远程监控系统急性分析,其主要包含系统安全可靠性、系统智能化和实时性的特征[3]。系统安全可靠性特征:PLC远程监控利用庞大的有机组合体实现了远程故障信息的集中处理和分析,进而提高了信息的可靠性,强化了设备信息系统的整体故障判定准确性,为设备的使用和维护经济损失带来了可靠性。系统智能化特征:PLC远程监控在设备监控和故障诊断的过程中根据设备的运行数据情况,实现了异常和故障的智能化判定和处理,并且能够及时的采取控制措施,以完成正常系统的智能化运行。实时性特征:PLC远程监控在其工作系统的处理和监控上能够实现监控连续性,始终对设备运行的状态实施整体监控,并且采用无间断反应传输的方式将监控的信息实时的传递给后台的工作人员,进而降低了传统反馈信息传输的延迟性和不稳定性缺陷,进一步奠定了PLC远程监控在设备运行监控中的实时性特征。
3PLC远程监控故障诊断方法分析
3.1数字模型故障诊断方法
数字模型故障诊断方法主要是利用系统的可测量运行信息和数学模型先验知识故障信号对比进行检测,其属于一种分离系统故障的诊断方法。数字模型故障诊断方法主要是包含两个故障处理阶段,残差产生和故障决策。其中残差产生主要是利用被监控系统输出和输入信信号残差反应整个系统可能出现的故障,如果无故障则残差一般为零。故障决策流程主要是当残差被检测出存在故障,利用阙值的设定以及统计决策模型的似然或序贯概率比的方式决定故障决策方案,完成数据模型故障PLC远程监控诊断。
3.2可测信号故障诊断方法
可测信号故障诊断主要是根据直接可测的输入和输出信号变化关系或变化趋势完成故障的整体诊断。可测信号故障诊断的过程中包含输入输出信号小波变化故障诊断以及数学形式表达故障诊断两个流程。第一流程中PLC远程监控系统能够利用系统暑促胡的幅值、频率、相位值等进行信号与故障源之间关系判定。第二流程数学形式表达故障诊断主要是使用批分析法、概率密度法及功率谱分析法的方式对输入和输出信号之间的波动差异性进行基础计算,完成可测信号故障运行诊断。
3.3人工智能故障诊断方法
目前PLC远程监控人工智能故障诊断主要包含故障树诊断、故障专家诊断、模糊识别诊断和模糊数学诊断四种方法。其中故障树诊断主要是利用系统或设备内特定时间及其子系统部件故障之间的逻辑结构关系图完成故障逐层次的故障树分析法。故障专家诊断主要是利用专家视觉、听觉、触觉等客观事实对系统故障进行判定。模糊识别诊断主要是采用离线分析法和在线诊断分析法对系统故障表象特征向量集进行故障模式向量函数识别。模糊数学诊断主要是利用模糊集聚类分析系统不同水平子集之间的关系,作为故障判定的成因向量,利用故障模糊合成法完成对故障的远程诊断和监控。
4总结
通过本文中对PLC远程监控及其故障诊断方法进行分析,能够看出PLC远程监控的应用具有安全可靠性、系统智能化和实时性的特征。就目前我国国内PLC远程监控故障诊断方法来看,其主要包含数字模型故障诊断方法、可测信号故障诊断方法和人工智能故障诊断方法三种类型,在其故障诊断方法构建和优化的过程中必须充分发挥网络远程监控技术的数据共享功能,加强远程监控系统故障诊断信息交流的快速性和交互性,进而为PLC远程监控系统的技术完善奠定基础。
参考文献:
[1]杨文刚.基于PLC的远程设备故障诊断方法研究[J].现代制造技术与装备,2016,05(02):82-83.
[2]周律,,查亮等.基于PLC的远程设备故障诊断方法研究[J].通信电源技术,2015,09(05):29-33.
