前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的钢结构设计论文主题范文,仅供参考,欢迎阅读并收藏。
1、引言
稳定性是钢结构的一个突出问题。在各种类型的钢结构中,都会遇到稳定问题。对于这个问题处理不好,将会造成不应有的损失。现代工程史上不乏因失稳而造成的钢结构事故,其中影响最大的是1907年加拿大魁北克一座大桥在施工中破坏,9000吨钢结构全部坠入河中,桥上施工的人员75人遇难。破坏是由于悬臂的受压下弦失稳造成的。而美国哈特福特城的体育馆网架结构,平面92m×110m,突然于1978年破坏而落地,破坏起因可能是压杆屈曲。以及1988年加拿大一停车场的屋盖结构塌落,1985年土耳其某体育场看台屋盖塌落,这两次事故都和没有设置适当的文撑有关[1]。在我国1988年也曾发生l3.2×l7.99m网架因腹杆稳定位不足而在施工过程中塌落的事故。从上可以看出,钢结构中的稳定问题是钢结构设计中以待解决的主要问题,一旦出现了钢结构的失稳事故,不但对经济造成严重的损失,而且会造成人员的伤亡,所以我们在钢结构设计中,一定要把握好这一关。目前,钢结构中出现过的失稳事故都是由于设计者的经验不足,对结构及构件的稳定性能不够清楚,对如何保证结构稳定缺少明确概念,造成一般性结构设计中不应有的薄弱环节。另一方面是由于新型结构的出现,如空间网架,网壳结构等,设计者对其如何设计还没有完全的了解。本文针对这些问题提出了在设计中应该明确在钢结构稳定设计中的一些基本概念,以及对新型钢结构稳定性研究应该了解的一些问题并且应该懂得如何解决这些问题。只有这样我们在设计中才能更好处理钢结构稳定问题。
2、钢结构稳定设计的基本概念
2.1强度与稳定的区别[2]
强度问题是指结构或者单个构件在稳定平衡状态下由荷载所引起地最大应力(或内力)是否超过建筑材料的极限强度,因此是一个应力问题。极限强度的取值取决于材料的特性,对混凝土等脆性材料,可取它的最大强度,对钢材则常取它的屈服点。稳定问题则与强度问题不同,它主要是找出外荷载与结构内部抵抗力间的不稳定平衡状态,即变形开始急剧增长的状态,从而设法避免进入该状态,因此,它是一个变形问题。如轴压柱,由于失稳,侧向挠度使柱中增加数量很大的弯矩,因而柱子的破坏荷载可以远远低于它的轴压强度。显然,轴压强度不是柱子破坏的主要原因。
2.2钢结构失稳的分类[1]
(1)第一类稳定问题或者具有平衡分岔的稳定问题(也叫分支点失稳)。完善直杆轴心受压时的屈曲和完善平板中面受压时的屈曲都属于这一类。
(2)第二类稳定问题或无平衡分岔的稳定问题(也叫极值点失稳)。由建筑钢材做成的偏心受压构件,在塑性发展到一定程度时丧失稳定的能力,属于这一类。
(3)跃越失稳是一种不同于以上两种类型,它既无平衡分岔点,又无极值点,它是在丧失稳定平衡之后跳跃到另一个稳定平衡状态。
区分结构失稳类型的性质十分重要,这样才有可能正确估量结构的稳定承载力。随着稳定问题研究的逐步深入,上述分类看起来已经不够了。设计为轴心受压的构件,实际上总不免有一点初弯曲,荷载的作用点也难免有偏心。因此,我们要真正掌握这种构件的性能,就必须了解缺陷对它的影响,其他构件也都有个缺陷影响问题。另一方面就是深入对构件屈曲后性能的研究。
2.3钢结构设计的原则
根据稳定问题在实际设计中的特点提出了以下三项原则并具体阐明了这些原则,以更好地保证钢结构稳定设计中构件不会丧失稳定。
(1)结构整体布置必须考虑整个体系以及组成部分的稳定性要求
目前结构大多数是按照平面体系来设计的,如桁架和框架都是如此。保证这些平面结构不致出平面失稳,需要从结构整体布置来解决,亦即设计必要的支撑构件。这就是说,平面结构构件的出平面稳定计算必须和结构布置相一致。就如上述的1988年加拿大一停车场的屋盖结构塌落,1985年土耳其某体育场看台屋盖塌落,这两次事故都和没有设置适当的文撑而造成出平面失稳。
由平面桁架组成的塔架,基于同样原因,需要注意杆件的稳定和横隔设置之间的关系。
(2)结构计算简图和实用计算方法所依据的简图相一致,这对框架结构的稳定计算十分重要[3]。
目前任设计单层和多层框架结构时,经常不作框架稳定分折而是代之以框架柱的稳定计算。在采用这种方法时,计算框架柱稳定时用到的柱计算长度系数,自应通过框架整体稳定分析得出,才能使柱稳定计算等效于框架稳定计算。然而,实际框架多种多样,而设计中为了简化计算工作,需要设定一些典型条件。GBJl7—88规范对单层或多层框架给出的计算长度系数采用了五条基本假定,其中包括:“框架中所有柱子是同时丧失稳定的,即各柱同时达到其临界荷载”。按照这条假定,框架各柱的稳定参数杆件稳定计算的常用方法,往往是依据一定的简化假设或者典型情况得出的,设计者必须确知所设计的结构符合这些假设时才能正确应用。在实际工程中,框架计算简图和实用方法所依据的简图不一致的情况还可举出以下两种,即附有摇摆拄的框架和横梁受有较大压力的框架。这两种情况若按规范的系数计算,都会导致不安全的后果。所以所用的计算方法与前提假设和具体计算对象应该相一致。
(3)设计结构的细部构造和构件的稳定计算必须相互配合,使二者有一致性。
结构计算和构造设计相符合,一直是结构设计中大家都注意的问题。对要求传递弯矩和不传递弯矩的节点连接,应分别赋与它足够的刚度和柔度,对桁架节点应尽量减少杆件偏心这些都是设计者处理构造细部时经常考虑到的。但是,当涉及稳定性能时,构造上时常有不同于强度的要求或特殊考虑。例如,简支梁就抗弯强度来说,对不动铰支座的要求仅仅是阻止位移,同时允许在平面内转动。然而在处理梁整体稳定时上述要求就不够了。支座还需能够阻止梁绕纵轴扭转,同时允许梁在水平平面内转动和梁端截面自由翘曲,以符合稳定分析所采取的边界条件。
2.4钢结构稳定设计特点
(1)失稳和整体刚度:现行规范通用的轴心压杆的稳定计算法是临界压力求解法和折减系数法。
(2)稳定性整体分析:杆件能否保持稳定牵涉到结构的整体。稳定分析必须从整体着眼。
(3)稳定计算的其它特点:在弹性稳定计算中,除了需要考虑结构的整体性外,还有一些其他特点需要引起重视,首先要做的就是二阶分析,这种分析对柔性构件尤为重要,这是因为柔性构件的大变形量对结构内力产生了不能忽视的影响,其次,普遍用于应力问题的迭加原理[4].在弹性稳定计算中不能应用。这是因为迭加原理的应用应以满足以下条件为前提:
1)材料服从虎克定律变成正比;
2)结构的变形很小。
而弹性稳定计算一般均不能满足第2)个条件,非弹性稳定计算则两个前提都不符合。
了解了一些在钢结构设计中应该明确的一些基本概念,有助于我们在设计中更好地处理稳定方面的问题,随着新型钢结构体系地不断发展,我们对稳定问题的研究要求也不断地提高,之所以在设计中出现结构失稳问题,另一个重要原因就是我们对新型结构稳定知之甚少,也就是目前钢结构稳定研究中存在的问题。
3、钢结构稳定性研究中存在的问题
钢结构体系稳定性研究虽然取得了一定的进展,但也存在一些不容忽视的问题[5]:
(1)目前在网壳结构稳定性的研究中,梁-柱单元理论已成为主要的研究工具。但梁-柱单元是否能真实反映网壳结构的受力状态还很难说,虽然有学者对梁-柱单元进行过修正[3]。主要问题在于如何反映轴力和弯矩的耦合效应。
(2)在大跨度结构设计中整体稳定与局部稳定的相互关系也是一个值得探讨的问题,目前大跨度结构设计中取一个统一的稳定安全系数,未反映整体稳定与局部稳定的关联性。
(3)预张拉结构体系的稳定设计理论还很不完善,目前还没有一个完整合理的理论体系来分析预张拉结构体系的稳定性。
