前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的初一数学知识点主题范文,仅供参考,欢迎阅读并收藏。
学习从来无捷径,循序渐进登高峰。如果说学习一定有捷径,那只能是勤奋,因为努力永远不会骗人。学习需要勤奋,做任何事情都需要勤奋。下面是小编给大家整理的一些初一数学的知识点,希望对大家有所帮助。
七年级数学知识点生活中的轴对称
1、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、轴对称:对于两个图形,如果沿一条直线对折后,它们能互相重合,那么称这两个图形成轴对称,这条直线就是对称轴。
可以说成:这两个图形关于某条直线对称。
3、轴对称图形与轴对称的区别:轴对称图形是一个图形,轴对称是两个图形的关系。
联系:它们都是图形沿某直线折叠可以相互重合。
2、成轴对称的两个图形一定全等。
3、全等的两个图形不一定成轴对称。
4、对称轴是直线。
5、角平分线的性质
1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
6、线段的垂直平分线
1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
7、轴对称图形有:
等腰三角形(1条或3条)、等腰梯形(1条)、长方形(2条)、菱形(2条)、正方形(4条)、圆(无数条)、线段(1条)、角(1条)、正五角星。
8、等腰三角形性质:
①两个底角相等。②两个条边相等。③“三线合一”。④底边上的高、中线、顶角的平分线所在直线是它的对称轴。
9、①“等角对等边”∠B=∠CAB=AC
②“等边对等角”AB=AC∠B=∠C
10、角平分线性质:
角平分线上的点到角两边的距离相等。
OA平分∠CADOEAC,OFADOE=OF
11、垂直平分线性质:垂直平分线上的点到线段两端点的距离相等。
OC垂直平分ABAC=BC
12、轴对称的性质
1、两个图形沿一条直线对折后,能够重合的点称为对应点(对称点),能够重合的线段称为对应线段,能够重合的角称为对应角。
2、关于某条直线对称的两个图形是全等图形。
2、如果两个图形关于某条直线对称,那么对应点所连的线段被对称轴垂直平分。
3、如果两个图形关于某条直线对称,那么对应线段、对应角都相等。
13、镜面对称
1.当物体正对镜面摆放时,镜面会改变它的左右方向;
2.当垂直于镜面摆放时,镜面会改变它的上下方向;
3.如果是轴对称图形,当对称轴与镜面平行时,其镜子中影像与原图一样;
学生通过讨论,可能会找出以下解决物体与像之间相互转化问题的办法:
(1)利用镜子照(注意镜子的位置摆放);(2)利用轴对称性质;
(3)可以把数字左右颠倒,或做简单的轴对称图形;
(4)可以看像的背面;(5)根据前面的结论在头脑中想象。
初一下册数学重点知识点重要考点
1、整式的乘除的公式运用(六条)及逆运用(数的计算)。
(1)an·am2)(am)n=(3)(ab)n = 4)am ÷ an
(5)a0 (a≠0) (6)a-p= =
2、单项式与单项式、多项式相乘的法则。
3、整式的乘法公式(两条)。
平方差公式:(a+b)(a-b)=
完全平方公式:(a+b)2 (a-b)2
常用公式:(x+m)(x+n)=
5、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。
6、互为余角和互为补角和
7、两直线平行的条件:(角的关系线的平行)
①相等,两直线平行;
② 相等,两直线平行;
③ 互补,两直线平行.