【关键词】电力系统;继电保护技术;现状;发展
1引言
当前,电力资源是人们生产生活中不可或缺的重要资源,供电系统也成为保证人们正常生活和稳定生产的主要能源系统,电力系统中的任何部位出现安全隐患都会影响整个电力系统的安全运行,甚至引发大面积停电现象。由此可知,电力系统的继电保护工作十分重要和关键。随着电力系统的改革和创新,电力系统的继电保护和维修工作的难度日渐提升。继电保护是在这种背景下提出的新型保护方式,改善了传统电力系统保护方式的缺陷和不足,融合了几种电力系统保护方式的优势,在现代供电网络当中发挥了重要作用。
2继电保护技术概述
2.1继电保护技术的概念
继电保护技术的应用实质上是继电保护器在发挥作用的过程,继电保护器由开关、电流感应器等构件组成。在电流感应器感知到电流异常之后,会自动把主回路切断来保证设备不受到损坏和工作过程中不造成人员损伤。继电保护器主要具有2种功能,即过载保护和电流短路保护,一般会在设备产生漏电故障时自动启用保护功能,从而避免意外事故的发生[1]。
2.2继电保护技术的应用背景
如果不正确使用熔断电阻丝,实际运用的电流量超过了承载值,这时流经导线的电流产生的热量会将外表的绝缘层融化,这时就容易造成故障隐患。如果在日常工作中对器材的损坏较为严重并且没有及时检查和发现损坏情况,就容易影响电流的正常使用,容易造成安全隐患,从而引发安全事故,威胁人员安全。此时,继电保护技术的应用十分必要。
2.3继电保护技术的工作原理
继电保护技术是应用在设备漏电故障发生之时保护设备和保证安全工作的手段,因此,为更好地应用这项技术,相关人员需要了解它的工作原理。继电保护技术实质上是继电保护器对于设备出现漏电故障时利用其过载保护和短路保护的功能避免工作过程中安全事故的发生。在建筑电力系统工作过程中,因为使用电力系统的设备和环节过多,所以稍有不慎就容易导致安全事故的发生。然而,一般使用这些电力系统设备的人员只是普通的建筑人员,操作不当、检查不及时、对实际的使用原理不了解是当前工作团队中的常见问题,这极易导致各种漏电事故频频发生。继电保护器中利用其组成结构中的电流感应器,在感知电流异常时,保护器会自动关闭开关从而进行断电。一般的电力系统设备在电流输入的地方会安装继电保护器,通过导线一端接入电流感应变压装置,断电的开关安装在导线的在另一边,以便在电流通过时及时感知异常,从而阻断异常电流对设备的损坏。
3电力工程继电保护故障的成因
3.1人为原因造成的故障问题
在电力工程中,技术人员往往会遇到一种情况,即根据事故报警装置显示继电保护发生了故障问题,但是找不到导致这一故障发生的源头[3]。另外一种情况就是继电保护机械停止工作,事故报警装置却没有提前预警,这就使得技术人员未能判断故障产生的缘由和过程。然而,根据以往数据显示这几种故障情况的产生都是由于各种各样的人为原因,如职工在工作岗位中不集中注意力、没有采取及时有效的解决措施、操作不当等。一旦出现这种人为原因导致的故障,技术人员一定要在第一时间将情况如实向管理人员汇报,以此来保障故障解决的效率。部分情况下,电力工程单位会发生一种故障情况就是电压失常,这种故障情况在发生时检测其开关等主要装置均不会排查到任何异常情况。但是技术人员会因主观原因导致判读不到位,进而导致故障处理方法不当,容易造成各种安全隐患。
3.2辅助工具应用不到位造成的故障问题
一般情况下,技术维修人员在解决电力工程继电保护故障问题时,会通过以往的故障汇总信息库、机械报警装置等要素来判断故障发生的原因,并确定故障处理的方法。电力工程管理人员会安排专门的负责人员来对继电保护器进行定期排查,如果系统存在故障问题,可以对系统进行针对性维修检查,这种情况和继电保护机械异常是无关的。然而,一旦排查到继电保护机械出现了异常情况,技术人员应当预先做好故障表现特征的信息备案,先规划出解决故障问题的方案再实施正确的解决措施,以此来降低故障问题造成更大损失的概率。在电力工程单位中,各种机械装置能够作为技术人员检查继电保护机械的辅助工具,因此,技术人员必须充分发挥这些机械装置的优势作用,以此来提升故障判断的准确性和故障解决的效率。在继电保护机械发生故障问题时,这时观察检测装置就会发现很多数据显示正常,出现这些情况的原因是相应的负责人员没有做到实时监测继电保护机械的工作情况,未发挥辅助工具的作用,同时,并未做好日常数据的记录,这时技术人员就会误判继电保护故障问题发生的原因,进而引发更加严重的故障问题。由此可见,一旦继电保护出现任何故障问题,技术人员必须对整个系统进行整体综合排查,以此来提高事故处理的质量[4]。