(4)钢结构体系的稳定性研究中存在许多随机因素的影响,目前结构随机影响分析所处理的问题大部分局限于确定的结构参数、随机荷载输入这样一个格局范围,而在实际工程中,由于结构参数的不确定性,会引起结构响应的显著差异。所以应着眼于考虑随机参数的结构极值失稳、干扰型屈曲、跳跃型失稳问题的研究。
从上面可以看出,我们的钢结构稳定理论还是不够完善,我们在设计中一般都是把钢结构看成是完善的结构体系,针对上述问题(4),我们可以看出在设计中我们没有考虑一些随机因素的影响。但是我们在考虑这些因素之前,应该弄清楚这些随机因素的来源,一般情况下把影响钢结构稳定性随机因素分为三类:
(1)物理、几何不确定性:如材料(弹性模量,屈服应力,泊松比等)、杆件尺寸、截面积、残余应力、初始变形等。
(2)统计的不确定性:在统计与稳定性有关的物理量和几何量时,总是根据有限样本来选择概率密度分布函数,因此带来一定的经验性。这种不确定性称为统计的不确定性,是由于缺乏信息造成的。
(3)模型的不确定性:为了对结构进行分析,所提的假设、数学模型、边界条件以及目前技术水平难以在计算中反映的种种因素,所导致的理论值与实际承载力的差异,都归结为模型的不确定性。
以上都是钢结构稳定设计中存在的问题,只有我们进一步地深入研究这些稳定,钢结构稳定理论将会进一步完善,如对于钢结构稳定设计中涉及到随机因素的影响,国外已经引入了钢结构稳定的可靠度设计,这也表明了钢结构稳定设计理论也在不断的完善。
4、结束语
钢结构稳定问题区别于强度问题。在实际设计中,设计人员应该明确知道结构构件的稳定性能,以免在设计过程中发生不必要的失稳损失。针对上述问题,本文提出了在设计过程中设计人员应该明确的一些基本概念;其次,随着新型结构的出现,设计人员对其性能认识的不足,从而导致构件的失稳,本文就这个问题阐述了新型结构现存的一些问题,并且针对一些问题论述了产生的原因。总之,只有深入了解这些问题,才会使得钢结构稳定理论设计不断地完善。
参考文献
[1]陈绍蕃.钢结构设计原理.科学出版社,2000.23-25.
[2]夏志斌,潘有昌结构稳定理论.高等教育出版社.1988.11-12.
[3]陈绍蕃.钢结构稳定设计指南.中国建筑工业出版社,1995.
[4]朱步范,罗建华.钢结构稳定性设计计算要点.新疆石油科技.l998年第3期(第8卷)-69-.
[5]卢家森,张其林.钢结构稳定问题的可靠性研究评述同济大学学报.
[6]吴剑国.网壳结构稳定性的可靠性研究.博士论文,同济大学,2001.
关键词: 钢结构设计;问题;建议
Abstract: this article is the author of the work experience in recent years, mainly discusses the design of the steel structure in the choice of the form of structure, section design, the support design, node design problems, and put forward some reference and Suggestions.
Keywords: steel structure design; Problem; suggest
中图分类号:S611文献标识码:A 文章编号:
近几年随着建筑物越来越向着大跨度、大空间方向发展,传统的钢筋混凝土结构已不能完全满足建筑结构的多样化,钢结构弥补了混凝土结构的种种不足之处,且受到广泛的重视。与混凝土结构相比,钢结构一般具有如下的特点:
1) 结构构件自重轻。钢结构与钢筋混凝土结构相比要30% ~ 50% ,结构构件自重轻,因此相应的基础、地基处理费用也较低。此外,在相同地震烈度下结构的地震反应较小。2) 结构布置灵活。钢材结构组织均匀,而且强度、弹性模量高,可采用大开间布置,使建筑平面能够合理分隔,灵活方便。如单层工业厂房,传统钢筋混凝土结构形式由于受屋面板、墙板尺寸的限制,柱距多为 6 m,而钢结构的围护体系可采用金属压型板,所以柱网不受模数限制,柱距大小主要根据使用要求和经济合理的原则考虑。3) 施工周期短。钢结构的主要构件和配件多为工厂制作,易于保证质量,除基础施工外,基本没有湿作业; 构件之间的连接多采用高强度螺栓连接,安装迅速,施工周期短。4) 经济效益高。钢结构构件采用先进自动化设备制造,运输方便,因此工程周期短,资金回报快,投资效益相对较高。5) 由于钢材本身的材质问题,钢结构耐候性、耐火性、耐腐蚀性,还存在着一些缺陷。6) 构件及结构的稳定性是钢结构的突出问题。钢结构的构件截面相对较小,造成了结构容易失稳。因此我们在钢结构设计和施工时,应采取相应的提高稳定的措施。
1 结构布置
钢结构的结构体系包括框架结构、框架—支撑结构、筒体结构、平面桁架结构、网架( 壳) 结构、索膜结构、轻钢结构、塔桅结构等。选择结构体系时,应考虑它们不同的特点,如在轻型钢结构工业厂房中,当有较大悬挂荷载时,可考虑放弃门式刚架结构而采用网架结构; 建筑设计允许的情况下,可在框架中布置支撑来提高结构刚度,一般能取得比简单的刚性连接节点框架更好的经济性; 对屋面覆盖跨度较大的建筑,可选择悬索或索膜结构体系,其构件以受拉为主; 高层钢结构设计中,常采用钢—混凝土组合结构,来弥补钢结构本身的缺陷,提高结构性能。
结构的布置应根据结构体系的特征、建筑物荷载分布的情况及性质等因素综合考虑。一般说来,结构布置应刚度均匀,力学模型清晰,使荷载以最直接的路径传递到基础。此外,结构布置应根据具体情况灵活多变。如框架结构中次梁的布置,一般为减小截面而沿短向布置次梁,但会使主梁截面加大,因此减小了楼层净高。为避免这一问题,可根据需要调整其荷载传递方向,以满足不同的设计要求。应特别注意的是结构的抗侧应有多道防线,如有框架—支撑结构体系,框架柱至少应能单独承受 1/4 的总侧向荷载。
2 截面设计
构件截面设计是否合理直接关系到结构的安全性,工程的造价及施工是否方便。结构形式确定后,可根据经验对构件截面作初步估算。主要包括梁、柱和支撑等构件截面形状与尺寸的假设,一般钢梁可选择槽钢、轧制或焊接 H 型钢截面等。根据荷载与支座情况,其截面高度通常在跨度的 1/20 ~1/50 之间选择。翼缘宽度根据梁间侧向支撑的间距按我国现行钢结构规范限值确定,尽量回避钢梁整体稳定的计算。确定了截面高度和翼缘宽度后,其板件厚度可按规范中局部稳定的构造来初步确定。柱截面根据长细比来估计,通常 50≤λ≤80,然后考虑不同的受力情况,选择钢管或 H 型钢等截面形式。
在进行钢结构设计时,应在确保结构安全,满足使用要求的前提下,使结构用钢量最省、造价最低。因此,如何选择合理截面的杆件,使其在满足强度、刚度、稳定性等要求的前提下,用钢量最小就是优化设计的最终目标。
在进行截面优化时,必须综合考虑以下几点: 1) 构件强度、稳定验算。截面尺寸的优化必须满足强度、稳定性的要求,从而满足结构设计的安全性要求。2) 刚度要求。截面尺寸在优化时,结构的整体刚度必须满足有关规范规定的变形控制要求,即横梁的最大挠度、柱顶的最大水平位移、吊车轨顶处柱的最大水平位移必须满足有关规范规定的变形限值。3) 构造要求。优化截面尺寸必须满足有关规范的构造要求及使用要求。如柱翼缘的宽厚比、腹板的高厚比等截面尺寸都必须满足有关规定。4) 制作、安装控制条件。优化构件截面尺寸必须满足常规的制作、安装要求。
3 支撑设计
在钢结构中通常利用支撑提高结构或构件的稳定性。合理布置支撑体系可有效优化主要承重构件内力分布情况,可有效改善整体刚度分布,加强结构薄弱环节,使结构整体共同抵御水平荷载,尤其是地震作用。支撑体系的设计一般遵从以下原则:
1) 明确、合理地传递纵向荷载。2) 保证结构体系平面外的稳定,对结构和构件的整体稳定提供侧向支点。3) 结构安装方便。4) 满足必要的强度、刚度要求,具有可靠的连接。
柱间支撑通常采用十字交叉式。在柱间有运输、通行域、放置设备等要求时,可采用门架式柱间支撑和单斜式柱间支撑。此外,还有人字形、K 形、L 形等支撑形式,对于常用的支撑体系,在相同用钢量下,十字支撑体系和人字支撑体系对提高结构侧向刚度的作用相对显著。
4 节点设计
连接节点的设计是整个设计过程中极其重要的环节,节点设计得当与否,对保证结构的整体性、可靠度以及建设周期和成本有着直接影响。在进行结构设计时,在结构分析过程中就应该想好用哪种节点形式,根据结构构件的选用,传力特性不同判断是选用刚节点、铰节点还是半刚节点。
对于焊接节点,焊缝的尺寸及形式应符合我国现行规范的有关规定。如焊条的选用应和被连接金属材质强度相适应,E43 对应 Q235,E50 对应 Q345。此外,焊接设计中应考虑焊缝的重心尽量与被连接构件重心接近。对于栓接节点,普通螺栓由于其抗剪性能差,只能在结构次要部位使用。高强螺栓的使用相对广泛,常用 S8. 8 和 S10. 9 两个强度等级,高强螺栓连接根据受力特点分承压型和摩擦型两种连接,在设计时应注意两者计算方法的差别。连接板可简单取其厚度为梁腹板厚度加 4 mm,然后按我国现行规范进行相应验算。
此外,节点设计应考虑制造厂的工艺水平、施工空间及构件吊装顺序等,尽可能让工人方便进行现场定位与临时固定。
钢结构的合理利用可以有效提高企业的经济效益,和传统的钢筋混凝土结构相比,钢结构更加环保。就这点来说,钢结构更加符合国家节能减排的号召,满足建筑对节能环保材料的需求。钢结构本身就是由钢材构成的,建筑对高强度和高效能材料的需求也因此得到满足,具有很大的循环利用价值;在工程施工过程中,为了保证不出现其他问题,就需要在设计阶段对图纸和计算不断优化,在保证图纸质量的前提下,确保施工顺利进行;设计过程应该经济合理,可以满足建筑抗震和防火要求;和施工工艺以及相关产业紧密配合,促使钢结构施工过程不断优化,在保证质量的基础上满足施工过程中的各种要求。
1.1工业建筑中常规钢结构的作用
在工业建筑中,钢结构的常规应用由来已久,我国多数工业厂房均采用的是常规钢结构人字梁以及工字梁,这些常规钢结构已成为工业早期时代的主要象征。而这些特征构成了我国的吊车梁式系统以及常规钢屋架系统。由于民用建筑、商用建筑以及工业建筑各有不同,在进行工业建筑时要求建筑结构能够为工业生产以及施工提供最好的跨度及空间。而传统钢筋混凝土结构已经不能完全满足现在工业生产在跨度以及空间上的相关需求,从而鉴于此基础上的钢屋架系统应运而生,屋架系统主要由屋架、系杆以及支撑组成。同时吊车梁系统作为工业厂房的重要部分,多数厂房中均设有吊车,主要由车档、吊车梁、轨道、制动结构及连接件等构成。在传统钢筋砼结构不能够满足新时代工业建筑在相应功能及跨度上需求时多采用钢结构。如(1)材料堆场、大型仓库以及飞机装配车间等多采用钢结构体系,这些钢结构体系多为网架、拱架、门式刚架以及悬索等;(2)建筑物受到动力荷载影响时,多采用钢结构体系;(3)碳素厂高楼部碳素振动成型机对相应结构的耐疲劳程度和强度要求均较高时,多采用钢结构体系;(4)在高烈度区,钢筋砼结构早已超出了现行工业行业的规范以及规定,应采用钢结构以满足其新的需要;(5)原有厂房需改建或扩建时,多采用钢结构。综上即可知,钢结构在现今工业建筑中有着十分重要的作用,且应用广泛。
1.2工业钢结构在建筑工程中的应用方向
在工业建筑中,相关人员应该根据规定的生产流程来为工艺服务。在这个过程中,工业钢结构的形式、材料与空间等多个方面都有特殊的标准。由于建筑体量比较大,要求相关人员应该注重把握好尺度,熟练掌握新材料技术。因此,工业建筑与普通建筑相比,具有一定的特殊性。在工业建筑中,一些比较简单的建材会被新建材取代,落后的施工工艺会被淘汰。如今在工业钢结构方面,包括钢缆、构件和型材等方面的建材类型越来越丰富。另外,高性能施工涂料的应用有效地解决了工业钢结构中存在的防火、防腐、防污染以及隔热等多个方面的问题。随着经济的发展与科学技术的日益进步,涌出了很多新的设备、工艺与材料,有利于迎合工业建筑设计的更高要求,落后的原有工业建筑体系应该与时俱进,实现进一步的完善。
2钢结构在工业建筑中存在的问题
目前,人们对工业钢结构在建筑方面的相关认识还不够全面。传统混凝土结构一直影响着人们的建筑观念,直到现在也还没有彻底转变。工业钢结构体系还不够完善,其具有一定的复杂性以及综合性,涉及到多种配套体系,比如屋面、墙体、防腐、隔热和保温等多个方面的配套材料。而国内的工业钢结构与发达国家相比,其技术水平与设计理念相对落后,专业人才的培养、新产品的研发、设备的制作与安装水平、钢材质量等多个方面都没有得到很明显的提升。从事工业钢结构的设计、制作、安装以及监理等领域的相关工作人员依旧没有掌握好新知识,没有彻底转变新理念,没有充分挖掘新材料,对新的施工方法也缺乏足够的掌握力度。
3优化工业建筑施工过程中的钢结构
在实际工作中,为了有效地提高工业建筑中钢结构的稳定性。
3.1需要我们确保脚螺栓的稳定与坚固,保证在脚螺栓使用过程中控制得当,且可以保证钢结构的应用合理有效。对脚螺栓的安装与埋设,需要重视其精度问题,以保证其他环节的有序稳定运行。
3.2要在地脚螺栓的安装中,注意钢柱的准备,有效地协调平面控制网全系统的每个环节,进而更好地保证螺栓的安装精度,使钢结构稳定性增加。
3.3要注意顺利弹出柱脚底板十字线、地脚螺栓的中心线,并将柱脚剪力孔做好积极的清理工作,在钢柱就位后,要将标高调整好,并坚固螺母。
3.4对钢结构的施工需要注意梁柱安装,并控制梁柱之间的柱间支撑精度,使空间单元的稳定性提高,以保证其他安装工作有效进行。
3.5要注意合理有效地应用垫板,确保垫板定位线精准,以对后续钢结构施工整体运作起到优化的作用。此外,在安装结构构件中,要健全构件储备,并能够充分地利用构件设备,更好地满足实际钢结构工作需要。堆放要合理规范,管理科学。每个存放场地均要有专人管理,根据供货需要携带清单取货,适时清点。
4结束语
关键词:土木工程;高层建筑;结构设计;热点问题
Abstract: along with the rapid development of high buildings, multilayer reinforced concrete frame structure is more and more widely used in construction. In the reasonable height and layer, frame structure can provide larger building space, the layout flexible, fit a variety of technology and use function requirements. But, in the frame structure design, still exist some practical problems, the following this paper of multilayer reinforced concrete frame structure design in the paper analyses the problems in the research and provide the reference for colleague.