8、平行线的性质:两直线平行。
(线的平行
9、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)
10、变量中的图象法,注意:(1)横、纵坐标的对象。
(2)起点、终点不同表示什么意义
(3)图象交点表示什么意义(4)会求平均值。
11、三角形(1)三边关系:角的关系)
(2)内角关系:
(3)三角形的三条重要线段:
(重点)(4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)
(5)全等三角形的性质:
(重点)(6)等腰三角形:(a)知边求边、周长方法
(b)知角求角方法
(c)三线合一:
初一下册数学复习资料概念知识
1、单项式:数字与字母的积,叫做单项式。
2、多项式:几个单项式的和,叫做多项式。
3、整式:单项式和多项式统称整式。
4、单项式的次数:单项式中所有字母的指数的和叫单项式的次数。
5、多项式的次数:多项式中次数的项的次数,就是这个多项式的次数。
6、余角:两个角的和为90度,这两个角叫做互为余角。
7、补角:两个角的和为180度,这两个角叫做互为补角。
8、对顶角:两个角有一个公共顶点,其中一个角的两边是另一个角两边的反向延长线。
这两个角就是对顶角。
9、同位角:在“三线八角”中,位置相同的角,就是同位角。
10、内错角:在“三线八角”中,夹在两直线内,位置错开的角,就是内错角。
11、同旁内角:在“三线八角”中,夹在两直线内,在第三条直线同旁的角,就是同旁内角。
12、有效数字:一个近似数,从左边第一个不为0的数开始,到精确的那位止,所有的数字都是有效数字。
13、概率:一个事件发生的可能性的大小,就是这个事件发生的概率。
14、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
15、三角形的角平分线:在三角形中,一个内角的角平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
16、三角形的中线:在三角形中连接一个顶点与它的对边中点的线段,叫做这个三角形的中线。
17、三角形的高线:从一个三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。
18、全等图形:两个能够重合的图形称为全等图形。
19、变量:变化的数量,就叫变量。
20、自变量:在变化的量中主动发生变化的,变叫自变量。
21、因变量:随着自变量变化而被动发生变化的量,叫因变量。
22、轴对称图形:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形。
23、对称轴:轴对称图形中对折的直线叫做对称轴。
24、垂直平分线:线段是轴对称图形,它的一条对称轴垂直于这条线段并且平分它,这样的直线叫做这条线段的垂直平分线。
共有72个知识点,包括:
1、过两点有且只有一条直线;
2、两点之间线段最短;
3、同角或等角的补角相等;
4、同角或等角的余角相等;
5、过一点有且只有一条直线和已知直线垂直;
6、直线外一点与直线上各点连接的所有线段中,垂线段最短;
7、平行公理经过直线外一点,有且只有一条直线与这条直线平行;
8、如果两条直线都和第三条直线平行,这两条直线也互相平行;
9、同位角相等,两直线平行;
10、内错角相等,两直线平行;
11、同旁内角互补,两直线平行;
12、两直线平行,同位角相等;
13、两直线平行,内错角相等;
14、两直线平行,同旁内角互补;
1、直线没有端点,没有长度,可以无限延伸。
2、射线只有一个端点,没有长度,射线可以无限延伸,并且射线有方向。
3、在一条直线上的一个点可以引出两条射线。
4、线段有两个端点,可以测量长度。圆的半径、直径都是线段。
5、角的两边是射线,角的大小与射线的长度没有关系,而是跟角的两边叉开的大小有关,叉得越大角就越大。
6、几个易错的角边关系:
(1)平角的两边是射线,平角不是直线。
(2)三角形、四边形中的角的两边是线段。
(3)圆心角的两边是线段。
7、两条直线相交成直角时,这两条直线叫做互相垂直。其中一条直线叫做另一条直线的垂线,这两条直线的交点叫做垂足。
8、从直线外一点到这条直线所画的垂直线段的长度叫做点到直线的距离。
9、在同一个平面上不相交的两条直线叫做平行线。
二、class三角形
1、任何三角形内角和都是180度。
2、三角形具有稳定的特性,三角形两边之和大于第三边,三角形两边之差小于第三边。
3、任何三角形都有三条高。
4、直角三角形两个锐角的和是90度。
5、两个三角形等底等高,则它们面积相等。
6、面积相等的两个三角形,形状不一定相同。
三、正方形面积
1、正方形面积:边长×边长
2、正方形面积:两条对角线长度的积÷2
四、三角形、四边形的关系
两个完全一样的三角形能组成一个平行四边形。
两个完全一样的直角三角形能组成一个长方形。
两个完全一样的等腰直角三角形能组成一个正方形。
两个完全一样的梯形能组成一个平行四边形。
五、圆
1、把一个圆割成一个近似的长方形,割拼成的长方形的长相当于圆周长的一半,宽相当于圆的半径。则长方形的面积等于圆的面积,长方形的周长比圆的周长增加r×2。
2、半圆的周长等于圆的周长的一半加直径。
3、半圆的周长公式:C=d?2+d或C=pr+2r
4、半圆面积=圆的面积/2
5、在同一个圆里,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小以上倍数的平方倍。