4电力系统继电保护技术的运用原则
继电保护技术是使得电力系统设备能够正常运行的手段,那么面对大量使用电力系统设备且用电环节多、大规模生产的电力企业来说,更应该注重这项技术的使用原则。
4.1三段式继电保护原则
在电力系统工作时,流过电流感应器的电流有相反的方向和相同的大小,这就说明电流是正常的,继电保护器并没有工作。一般来说在这种情况下,感应器中的感应磁通数值为零,且断电开关没有启动。而如果一切情况相反,流过感应器的电流有相同的方向,感应器中的感应磁通的数值不为零,且其中电流大小数值相等,断电开关工作,这就是设备在漏电故障情况下自动启用继电保护器的征兆。
4.2接零保护原则
一般电力系统设备如果存在导线外露的情况,管理人员会安排设备人员对接线采取接零保护,主要针对器材中带有金属的部分。一般接零保护时,只是配备保护的零线而不是熔断电阻丝。另外,开关不会安装在次要的保护零线上,接地保护零线和接零保护零线也不会安装在一起,这样能够保证继电保护器的安全使用。
4.3接地保护原则
为有效避免使用的电力系统装备接地效果受到影响,技术人员应该遵循接地保护原则。在大型轨道工具作业时,接地处理和3个以上的接地点是必备的,另外,1~4Ω是电力系统连接节点处可控的电阻率范围。接地保护是应用在电力系统设备导线外露的情况下,主要是在外露的导线并没有产生电流的情况下对其进行接地保护,从而使得工作人员在触碰外露导线时不会出现安全事故。这是任何金属外壳和装备进行接地处理时的必要措施,这样能保证每一个工作环节的工作人员在接触金属外露的部分时不会造成故障问题[5]。
4.4继电保护器的安装原则
①额定的继电保护时长。一般来说,针对不同等级的支干线额定的继电保护时长不同,一级的支干线相较于平常的保护时长会相差0.2s,而三级的额定保护时长则与其相差0.4s。②针对不同等级的支干线来说,额定的继电保护电流大小也不同,主要在0~300mA的数值范围根据不同等级的支干线分别调节。
5电力系统继电保护技术的发展趋势
5.1网络化
互联网技术的快速发展推动了社会各个领域的变革,例如,技术领域、政治领域、经济领域,等等。国民的数据信息通信工具就是计算机网络,并且在新时代占据了重要的支柱性地位,促使国民生活生产的情况出现了本质转变,其对工业生产行业产生了很大程度的影响,也使得该行业具备了有力的通信保障。近期,基于纵联差动保护的继电保护设备在新时代占据了重要的地位,对电力系统的安全、稳定、持续运行提供了保障。虽然继电保护主要的作用是体现在排除问题配件与降低安全事故影响等方面,但是该装置的作用并不仅限于此。在20世纪末,国内某大学专门为三峡水坝的回路母线研发出了一类分布型母线保护设备,这一设备是将传统的集中型母线保护划分为不同的母线保护。技术人员会在不同回路的保护屏当中安装这些保护单元,单元之间会留有一定的空隙,不同保护单元之间是通过计算机网络相连接的,这一网络会将回路的所有保护单元构建成为一个完整的体系。各个保护单元会按照该回路的电流量以及由计算机网络所得到的其余回路电流量作为参考依据,从而计算母线的差动保护数值。当结果得出是母线发生了故障问题,那么继电保护装置就会将该回路的断路器隔离,排除故障线路。当外部发生故障问题时,任一保护单元计算结果均显示为外援故障,所以不会发生任何反应。相较于传统的集中型母线保护技术来说,当前这一类通过计算机所实现的分布型母线保护技术能够为电力保护系统提供更加稳定的技术保障。
5.2智能化