Keywords: civil engineering; High-rise buildings; Structure design; Hot issues
中图分类号:[TU208.3] 文献标识码:A 文章编号
1、钢筋混凝土框架结构设计方法的综述
自钢筋混凝土框架结构在土木工程中出现以来,随着生产实践的经验积累和科学研究的不断进步,钢筋混凝土框架结构的设计方法在不断的发展和完善,先后经历了容许应力设计方法、破损阶段设计方法和极限状态设计方法。容许应力法以线弹性设计方法为基础,要求在使用荷载作用下构件截面的应力不大干容许应力,截面应力按线弹性设计方法求出,容许应力是用材料的强度除以安全系数求得。容许应力法仅考虑材料的弹性性质,容许应力取值也无科学依据,框架结构设计是否安全可靠无法用实验来验证。破损阶段法以塑性设计方法为基础,要求在使用荷载作用下构件截面的内力不大于破坏时内力除以某一安全系数,破损阶段法使构件有了总的安全度的概念,可以说它开创了一个新局面。但它仍存在一些重大的缺点:只保证了构件的强度,但却无法了解构件正常使用是否满足要求;安全系数取值仍须经验,并无严格科学依据;单一安全系数不能对不同荷载、材料、构件区别对待,从而正确地度量框架结构的安全度。极限状态法是破损阶段的发展,它规定了框架结构的极限状态,并把单一安全系数改为三个分项系数,即荷载系数、材料系数和工作系数,从而把不同荷载、材料、构件区别对待,使构件具有比较一致的安全度。
从本质上讲,破损阶段设计法和极限状态设计法中的承载力极限状态设计所依据的都是极限强度设计方法。极限强度设计方法的基本原则是求出截面破坏时的极限承载力,然后控制截面在使用荷载作用下的内力不大于破坏时的极限承载力除以某个考虑安全的系数。系数可用单一系数,即破损阶段法;也可用分项系数,即极限状态法。随着可靠度设计方法的发展,安全系数的取值已经从传统的定值设计法发展到今天的半概率设计法,又在向近似概率设计法发展,使框架结构设计的极限状态设计方法向更完善、更科学的方向发展。但是,只有框架结构的极限承载力得以准确评估后,框架结构安全系数更为精确、科学的取值才会更有意义,框架结构安全度才能得到充分保证。
2 钢筋混凝土框架结构设计时正确选取结构参数
2.1 选取设计基本地震加速度
《建筑抗震设计规范》3.2.2条中规定:抗震设防烈度为Ⅶ度时,设计基本地震加速度值分别为0.1g和0.15g两种,抗震设防烈度为Ⅷ度时,设计基本地震加速度值分别为0.2g和0.3g两种,这与89旧规范差别较大。计算中应严格注意地震区的划分,选取正确的设计基本地震加速度值,这一项对地震作用效应的影响极大。
2.2 地震力振型组合数
对于较高层建筑,当不考虑扭转耦联时,振型数应不小于3;当振型数多于3时,宜取为3的倍数,但不能多于层数;当房屋层数不大于2时,振型数可取层数,对于不规则建筑,当考虑扭转耦联时,振型数应不小于9;结构层数较多或结构刚度突变较大时,振型数应多取,如结构有转换层,顶部有小塔楼等,振型数应大于12或更多,但不能多于房屋层数的3倍;只有定义弹性楼板且按总刚分析法分析, 有必要时才可以取更多的振型。
2.3 结构周期折减系数
框架结构由于填充墙的存在,使结构的实际刚度大于计算刚度,计算周期大于实际周期,因此,算出的地震作用效应偏小,使结构偏于不安全,因而对结构的计算周期进行折减是必要的,但如果折减系数取得过大也是不妥当的。对于框架结构来说,采用砌体填充墙时,周期折减系数可根据填充墙的材料及数量选取0.6~0.7;砌体填充墙较少或采用轻质砌块时,可取0.9;无墙的纯框架,计算周期可以不折减。
2.4 梁刚度放大系数
结构设计计算软件的输入模型均为矩形截面,未考虑因存在楼板形成T型截面而引起的刚度增大,造成结构的实际刚度大于计算刚度,算出的地震剪力偏小,使结构偏于不安全,因此计算时应将梁刚度进行放大,放大系数中梁取2.0,边梁取1.5为宜。
3 框架结构构造配筋
3.1 框架外挑梁配筋
由于占地面积的限制,使用功能的要求或结构上的原因,工程上常在框架的梁端设计挑梁。由于框架梁的荷载与外挑梁的实际荷载值不同,因而框架梁与外挑梁的断面尺寸会有所不同,而有的设计人员在绘图时只是将框架梁上的某些主筋向外挑梁延伸,殊不知有些主筋根本无法伸进挑梁,这些差错一般在施工时才会暴露出来,但为时已晚。许多钢筋已截断成型,这不仅影响了施工进度,而且也造成了不必要的损失。框架梁外挑梁下常设置钢筋混凝土柱。在柱的内力和配筋计算中,有些设计人员对其受力概念不清,误认为此为构造柱,并且其配筋为构造配筋,悬臂梁也未按计算配筋,这样有可能导致水平荷载作用下承载力不足,为事故的发生埋下隐患。
3.2 框架边柱柱顶配筋
对于框架结构的高层建筑,水平荷载对结构的倾覆力矩以及由此在竖向构件中所引起的轴力与建筑高度的平方成,正比;顶点位移与建筑高度的4次方成正比,水平荷载是结构设计中的控制因素,框架顶层的风荷载较大,而屋面结构荷重传给边柱的轴向总力比楼层边柱总力要小,显然柱顶有大偏心问题顶层边柱节点出现轴向力对截面重心的偏心距大于0.5倍的柱截面高度(e0>O.5h)。根据框架结构的构造要求,横梁上部钢筋应全部伸入柱内,且伸过横梁下边;柱内一部分钢筋伸到顶端,另一部分钢筋伸到横梁内,其根数依据计算确定且不少于2根,设计人员在图中经常容易将边柱柱角的钢筋弯入梁内,对这类问题,缺乏实践经验的工程技术人员不易立即发现,而要等施工时才会察觉。问题的症结在于柱宽大于梁宽,柱角的纵筋要完全伸入梁内是办不到的,对这种差错应引起设计人员的重视。
3.3 框架梁、柱箍筋配置
根据《建筑抗震设计规范》第6.3.3条及6.3.8条规定,工程习惯上常取的粱、柱箍筋加密区最大间距为100mm,非加密区箍筋最大间距为200mm。电算程序信息中通常也内定梁、柱箍筋加密区间距为100mm,由设计人员根据规范确定箍筋直径和肢数。当框架梁中由于种种原因纵向钢筋超筋时,梁端适当加大抗剪承载力对结构抗震非常有利,这也是当梁端纵向受拉钢筋配筋率大于2%时,规范规定梁的箍筋直径应比最小构造直径增大2mm的原因。对于框架柱,当框架内定柱加密区箍筋间距为100mm时,在某些情况下,亦可能因非加密区箍筋间距采用200mm引起配箍不足。这里需要指出的是,梁、柱箍筋非加密区配箍验算时可不考虑强剪弱弯的要求,即剪力设计值取加密区终点处外侧的组合剪力设计值,并且不乘以剪力增大系数。
4 多层框架结构设计要求
4.1 强柱弱梁节点设计
这是为了实现在罕遇地震作用下,让梁端形成塑形铰,柱端处于非弹性工作状态,而没有屈服,但节点还处于弹性工作阶段。强柱弱梁措施的强弱,也就是相对于梁端截面实际抗弯能力而言柱端截面抗弯能力增强幅度的大小,是决定由强震引起柱端截面屈服后塑性转动能否不超过其塑性转动能力,而且不致形成“层侧移机构”,从而使柱不被压溃的关键控制措施,柱强于梁的幅度大小取决于梁端纵筋不可避免的构造超配程度的大小,以及结构在梁、柱端塑性铰逐步形成过程中的塑性内力重分布和动力特征的相应变化,因此,当建筑许可时,尽可能将柱的截面尺寸做得大些,使柱的线刚度与梁的线刚度的比值尽可能大于1,并控制柱的轴压比满足规范要求,以增加延性。验算截面承载力时,人为地将柱的设计弯矩按强柱弱梁原则调整放大,加强柱的配筋构造。梁端纵向受拉钢筋的配筋不得过高,以免在罕遇地震中进入屈服阶段不能形成塑性铰或塑性铰转移到立柱上。注意节点构造,让塑性铰向梁跨内移。