六、圆柱、圆锥
1、把圆柱的侧面展开,得到一个长方形,这个长方形的长等于圆柱的底面的周长,宽等于圆柱的高。
2、如果把圆柱的侧面展开,得到一个正方形,那么圆柱的底面周长和高相等。
3、把一个圆柱沿着半径切开,拼成一个近似的长方体,体积不变,表面积增加了两个面,增加的面积是r×h×2。
4、把一个圆柱沿着底面直径劈开,得到两个半圆柱体,表面积和比原来增加了两个长方形的面,增加的面积和是d×h×2。
学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。“二次根式” 一章就来认识这种式子,探索它的性质,掌握它的运算。
在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:
注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。“二次根式的乘除”一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到
并运用它们进行二次根式的化简。
“二次根式的加减”一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。
第22章 一元二次方程
学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 —— 一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。
本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,
“22.2降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。
(1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。
(2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。
(3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。
“22.3实际问题与一元二次方程”一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。
第23章 旋转
学生已经认识了平移、轴对称,探索了它们的性质,并运用它们进行图案设计。本书中图形变换又增添了一名新成员――旋转。“旋转”一章就来认识这种变换,探索它的性质。在此基础上,认识中心对称和中心对称图形。
“23.1旋转”一节首先通过实例介绍旋转的概念。然后让学生探究旋转的性质。在此基础上,通过例题说明作一个图形旋转后的图形的方法。最后举例说明用旋转可以进行图案设计。
“23.2中心对称”一节首先通过实例介绍中心对称的概念。然后让学生探究中心对称的性质。在此基础上,通过例题说明作与一个图形成中心对称的图形的方法。这些内容之后,通过线段、平行四边形引出中心对称图形的概念。最后介绍关于原点对称的点的坐标的关系,以及利用这一关系作与一个图形成中心对称的图形的方法。
“23.3课题学习 图案设计”一节让学生探索图形之间的变换关系(平移、轴对称、旋转及其组合),灵活运用平移、轴对称、旋转的组合进行图案设计。
第24章 圆
圆是一种常见的图形。在“圆”这一章,学生将进一步认识圆,探索它的性质,并用这些知识解决一些实际问题。通过这一章的学习,学生的解决图形问题的能力将会进一步提高。
“24.1圆”一节首先介绍圆及其有关概念。然后让学生探究与垂直于弦的直径有关的结论,并运用这些结论解决问题。接下来,让学生探究弧、弦、圆心角的关系,并运用上述关系解决问题。最后让学生探究圆周角与圆心角的关系,并运用上述关系解决问题。
“24.2与圆有关的位置关系”一节首先介绍点和圆的三种位置关系、三角形的外心的概念,并通过证明“在同一直线上的三点不能作圆”引出了反证法。然后介绍直线和圆的三种位置关系、切线的概念以及与切线有关的结论。最后介绍圆和圆的位置关系。
“24.3正多边形和圆”一节揭示了正多边形和圆的关系,介绍了等分圆周得到正多边形的方法。
“24.4弧长和扇形面积”一节首先介绍弧长公式。然后介绍扇形及其面积公式。最后介绍圆锥的侧面积公式。
第25 章 概率初步
将一枚硬币抛掷一次,可能出现正面也可能出现反面,出现正面的可能性大还是出现反面的可能性大呢?学了“概率”一章,学生就能更好地认识这个问题了。掌握了概率的初步知识,学生还会解决更多的实际问题。
“25.1概率”一节首先通过实例介绍随机事件的概念,然后通过掷币问题引出概率的概念。
“25.2用列举法求概率”一节首先通过具体试验引出用列举法求概率的方法。然后安排运用这种方法求概率的例题。在例题中,涉及列表及画树形图。
1.问题的提出
"教学做合一"是指:"教"的方法必须根据"学"的方法,"学"的方法又必须根据"做"的方法,事怎样"做"便怎样"学",怎样"学"便怎样"教"。"教"与"学"都应以"做"为中心,这个中心指的就是"事",也就是实际生活。可见,"教学做合一"是主张以"实际的生活"为中心,教育要与实际生活密切相联系,教学内容及方式要面向生活和社会,真正实现"学以致用"的教学目标。
课堂教学是促进学生发展的主阵地,如何在"教学做合一"的层面上体现发展观,让初中数学课堂教学充满智慧、充满趣味、充满生命的张力和徜徉,使学生获得生动、活泼、主动健康的发展?