随着新型电子芯片的研发和新兴技术的快速发展,继电保护装置的智能化水平不断提升。神经网络是一种非线性映射的方法,很多难以列出方程式或难以求解的复杂的非线性问题,应用神经网络方法则可迎刃而解。例如,在输电线两侧系统电势角度摆开情况下发生经过渡电阻的短路就是一种非线性问题,距离保护很难正确作出故障位置的判别,从而造成误动或拒动。如果用神经网络方法,经过大量故障样本的训练,只要样本集中充分考虑了各种情况,则在发生任何故障时都可正确判别。其他方法如遗传算法、进化规划等也都有其独特的求解复杂问题的能力。将这些人工智能方法适当结合可使求解速度更快[6]。天津大学从1996年起便开始研究神经网络式继电保护,已取得初步成果。可以预见,人工智能技术在继电保护领域必会得到应用,以解决用常规方法难以解决的问题。
5.3绿色化
近年来,国内工业领域的发展速度不断加快,国民的生活水平也日渐提升,能够享受到越来越好的物质条件。然而,在经济水平高速提升的同时环境问题日益凸显。现阶段,国内的污染情况越来越严重,资源浪费问题也越来越严峻,国家对环保节能的关注度提升,相关部门出台了很多环保相关的政策和节能策略。由此可知,未来社会将会朝着保护环境、节约能源的方向发展,由此还诞生出了环保产品的概念。无论是从设计、生产、研发、运用等角度来看,继电保护装置都和保护环境、国民健康发展的需求相关。
5.4一体化
在实现继电保护技术计算机化和网络化的条件下,保护装置实际上就是一台高性能、多功能的计算机,是整个电力系统计算机网络中的一个智能终端。它可从网上获取电力系统运行和故障的任何信息和数据,也可将它所获得的被保护元件的任何信息和数据传送给网络控制中心或任一终端。因此,每个微机保护装置不但可完成继电保护功能,而且在无故障正常运行情况下还可完成测量、控制、数据通信功能,即实现保护、控制、测量、数据通信一体化[7]。
6提升继电保护技术应用效果的有效方法
6.1配备专业技术人员
当前,科学技术处在不断发展的状态当中,并且继电保护技术尤为重要,对于工作人员的素质提出了较高要求。相关部门需要聘请专业的技术人员,并且组织对于工作人员的专门培训,使其掌握继电保护技术的理论知识和操作原理,从而在电力系统工作中重视继电保护技术的准确运用和电力系统设备的定期排查,从而提高人员素质,促进工作安全有效开展[8]。
6.2重视继电保护器
继电保护器是继电保护技术中主要应用的设备,其使用种类和作业场所的环境都会对其正常使用产生影响。电力企业应该将继电保护器安装到固定电源处且远离对电力系统产生安全隐患的因素,从而保证继电保护器的正常使用。另外,安装具有报警器的继电保护器是必要的,这使得电力企业中的工作人员可以及时通过警报发现设备的故障和安全隐患,从而提升供电工作的质量。
7结语
综上所述,国内的继电保护技术历经了4个发展阶段,由于科学技术与供电体系的快速发展,继电保护技术也朝着多个方向发展。具体表现为朝着网络化、智能化、绿色化的方向发展,这使得相关行业的人员面临着更加复杂的问题,但也推动了继电保护技术的快速发展。
【参考文献】
【1】高仁栋,吴在军,范文超,等.双端直流配电网反时限电流方差保护方案[J].电网技术,2018,42(9):2849-2859.
【2】栗赛男,孔凡梅,李玲萍.电力系统中继电保护与自动化装置的可靠性探究[J].中小企业管理与科技(下旬刊),2018(4):171-172.
【3】刘春晖,钱文晓,杨朋威,等.新一代300Mvar调相机失磁运行特性及保护研究[J].电力工程技术,2019,38(6):154-159.
【4】张英,王军,黄永烈,等.基于电力系统的继电保护可靠性技术研究[J].通信电源技术,2018,35(7):68-69.
【5】石磊,魏晓晨,庞天皓,等.浅析电力系统继电保护的作用及发展趋势[J].城市建设理论研究(电子版),2019(7):184.
【6】高延辉,宋志刚,王春克,等.试议电力系统继电保护技术的现状与发展趋势[J].名城绘,2018(2):306.
【7】王记昌,李仁,吕俊霞.电力系统继电保护和二次回路的现状与发展趋势[J].兵工自动化,2020,39(1):32-34+67.