4.2 强剪弱弯剪力墙设计
为了提高抗震墙的变形能力,避免发生剪切破坏,对于一道截面较长的抗震墙,应该利用洞口设置弱连梁,使墙体分为小开口墙、多肢墙或单肢墙,并使每个墙段的高宽比不小于2。所谓弱连梁,是指在地震作用下各层连梁的总约束弯矩不大于该墙段总地震弯矩的20%;连梁不能太强,以免水平地震作用下某个墙肢出现全截面受拉,这是比较危险的。但是,考虑到耗能,连梁又不能太弱,连梁弱到成为一般小梁时,墙肢就变成单肢墙,而单肢墙的延性很差,仅为多肢墙的一半,且单肢墙仅具有一道抗震防线,超静定次数少,在地震作用下是很不利的,目前,有许多设计人员将结构中门洞连梁、窗洞连梁都改为截面高度极小的二力杆件,这对结构抗震是很不好的。在实际设计中,对连梁的刚度都要进行折减,这是因为剪力墙的刚度一般都很大,在水平力作用下,剪力墙中的连梁会因为很大的内力而超过截面允许值,可靠的办法是让这些连梁先屈服,要使连梁能形成塑性铰而不发生脆性破坏,连梁首先就必须满足强剪弱弯的要求,对连梁的刚度进行折减实际上就是降低其抗弯能力。
5 结束语
关键词:钢筋混凝土高层结构;结构设计;剪力墙
中图分类号:tu37 文献标识码:a
随着改革开放以来我国国民经济整体的迅速发展,国内各个行业都得到了巨大的发展,整体的行业水平稳步提高,其中,建筑行业的提升水平是比较快的,建筑行业的发展带来了建筑形式,建筑技术,建筑材料等的多元化变革,其中钢筋混凝土因为安全系数高,抗震性能好等诸多优点而使用广泛,其中高层建筑发展更为迅速,设计思想也在不断更新,结构体系日趋多样化,建筑平面布置与竖向体型也越来越复杂,这就给高层建筑结构分析和设计提出了更高的要求。如何高效、准确地对高层结构体系进行内力分析,是结构工程师设计高层建筑结构时需要解决的重要课题。本文通过对高层建筑结构设计过程中经常遇到的问题进行分析,为高层建筑结构设计提供计算方法及理论依据。
1 建筑设计
建筑不同于普通商品,尤其是高层建筑,很多因为是地理标志性建筑。什么是高层建筑呢?10层及10层以上或房屋高度大于28m的住宅建筑和房屋高度大于24m的其他高层民用建筑。在建筑外观上,我们应该多选择一些新颖的建筑样式,同时又要注意其抗震设计、抗风设计等基础要素。但是建筑也不能盲目的标新立异,结构上应该选择规则性强一些的,不论是平面或者立体都应该尽量遵循这个原则。而且建筑在弹性设计上,尽量要满足延展性的需求。这种概念设计的强调是对建筑师的必须要求,建筑设计师一定要重视各种规范规定,千万不要陷入只管设计不管计算的误区。
2 结构设计
2.1 剪力墙底部加强部位墙厚的确定
抗震设计时,剪力墙的底部加强部位包括底部塑性铰范围及其上部的一定范围,其目的是在此范围内采取增加边缘构件箍筋和墙体横向钢筋等必要的抗震加强措施避免脆性的剪切破坏,改善整个结构的抗震性能。《高建筑混凝土结构技术规程》jgj3-2010(下简称《高规》)7.1.4条规定,抗震设计时,一般剪力墙结构底部加强部位的高度可取墙肢总高度的1/10和底部两层二者的较大值。部分框支剪力墙结构底部加强部位的高度应符合《高规》10.2.2条的规定,底部加强部位的高度应从地下室顶板算起,当结构计算嵌固端位于地下一层底板或以下时,底部加强部位宜延伸到计算嵌固端。《建筑抗震规范》gb50011(以下简称<抗规》)及《高规》规定了剪力墙底部加强部位墙厚的取值。其中,考虑到高层建筑结构的重要性,《高规》对墙厚的取值规定得更为严格。一般情况下,高层建筑结构底部加强部位的剪力墙截面厚度k取法如下:一、二级抗震等级时取层高或剪力墙无支长度的1/16,并且满足bw≥200mm;三、四级抗震等级时,k取层高或剪力墙无支长度的1/20,并且满足k≥160mm。但对于墙底轴力较小且结构层高相对较高的剪力墙而言。其截面厚度按上述方法取值则显得不是很经济合理。因此具体工程设计时,剪力墙截面厚度bw可适当减小但必须按下式计算墙体的稳定性。
公式中:q为作用于墙顶组合的等效竖向均布荷载设计值;ec为剪力墙混凝土弹性模量;t为剪力墙墙肢截面厚度;lo墙肢计算长度。
2.2 结构的超高问题
在抗震规范与高规中,建筑物的高度控制是非常严格的,而在新规范中这一点重新进行了界定,除了将原来的限制高度设定为a级高度的建筑外,增加了b级高度的建筑。因此,所以在进行设计的时候一定不可以超越其应属范围,b级建筑物就应该控制在b级规定范围之内,一旦超过了,那么无论是设计还是施工都要全部进行重新设定。在现实情况中这类问题曾经出现过,结果导致审查时难以通过。
2.3 短肢剪力墙的设置问题
短肢剪力墙使用虽然具有一定的的作用,但是在使用数量上一定要严格参照规范,《高规》7.1.8规定抗震设计时,高层建筑结构不应全部采用短肢剪力墙,b级高度高层建筑以及抗震设防度为9度的a级高度层建筑,不宜布置短
肢剪力墙,不应采用具有较多短肢剪力墙的剪力墙结构。当采用具有较多短肢剪力墙的剪力墙结构时,应符合下列规定:(1)在规定的水平地震作用下,短肢剪力墙承担的底部倾覆力矩不宜大于结构底部总地震倾覆力矩的50%;(2)房屋适用高度应比本规程表3.3.1-1规定的剪力墙结构的最大适用高度适当降低,7度、8度(0.2g)和8度(0.3g)时分别不应大于100m,80m和60m。短肢剪力墙是指截面厚度不大于300mm、各肢截面高度与厚度之比的最大值大于4但不大于8的剪力墙。
2.4 基础设计
在地基基础设计中要注意地方性规范的重要性问题。由于我国占地面积较广,地质条件相当复杂,作为国家标准,仅仅一本《地基基础设计规范》无法对全国各地的地基基础都进行详细的描述和规定。因此,作为建立在国家标准之下的地方标准,地方性的“地基基础设计规范”能够将各地方的地基基础类型和设计处理方法等一些成熟的经验描述和规定得更为详细和准确。所以,在进行地基基础设计时,一定要对地方规范进行深入地学习,以避免对整个结构设计或后期设计工作造成较大的影响。
3 计算与分析
3.1 计算模型的选取
对于常规结构,可采用楼板整体平面内无限刚假定模型;对于多塔或错层结构,可采用楼板分块平面内无限刚模型;对于楼板局部开大洞、塔与塔之间上部相连的多塔结构等可采用楼板分块平面内无限刚,并带弹性连接板带模型;而对于楼板开大洞有中庭等共享空间的特殊楼板结构或要求分析精度高的高层结构则可采用弹性楼板模型。
3.2 抗震等级的确定
对常规高层建筑,与主楼连为整体的裙楼的抗震等级不应低于主楼的抗震等级;对于地下室部分,当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可逐层降低一级,但不低于四级,地下室中超出上部主楼相关范围且无上部结构的部分,其抗震等级可根据具体情况采用三级或四级。
结语
钢筋混凝土高层结构作为现代化城市发展的一种客观成果,引领着我国建筑行业整体的发展水平。在设计方面,钢筋混凝土高层结构一定要充分考虑到各种潜在的因素,既要让建筑漂亮美观大方,也要注意建筑的安全性能,毕竟后者是所有建筑的立足之本。在做好相关工作的基础上,希望我国的建筑水平能迎来更好的发展。
参考文献
[1]jgj3-2010,高层建筑混凝土结构技术规程[s].