基于此,本人提出了"构建初中数学智慧课堂的实践研究"这一研究课题,旨在理论与实践的结合点上做出一些有益的探索,改变过去以"教师为中心"、以"知识为本位"的课堂教学形态,架起现代教学理论与课堂教学实践之间的桥梁,致力于提高初中数学课堂教学效率,实现学生的全员、全面、主动的发展,并使这种发展趋于最优化与可持续,最终达到"教学做合一"效益最大化。
3.亮点展示的注意点
数学课堂是学生发展的天地,数学学习过程是学生享受教师服务的过程。实施初中数学"智慧"课堂教学的四个"亮点"展示应注意一些基本环节,以保证"教学做合一"的顺利实现。
期待动态生成
叶澜教授认为:"要从生命的高度、用动态生成的观点看课堂教学。课堂教学应该被看作是师生人生中一段重要的生命经历,是他们生命的、有意义的构成部分。"新课程需要新教学,而新教学需要新预设。成功的动态生成,能够经历到思维碰撞的激情、思想的高峰体验和情感的深度震撼。
聚焦本真课堂
关键词:初一数学 问题 解决策略
我们这里先列举一下在初一数学学习中经常出现的几个问题:
1、对知识点的理解停留在一知半解的层次上;
2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;
3、解题时,小错误太多,始终不能完整的解决问题;
4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;
5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点。
以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。
那怎样才能打好初一的数学基础呢?
一、细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
二、总结相似的类型题目
这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
我们的建议是:“总结归纳”是将题目越做越少的最好办法。
三、收集自己的典型错误和不会的题目
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
四、就不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。
讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
我们的建议是:“勤学”是基础,“好问”是关键。
五、注重实战(考试)经验的培养
考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。
初中数学是一个整体。初二的难点最多,初三的考点最多。相对而言,初一数学知识点虽然很多,但都比较简单。很多同学在学校里的学习中感受不到压力,慢慢积累了很多小问题,这些问题在进入初二,遇到困难(如学科的增加、难度的加深)后就凸现出来。一些学生由于对初一数学不够重视,在进入初二后,发现跟不上老师的进度,感觉学习数学越来越吃力。这个问题究其原因,主要是对初一数学的基础性重视不够。在初一数学学习中经常出现的问题很多,现列举如下:
1.对知识点的理解停留在一知半解的层面上。
2.解题始终不能把握其中关键的数学技巧,孤立地看待每一道题,缺乏举一反三的能力。
3.解题时小错误太多,始终不能完整地解决问题。
4.解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏。
5.未养成总结归纳的习惯,不能习惯性地归纳所学的知识点。
以上这些问题如果在初一阶段不能很好地解决,在初二的两极分化阶段,同学们可能就会出现成绩滑坡。相反,如果能够打好初一数学基础,则初二的学习只会是知识点的增多和难度的增加,在学习方法上同学们是很容易适应的。
二
怎样才能打好初一数学基础呢?