关键词:ANSYS;钢结构框架;风荷载;安检通道
前言
由于钢结构设计方法及理论的日趋成熟、结构优化设计与计算机辅助设计的迅猛发展,促进了钢结构的广泛应用,目前已成为一种主要的建筑结构类型应用于各个领域。钢结构的结构形式多种多样,主要有:桁架结构、框架结构、网壳结构及支架等。
ANSYS有限元软件是一个通用设计分析程序,可以用来分析超高超限、体系复杂结构的大型有限元软件,在机械、土木、电子及航空等不同领域得到了广泛的应用,在世界范围内已经成为土木建筑行业分析软件的主流。
1设计对象
本文设计对象是为福建某核电站进行配套的安检通道设计,该核电站东临东海,北临晴川湾。该安检通道结构尺寸为11m×4m×2.8m,选用单层框架结构,采用设计及仿真分析相结合的方法,进行整体的设计,从该结构的1:1模型入手,采用AUTOCAD软件进行结构设计,再采用大型有限元分析软件ANSYS进行结构的风荷载作用分析。
2结构设计
1) 主体结构主要为单向受弯,需要有很好的稳定性,故立柱采用H型钢,选择H型钢的好处还在于H型钢截面的惯性中心在结构内部,能够增强结构的稳定性。一般情况下,梁为单向受弯构件,也通常采用H型钢。H型钢的材料在截面上的分布比较符合受弯的特点,用钢较省,而且其比内翼缘有斜坡轧制普通工字钢截面抗弯性能更高,易于与其他构件连接。
2) 通常主结构使用单一钢种以便于工程管理。当强度起主要作用时可选择Q345,稳定控制时宜使用Q235。结合经济性考虑故本结构构件均选用Q235B。
3) 整个结构通过焊接在顶部的六个吊耳进行吊装,强度高。整体结构设计如图1所示。
4.6 风荷载的有限元分析
为设备做充分的安全考虑,整体迎风面积风荷载按设备顶端即Z=2.8m处风荷载值进行计算。同时出于安全性考虑,分析时按2.0KN/m2风荷载施加荷载。
在ANSYS中建立钢架整体计算模型,梁、柱均采用BEAM188单元,作用在钢结构框架上的各种荷载等效离散化为节点力,考虑安装设备重量对整体钢结构框架的影响,采用集中力的方式作用于结构节点上,在ANSYS中直接加载于结构模型节点上,风荷载的计算如前文所示,风向取正Z向。图3~图5为结构的风荷载作用分析结果图,包括结构的变形、等效应力等。
4.7 结果分析
从图3~图5可以看出钢结构框架结构在风荷载组合荷载作用下,变形很小仅为26.337mm。最大等效应力为584.26MPa,最大应力点出现在通道的最右侧迎风面的梁上,通道顶部和主梁的重量通过梁与柱的交点向下传递,因此钢结构框架结构的整体承载力极限状态检验合格。
在风荷载作用下整个框架在背风侧受压力,迎风面受拉力,风荷载是作用在钢架上的主要水平荷载,水平荷载的主要是由主梁和内部的设备安装钢梁来传递的。侧风面的梁均受压力,这主要是由于计算的风向为正Z向,计算结果与理论分析相符合。
从ANSYS的仿真计算结果及结果的分析中可以看出主机组装机钢结构框架结构的内力较大,但由于设计构件强度及尺寸足够大,钢结构框架结构的整体形变及构件的应力、变形均较小,符合规范的要求及实际设备安全运行的需要。
5结论
1)本文根据项目要求对安检通道的钢结构框架进行了结构设计,使其能够满足安检通道对于空间布局、吊装、安装固定等方面的要求;
2)本文使用ANSYS有限元分析软件对钢结构框架结构进行分析验证,充分考虑该安检通道所处的位置对风载荷进行重点考虑,验证结果均能满足项目要求。
参考文献:
[1] GB50009-2001,《建筑结构荷载规范》[S]
[2] GB50017-2003,《钢结构设计规范》[S]
[3] 胡柱.快速裂解制生物燃油主机组钢结构的设计[J].机电产品开发与创新.2010.
本科毕业论文设计开题报告范文
1.课题名称:
钢筋混凝土多层、多跨框架软件开发
2.项目研究背景:
所要编写的结构程序是混凝土的框架结构的设计,建筑指各种房屋及其附属的构筑物。建筑结构是在建筑中,由若干构件,即组成结构的单元如梁、板、柱等,连接而构成的能承受作用(或称荷载)的平面或空间体系。
编写算例使用建设部最新出台的《混凝土结构设计规范》GB50010-2002,该规范与原混凝土结构设计规范GBJ10-89相比,新增内容约占15%,有重大修订的内容约占35%,保持和基本保持原规范内容的部分约占50%,规范全面总结了原规范实施以来的实践经验,借鉴了国外先进标准技术。
3. 项目研究意义:
建筑中,结构是为建筑物提供安全可靠、经久耐用、节能节材、满足建筑功能的一个重要组成部分,它与建筑材料、制品、施工的工业化水平密切相关,对发展新技术。新材料,提高机械化、自动化水平有着重要的促进作用。
由于结构计算牵扯的数学公式较多,并且所涉及的规范和标准很零碎。并且计算量非常之大,近年来,随着经济进一步发展,城市人口集中、用地紧张以及商业竞争的激烈化,更加剧了房屋设计的复杂性,许多多高层建筑不断的被建造。这些建筑无论从时间上还是从劳动量上,都客观的需要计算机程序的辅助设计。这样,结构软件开发就显得尤为重要。
一栋建筑的结构设计是否合理,主要取决于结构体系、结构布置、构件的截面尺寸、材料强度等级以及主要机构构造是否合理。这些问题已经正确解决,结构计算、施工图的绘制、则是另令人辛苦的具体程序设计工作了,因此原来在学校使用的手算方法,将被运用到具体的程序代码中去,精力就不仅集中在怎样利用所学的结构知识来设计出做法,还要想到如何把这些做法用代码来实现,
4.文献研究概况
在不同类型的结构设计中有些内容是一样的,做框架结构设计时关键是要减少漏项、减少差错,计算机也是如此的。
建筑结构设计统一标准(GBJ68-84) 该标准是为了合理地统一各类材料的建筑结构设计的基本原则,是制定工业与民用建筑结构荷载规范、钢结构、薄壁型钢结构、混凝土结构、砌体结构、木结构等设计规范以及地基基础和建筑抗震等设计规范应遵守的准则,这些规范均应按本标准的要求制定相应的具体规定。制定其它土木工程结构设计规范时,可参照此标准规定的原则。本标准适用于建筑物(包括一般构筑物)的整个结构,以及组成结构的构件和基础;适用于结构的使用阶段,以及结构构件的制作、运输与安装等施工阶段。本标准引进了现代结构可靠性设计理论,采用以概率理论为基础的极限状态设计方法分析确定,即将各种影响结构可靠性的因素都视为随机变量,使设计的概念和方法都建立在统计数学的基础上,并以主要根据统计分析确定的失效概率来度量结构的可靠性,属于概率设计法,这是设计思想上的重要演进。这也是当代国际上工程结构设计方法发展的总趋势,而我国在设计规范(或标准)中采用概率极限状态设计法是迄今为止采用最广泛的国家。
结构的作用效应 常见的作用效应有:
1.内力。
轴向力,即作用引起的结构或构件某一正截面上的法向拉力或压力;
剪力,即作用引起的结构或构件某一截面上的切向力;
弯矩,即作用引起的结构或构件某一截面上的内力矩;
扭矩,即作用引起的结构或构件某一截面上的剪力构成的力偶矩。
2.应力。如正应力、剪应力、主应力等。
3.位移。作用引起的结构或构件中某点位变(线位移)或某线段方向的改变(角位移)。
4.挠度。构件轴线或中面上某点在弯短作用平面内垂直于轴线或中面的线位移。
课题来源、选题依据和背景情况、课题研究目的、工程应用价值
题目:格构式钢管混凝土柱的耐火性能分析
课题来源:
研究人从事炼钢厂房,连铸厂房以及与钢铁行业相关的工艺平台,管道支架等的结构设计。在设计过程中经常遇见采用格构式钢管混凝土柱的工程;而一方面行业内对钢结构组合结构有防火要求,另一方面钢铁厂相比其他工业厂房更容易发生火灾,因此本研究拟以格构式钢管混凝土柱升温与降温受火性能研究为方向,考察破坏形态及其受火极限状态。
选题依据和背景情况:
钢管混凝土作为一种新型的组合结构,是在钢管内部填加混凝土材料而构成一种新型的构件。钢管混凝土一般简写为 CFST(concrete filled steel tubular),其横截面的布置各有不同,按照形状可以分为圆钢管、矩形钢管、和多边形钢管混凝土。 钢管混凝土构件中的两种组成材料在外荷载作用下发生相互作用,其中最主要的作用为钢管内部核心的混凝土受到来自外围钢管的套箍作用,而处于三向应力状态,使混凝土的强度、塑性等力学性能得到了提高。同时,混凝土的存在,又可避免或延缓钢管容易发生局部屈曲的特性,从而能够发挥钢材的材料强度。钢管混凝土构件具有比钢管和混凝土简单叠加后更高的抗压能力以及良好的塑性、韧性和抗震性能。 此外,钢管混凝土还有延性好,抗压强度高,比钢结构具有更好的抗火性能和更好的抗震性能。在施工中,外套钢管可起到模板的作用,便于直接浇筑混凝土,加快施工进度。综上所述,钢管混凝土构件中钢管和混凝土取长补短,使钢管混凝土构件具有强度高、耐疲劳、抗冲击、延性好、抗震、抗火和便于施工等良好性能
二、文献综述
参考文献:
1. 钟善桐. 钢管混凝土结构[M]. 清华大学出版社有限公司, 2019.
2. 蔡绍怀. 现代钢管混凝土结构[M]. 人民交通出版社, 2019.
3. 欧智菁, 陈宝春. 钢管混凝土格构柱偏心受压面内极限承载力分析[J]. 建筑结构学报, 2019, 27(4): 80-83.
4. 廖彦波. 钢管混凝土格构柱轴压性能的试验研究与分析[D]. 清华大学, 2019.
5. 蒋丽忠, 周旺保, 伍震宇, 等. 四肢钢管混凝土格构柱极限承载力的试验研究与理论分析[J]. 土木工程学报, 2019 (9): 55-62.
6. 陈宝春, 欧智菁. 钢管混凝土格构柱极限承载力计算方法研究[J]. 土木工程学报, 2019, 41(1): 55-63.
7. 周文亮. 钢管混凝土格构式柱受力性能研究[D]. 西安科技大学, 2019.
8. Engesser F. Die knickfestigkeitgeraderstbe[M]. W. Ernst &Sohn, 1891.
9. Duan L, Reno M, Uang C. Effect of compound buckling on compression strength of built-up members[J]. Engineering Journal, 2019, 39(1): 30-37.
10. Razdolsky A G. Euler critical force calculation for laced columns[J]. Journal of engineering mechanics, 2019, 131(10): 997-1003.
11. Razdolsky A G. Flexural buckling of laced column with crosswise lattice[J]. Proceedings of the ICE-Engineering and Computational Mechanics, 2019, 161(2): 69-76.
12. Razdolsky A G. Flexural buckling of laced column with serpentine lattice[J]. The IES Journal Part A: Civil & Structural Engineering, 2019, 3(1): 38-49.
13. Kawano A, Matsui C. Cyclic local buckling and fracture of concrete filled tubular members[C]//Proceedings of an Engineering Foundation Conference on Composite Construction in Steel and Concrete IV, ASCE. 2019, 28.
14. Kawano A, Sakino K. Seismic resistance of CFT trusses[J]. Engineering structures, 2019, 25(5): 607-619.
15. Kawano A, Sakino K, Kuma K, et al. Seismic resistant system of multi-story frames using concrete-filled tubular trusses[J]. Int Society of Offshore and Polar Engineers. Cupertino, CA, 2019: 95015-0189.
16. Kawano A, Matsui C. The deformation capacity of trusses with concrete filled tubular chords[C]//Proceedings of an Engineering Foundation Conference on Composite Construction in Steel and Concrete IV, ASCE. 2019, 28.
17. Klingsch W. New developments in fire resistance of hollow section structures[C]//Symposium on hollow structural sections in building construction. 1985.
18. Klingsch W. Optimization of cross sections of steel composite columns[C]//Proc. of the Third International Conference on Steel-Concrete Composite Structures, Special Volume, ASCCS, Fukuoka. 1991: 99-105.
19. Lie T T, Cowan H J. Fire and buildings[M]. Applied Science Publishers Limited, 1972.
20. Lie T T, Chabot M. Experimental studies on the fire resistance of hollow steel columns filled with plain concrete[J]. 1992.
21. Lie T T, Stringer D C. Calculation of the fire resistance of steel hollow structural section columns filled with plain concrete[J]. Canadian Journal of Civil Engineering, 1994, 21(3): 382-385.
22. Lie T T, Chabot M. Evaluation of the fire resistance of compression members using mathematical models[J]. Fire safety journal, 1993, 20(2): 135-149.
23. Kodur V K R. Performance-based fire resistance design of concrete-filled steel columns[J]. Journal of Constructional Steel Research, 1999, 51(1): 21-36.