1.细心地发掘概念和公式
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是对概念和公式一味地死记硬背,缺乏与实际题目的联系。这样就不能很好地将学到的知识点与解题联系起来。三是一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
2.总结相似的类型题目
这个工作,不仅仅是老师的事,我们的学生也要学会自己做。当学生会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,学生才真正掌握了这门学科的窍门,才能真正做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,他们就会发现,有部分同学天天做题,可成绩不升反降。其原因就是,天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄得一团糟。我们的建议是:“总结归纳”是将题目越做越少的最好办法。
3.收集自己的典型错误和不会的题目
学生最难面对的就是自己的错误和困难,但这恰恰又是最需要解决的问题。学生做题目,有两个重要的目的:一是将所学的知识点和技巧,在实际的题目中演练。另一个就是找出自己的不足,然后进行弥补。这个不足包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草地应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议学生收集自己的典型错误和不会的题目,是因为一旦他们做了这件事,他们就会发现,过去他们认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
4.就不懂的问题,积极提问、讨论
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是对该问题的重视不够,不求甚解;二是不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣,直到无法赶上步伐。讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于相互学习。我们的建议是:“勤学”是基础,“好问”是关键。
5.注重实战(考试)经验的培养
现在中考网的初二学员中,有一部分新同学就是对初一数学不够重视,在进入初二后,发现跟不上老师的进度,感觉学习数学越来越吃力,希望参加我们的辅导班来弥补的。这个问题究其原因,主要是对初一数学的基础性,重视不够。我们这里先列举一下在初一数学学习中经常出现的几个问题:
1、对知识点的理解停留在一知半解的层次上;
2、解题始终不能把握其中关键的数学技巧,孤立的看待每一道题,缺乏举一反三的能力;
3、解题时,小错误太多,始终不能完整的解决问题;
4、解题效率低,在规定的时间内不能完成一定量的题目,不适应考试节奏;
5、未养成总结归纳的习惯,不能习惯性的归纳所学的知识点;
以上这些问题如果在初一阶段不能很好的解决,在初二的两极分化阶段,同学们可能就会出现成绩的滑坡。相反,如果能够打好初一数学基础,初二的学习只会是知识点上的增多和难度的增加,在学习方法上同学们是很容易适应的。
那怎样才能打好初一的数学基础呢?
(1)细心地发掘概念和公式。
很多同学对概念和公式不够重视,这类问题反映在三个方面:一是,对概念的理解只是停留在文字表面,对概念的特殊情况重视不够。例如,在代数式的概念(用字母或数字表示的式子是代数式)中,很多同学忽略了“单个字母或数字也是代数式”。二是,对概念和公式一味的死记硬背,缺乏与实际题目的联系。这样就不能很好的将学到的知识点与解题联系起来。三是,一部分同学不重视对数学公式的记忆。记忆是理解的基础。如果你不能将公式烂熟于心,又怎能够在题目中熟练应用呢?
我们的建议是:更细心一点(观察特例),更深入一点(了解它在题目中的常见考点),更熟练一点(无论它以什么面目出现,我们都能够应用自如)。
(2)总结相似的类型题目。
这个工作,不仅仅是老师的事,我们的同学要学会自己做。当你会总结题目,对所做的题目会分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,你才真正的掌握了这门学科的窍门,才能真正的做到“任它千变万化,我自岿然不动”。这个问题如果解决不好,在进入初二、初三以后,同学们会发现,有一部分同学天天做题,可成绩不升反降。其原因就是,他们天天都在做重复的工作,很多相似的题目反复做,需要解决的问题却不能专心攻克。久而久之,不会的题目还是不会,会做的题目也因为缺乏对数学的整体把握,弄的一团糟。
我们的建议是:“总结归纳”是将题目越做越少的最好办法。
(3)收集自己的典型错误和不会的题目。
同学们最难面对的,就是自己的错误和困难。但这恰恰又是最需要解决的问题。同学们做题目,有两个重要的目的:一是,将所学的知识点和技巧,在实际的题目中演练。另外一个就是,找出自己的不足,然后弥补它。这个不足,也包括两个方面,容易犯的错误和完全不会的内容。但现实情况是,同学们只追求做题的数量,草草的应付作业了事,而不追求解决出现的问题,更谈不上收集错误。我们之所以建议大家收集自己的典型错误和不会的题目,是因为,一旦你做了这件事,你就会发现,过去你认为自己有很多的小毛病,现在发现原来就是这一个反复在出现;过去你认为自己有很多问题都不懂,现在发现原来就这几个关键点没有解决。
我们的建议是:做题就像挖金矿,每一道错题都是一块金矿,只有发掘、冶炼,才会有收获。
(4)就不懂的问题,积极提问、讨论。
发现了不懂的问题,积极向他人请教。这是很平常的道理。但就是这一点,很多同学都做不到。原因可能有两个方面:一是,对该问题的重视不够,不求甚解;二是,不好意思,怕问老师被训,问同学被同学瞧不起。抱着这样的心态,学习任何东西都不可能学好。“闭门造车”只会让你的问题越来越多。知识本身是有连贯性的,前面的知识不清楚,学到后面时,会更难理解。这些问题积累到一定程度,就会造成你对该学科慢慢失去兴趣。直到无法赶上步伐。
讨论是一种非常好的学习方法。一个比较难的题目,经过与同学讨论,你可能就会获得很好的灵感,从对方那里学到好的方法和技巧。需要注意的是,讨论的对象最好是与自己水平相当的同学,这样有利于大家相互学习。
我们的建议是:“勤学”是基础,“好问”是关键。
(5)注重实战(考试)经验的培养。
考试本身就是一门学问。有些同学平时成绩很好,上课老师一提问,什么都会。课下做题也都会。可一到考试,成绩就不理想。出现这种情况,有两个主要原因:一是,考试心态不不好,容易紧张;二是,考试时间紧,总是不能在规定的时间内完成。心态不好,一方面要自己注意调整,但同时也需要经历大型考试来锻炼。每次考试,大家都要寻找一种适合自己的调整方法,久而久之,逐步适应考试节奏。做题速度慢的问题,需要同学们在平时的做题中解决。自己平时做作业可以给自己限定时间,逐步提高效率。另外,在实际考试中,也要考虑每部分的完成时间,避免出现不必要的慌乱。
【关键词】 中小学;数学;衔接;教学;实践
小学阶段到初中一年级阶段是学生数学学习的一个重要过渡阶段,在数学学习方面拥有承上启下的重要作用. 很多初中生由于在这一阶段没有过渡好,进而在数学学习方面产生了很大的障碍,对他们后续的数学学习也产生了很大的影响. 可以说,中小学数学衔接教学一直是我们课堂教学的薄弱环节,必须要对其进行加强,有效帮助初中生尽快适应初中阶段的数学学习. 那么,究竟如何做好中小学数学衔接教学呢?下面,我谈谈自己的几点看法.
一、注重心理上的衔接
当同学们从小学进入初中之后,他们在心理上会产生一定的变化. 他们面对陌生的老师、陌生的同学、陌生的学习内容,都会产生很多心理上的不适应. 基于此种情况,我们初中数学教师必须要在心理上帮助他们,引导他们战胜这种心理上的不适应,从而尽快投入到初中阶段快节奏的学习当中.
例如,数学教师可以指导初一新生快速地建立起良好的人际关系,比如在课堂教学中多进行一些同学之间的互动等,让他们进行合作学习,在合作学习的过程中他们很快就能建立起良好的人际关系. 比如,在执教“正数和负数”一课的时候,在课堂教学过程中我布置了下面这个问题让同学们合作进行解决:(1)在-2,+2.5,0,-0.35,11中,正数是 ,负数是 ;(2)如果向东为正,那么走-50米表示什么意思?如果向南为正,那么走-50米又表示什么意思?通过同学们之间的合作学习,他们之间的关系也融洽很多.
另外,对于教师他们也很陌生,此时数学教师不应该表现得高高在上,而是应该多亲近学生,用自己的热心、耐心和爱心来感染学生,从而有效拉近与学生之间的距离,帮助他们尽快消除心理上的障碍,尽快投入到数学学习中来.