24. Wang Y C, Davies J M. An experimental study of the fire performance of non-sway loaded concrete-filled steel tubular column assemblies with extended end plate connections[J]. Journal of Constructional Steel Research, 2019, 59(7): 819-838.
25. Ding J, Wang Y C. Realistic modelling of thermal and structural behaviour of unprotected concrete filled tubular columns in fire[J]. Journal of Constructional Steel Research, 2019, 64(10): 1086-1102.
26. Hong S, Varma A H. Analytical modeling of the standard fire behavior of loaded CFT columns[J]. Journal of Constructional Steel Research, 2019, 65(1): 54-69.
27. 钟善桐. 钢管混凝土耐火性能研究的几个问题和方法[J]. 中国钢协钢-混凝土组合结构协会第六次年会论文集 (上册), 1997.
28. 贺军利, 钟善桐. 钢管混凝土柱耐火全过程分析[J]. 中国钢协钢-混凝土组合结构协会第六次年会论文集 (上册), 1997.
29. 钟善桐. 第六章钢管混凝土的防火[J]. 建筑结构, 1999 (7): 55-57.
30. 查晓雄, 钟善桐. Behaviour of concrete filled steel tubular columns under fire[J]. 哈尔滨工业大学学报, 2019, 9(3).
31. 李易, 查晓雄, 王靖涛. 端部约束对钢管混凝土柱抗火性能的影响[J]. 中国钢结构协会钢-混凝土组合结构分会第十次年会论文集, 2019.
32. 徐超, 张耀春. 四面受火方形薄壁钢管混凝土轴心受压短柱抗火性能的分析[J]. 中国钢结构协会钢-混凝土组合结构分会第十次年会论文集, 2019.
33. 王卫华, 陶忠. 钢管混凝土平面框架温度场有限元分析[J]. 工业建筑, 2019, 37(12): 39-43.
34. 王卫华, 陶忠. 钢管混凝土柱-钢筋混凝土梁框架结构温度场试验研究[J]. 工业建筑, 2019 (4): 18-21.
三、研究内容
四、研究基础
1.所需工程技术、研究条件
本科硕士阶段所学习的课程:钢结构基本原理与设计、组合结构设计、结构抗火设计、
有限单元法。
关键词:钢结构 厂房设计 技术要求
中图分类号:TU391文献标识码: A 文章编号:
随着市场经济的不断发展以及我国综合国力的提升,国内的大型钢结构厂房的需求量不断增加,钢结构厂房在企业扩大生产经营规模中得到广泛的应用,当前需要加强对钢结构厂房设计的经验进行总结,不断创新技术。
一、工程简介
某大型有色矿山生产用房主要从事铜钼矿石选矿生产使用,为扩大生产规模决定兴建面积35000平方米的钢结构厂房,该工程于2012年4月完工,主要的钢结构设计平面图如下。该钢结构体系采用彩钢夹芯板等新型的墙体材料进行维护,突出了时代感。
二、厂房设计技术要点研究
该厂房工程的负荷量大,能否达到厂房使用的要求就必须重视钢结构的设计,主要设计要点如下:
(一)厂房结构设计
一是加强处理了厂房的纵向伸缩缝问题,其纵向270m的设计于厂房的规范要求符合,设计时因为考虑了钢结构产钢的荷载较大以及跨度交款,根据《钢结构设计规范》(GB50017-2003)对厂房的多项参数进行控制和取用,在这一范围内,又必须以《钢结构设计规范》(GB50017-2003)为依据减少钢材的用量,即在厂房的98.4m处位置设缝,注意将缝分开,如此能降低工程造价,减少工程设计难度。
二是在进行结构布置时,无论是哪种类型钢结构厂房,一定要重视纵向支撑体系以及钢架体系的设计,构建稳定的钢结构,一定要选取合理科学的布置信形势以及厂房支撑形式,在可靠安全的基础上设计使用功能,延长厂房使用寿命。
三是在对钢结构的加工质量进行设计控制时,须重视钢结构原材料从采购开始一直到成品出厂的把关,尤其重视厂房结构转换梁的构件以及“十字形”截面柱的尺寸精度。
(二)厂房支撑体系设计
作为钢结构厂房设计的关键部分,钢结构厂房支撑体系主要是支撑厂房的各个平面框架,构成较为稳定的厂房钢结构系统,兼有承担传递地震力、风荷载以及温度应力等,支撑体系还要提供一个稳定安全的支撑力,确保钢结构系统的稳定。该厂房支撑体系还要在承担100吨的纵向荷载力。在厂房的柱顶、屋梁以及各个梁祝的外侧设计刚性系杆,在屋面以及有支撑的柱间设计系杆,另外设计支撑体系时,利用均衡布置法,沿钢结构厂房纵向屋檐处,从水平位置设计三道支撑,横面上的柱间以及屋面设计支撑,这样建立起“三横四纵”支撑系统,再通过系杆、支撑以及钢架形成稳定体系。
(三)厂房屋面设计以及屋面支撑系统的设计
该工业厂房的支撑系统主要是以厂房的高度、跨度、屋面的结构、所在区域的地震设防度以及柱间布置为依据。该厂房在内无檩、有檩屋盖体系都会设置垂直方向的支撑,无檩厂房含屋架焊接,有上弦支撑功能,钢结构厂房的屋面须在天窗架以及屋架设计横向支撑,一般屋架间距高于13m的厂房或者含有较大的振动设备的厂房则必须设置纵向的水平支撑。
大型钢架结构的屋面防水、排水设计也是厂房屋面设计的重点。从《屋面工程技术规范》规定来看,厂房的屋面坡度最低为5%,该厂房处于冬天积雪较多区域,坡度设计适当进行了增加。通常单坡厂房屋面长度由该厂房所在地的降雨水头高度情况以及最大温差决定,从厂房设计的经验来看,一般屋面的坡度长度应保持在70m范围内。市场上的钢结构厂房屋面存在2中做法,一是设计为刚性屋面,即该工业厂房使用的压型钢板内含保温绵,另外一个是柔性屋面,即保温层、钢板内板以及防水层组成的屋面。
(四)构件吊装工艺设计
大型钢结构厂房的结构构件含屋架、支撑、檩条、梁柱、墙架以及天窗架等等,不同构件尺寸、形式安装标高各有不同,为保证经济合理,须应用不同的吊装方法以及起重机械。
该厂房在吊装厂房钢柱时,由于占地面积大,设计时使用的是塔式以及自行式起重机安装钢柱,吊装方法为滑行吊装法以及旋转式吊装法。一般吊装重型钢柱则采用双机抬吊法。在起吊钢柱时双机共同吊起钢柱,达到一定的离地高度之后停止,接着主吊机单独吊起钢柱,当竖直吊起钢柱时,拆掉另一台机器的钢丝绳,主机继续吊起钢柱达到指定位置,对钢柱的垂直度进行校正,保证偏差在20mm范围内。校正钢柱、固定钢柱过程中,须对钢柱的垂直偏差程度进行检查,一旦超出指定范围,用千斤顶校正。
在设计大型钢结构厂房时,如果有起重较重的吊车要求,在进行厂房设计时必须重视吊车荷载对厂房结构的影响,保证钢结构的稳定安全,海牙控制钢梁降低造价,如该厂房吊车荷载中的柱顶位移必须符合规范内容,在这一条件下,灵活控制缀条等构件的细长比。
三、结语
我国应用大型钢结构厂房时间较短,还须加强设计经验和技巧。钢结构的设计在厂房总体设计中非常关键,需要坚持实用性、经济型原则下,根据厂房所在地的气候以及客观条件下,因地制宜完成建筑结构的设计。
参考文献:
[1] 谷民. 冶金工业钢结构重防腐涂料的施工质量控制[J].山东冶金,2009:124-126;