二、注重新旧知识的衔接
我们初中数学教师在对于初一新生的启蒙教学过程中,对于每一个新的知识点的教学都应该注重新旧知识的联系和衔接. 纵观中小学数学教材,我们很容易发现其中有很多知识点之间都存在着密切的联系.
例如,小学阶段关于简易方程知识内容的学习为初中阶段的一元一次方程的学习奠定了基础,小学阶段的几何初步知识的学习亦为初中阶段深入的几何知识学习提供了前提. 所以,我们在初小数学衔接的教学过程中,必须处理好二者的衔接关系,深入挖掘初中数学知识与小学数学知识之间的联系以及区别,把新旧知识的学习很好地串联起来,只有这样才能真正帮助初中生尽快适应初中阶段的数学学习. 又如,初一数学教材中的有理数部分,就包含有小学阶段所学习的“算术数”以及它们的相反数,有理数运算中的很多计算法则与小学算术数的计算法则也是相通的,只要我们数学教师做一个有心人,就会很容易发现它们之间的内在联系,帮助初中生做好新旧知识之间的衔接.
三、注重教法上的衔接
初中数学教师在初一阶段的数学教学方法上亦要搞好衔接. 在开始阶段,不应该过分地追求教学进度,而是应该循序渐进,缓慢增加教学节奏. 我认为,初一阶段的数学教学应该在“低起点,小步子”的指导思想下进行. 让初中生在小学阶段已有数学知识学习的基础上,逐步适应初中阶段的数学学习.
例如,在对初中阶段新的数学概念和新的数学定理进行学习的时候,要适当地结合小学阶段已经学过的数学知识进行教学,从而有效激发初中生的数学学习兴趣和求知欲望. 进入初中阶段之后,数学教材中的数学概念会明显增多,这可能会让同学们感觉到应接不暇. 比如负数概念、有理数概念、相反数概念以及绝对值概念等. 我们初中数学教师在对这些概念进行教学的时候,应该不断地、循序渐进地引导初中生有效联系小学阶段所学习的数学知识,体验从具体到抽象的过程,最终有效培养初中生的数学概念的概括和理解能力.
四、注重学法上的衔接
小学阶段的科目较少,学习内容也相对简单. 但是进入初一阶段之后,教学科目明显增多,学习内容的难度也成倍提升. 为了帮助初一新生顺利地进行学习过渡,我们初中数学教师必须对他们进行学习方法上的指导.
例如,在小学阶段,很多学生都没有养成预习的习惯. 预习是自学的开始,也是学好初中数学必须具备的一种学习能力. 我在具体的教学实践中发现:很多初一新生都不会预习,即使有同学预习了,也仅仅只是走马观花的简单看一遍. 所以,我们数学教师必须加强对初一新生的学法指导,加强对其进行预习训练. 具体的训练方法可以是:列出预习提纲,让学生根据预习提纲进行预习;布置前置性作业帮助学生进行课前预习;课堂教学中对于学生的预习情况进行检验等. 通过长期的训练,他们的预习能力一定会大幅提升. 例如,在对“正数与负数”一课进行教学之前,我就布置了这样一个前置性作业:(1)了解正、负数的概念和学习正、负数的意义;(2)零是正数还是负数?(3)用正、负数表示实际问题中具有相反意义的量. 通过这个前置性作业的完成,同学们很好地对这一课进行了预习.
五、结 语
事实上,中小学数学衔接并不是一件很难的事情,只要我们数学教师做一个有心人,就可以有效解决. 但是,在传统的课堂教学中很多数学教师却忽略了这一点,这一点必须有效纠正. 希望本文的写作可以给中小学数学衔接教学作出经验上的指导,引导更多的初中数学教师做好中小数学衔接教学.
【参考文献】
[1]仇菊妹. 中小学数学应“相亲”而非“相轻”[J]. 教学月刊:小学版,2007(1).