前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的土建结构设计论文主题范文,仅供参考,欢迎阅读并收藏。
关键词:建筑工程;混凝土;结构设计
近年来,随着我国城镇化发展的深入推进,建筑需求量越来越多。在现代建筑工程施工过程中,混凝土结构是普遍使用的一种结构形式。这种结构具有承载力强、耐久性好、刚度大、耐火性高、安全性高等特点,同时在施工过程中施工成本较低,得到了广泛的应用。在实际中,为了确保建筑混凝土结构的施工质量,实现建筑工程的各项功能,必须对混凝土结构设计中可能存在的问题进行严格的管控,合理分析,并制定相应的解决对策,为建筑工程施工质量的提高打下良好基础。
1建筑工程混凝土结构设计中的不足
1.1地基与基础设计中的问题
在混凝土结构设计中,天然地基独立基础有时因为持力层土层分布不均匀,使基础坐落在软硬不均的土层上,相邻基础沉降差过大,导致基础变形过大;由于地下室在提高建筑稳定性、地基承载力、减少地震破坏以及解决建筑埋深等方面有十分重要的作用。因此,在很多建筑工程中,经常会设置地下室。当建筑选址在山地上时,由于原始地貌水位较低,设计过程中往往会忽视建筑工程竣工后由于回填土体毛细现象,导致地下室底板及外墙承载力不足,出现墙体裂缝和底板涌水现象,给工程项目带来难以解决的问题和损失。
1.2混凝土上部结构设计中的问题
在混凝土结构上部设计时,还存在一些问题,框架结构中抗震设防防线较少;因梁跨度大,梁截面高度就大,而框架柱截面较小,导致强梁弱柱情况出现;框架—剪力墙和剪力墙结构中,剪力墙布置不均匀,出现单肢剪力墙刚度过大,应力集中,连梁刚度过强等;高层结构中忽视零应力区等现象。这样类似问题出现,会给建筑结构的安全带来隐患。
2混凝土结构设计不足的应对策略
2.1混凝土结构地基与基础设计
在实际工程中,采用天然地基基础形式时,要么基础情况非常好,地基承载力非常高;要么上部荷载较小,楼层数较低,对地基承载力要求也较低,采用天然地基可以使工期短、造价低。但无论如何都要满足地基的强度和变形要求。根据地基基础设计规范的规定,地基承载力特征值低于130kPa、相邻建筑物距离过近可能导致发生倾斜、建筑物附近堆载过大等都应进行变形验算。当基础处于软硬不均的持力层土层上时,要采用褥垫层以调整不均匀沉降。根据具体情况,进行厚度约为500~600mm的换填,并进行分层碾压夯实。采用锥形独立基础时,斜面坡度小于1:3,混凝土能够振捣密实,保证基础强度和高度的要求。在对基础间拉梁设计时,要充分考虑梁上土的重量和柱底荷载拉力的作用,适当的增加配筋,从而保证基础的整体刚度。对于地下室工程,宜建造在密实、均匀、稳定的地基上。当处于不利地段时,应采取相应措施。充分考虑各个构件所承受的荷载,尤其是水浮力,回填土后水的压力会升高。底板的浮力会加大,墙体的水平压力也会增高。针对这样的问题,在建筑使用功能允许的情况下,应将底板和地下室外墙尽量分隔成小跨,以减小压力对底板和外墙的影响,减少开裂情况的发生。同时,可以提高垫层混凝土强度等级,厚度也不小于100mm。
2.2混凝土结构上部设计
上部设计中,宜设置多道防线。(1)对整体建筑的抗震要求进行全面考虑,也就是重视概念设计。抗震设计宜采用平面布置基本均匀,竖向刚度无明显变形、承载力无明显突变的结构体系,不应采用严重不规则结构。因此应选择合理的抗震结构体系和构件截面尺寸以及合适的配筋方式,确保竖向构件有足够的延性,增大构件的塑性变形能力。框剪结构和剪力墙结构设计时,剪力墙应沿着纵横两个方向,布置在建筑周边、电梯间、楼梯间及荷载较大的位置,墙体间距满足规范,同时单片剪力墙的水平剪力不能高于结构底部总水平剪力的30%。在设计第二道防线时,要对剪力墙连梁的跨高比进行严格控制。实践表明,剪力墙连梁跨高比为5时,各项性能是最好的。(2)在进行剪力墙梁、柱设计时,应该坚持强柱弱梁、强剪弱弯、强节点强锚固的原则。此外,对于中震程度建筑混凝土结构,需要考虑第一级别剪力墙,墙肢数量最少要保持4肢。当第一级别的剪力墙进入塑性阶段后,需要在级别较小的剪力墙进行多道设防,避免建筑在震动下过度变形,从而对级别小的剪力墙造成危害。在上部结构设计中,设计者应有选择的将纵横两片剪力墙连接在一起,在遇到中震或者大震时,剪力墙开裂会达到耗能的作用,这样就保持了建筑延性破坏,确保了建筑整体性能不损坏,真正做到小震不坏、中震可修、大震不倒,以保证人民生命财产的安全。
3结束语
在新时期下,不管是业主,还是建设单位都对建筑工程的整体质量有很高的要求,即使是墙体开裂都会对人的心理带来不好的影响。因此结构设计时必须根据具体情况,认真、仔细的对混凝土结构进行设计,并反复审查,发现问题后及时解决,不断优化混凝土结构设计方案,从而促进建筑工程施工质量的提升,为整个建筑工程各项功能的实现提供保障。
作者:毛亚凤 单位:昆明理工大学
参考文献:
[1]张立军.论房屋建筑混凝土施工技术[J].工程技术研究,2017,(2):73+75.
[2]仇文法.建筑工程混凝土施工技术与质量管理[J].住宅与房地产,2015,(28):53+57.
【关键词】钢筋混凝土,建筑工程,结构设计,优化研究
中图分类号:TU37 文献标识码:A 文章编号:
一、前言
伴随着我国建筑行业的迅速发展,工程建筑行业日渐成为了我国国民经济新的经济增长点,不仅仅在国民经济的增长中占据着越来越重要的地位,而且在改善居民生活方式,提高居民的生活质量方面有着巨大的推动作用。随着钢筋混凝土建筑结构在建筑行业中的广泛应用,建筑结构的设计和施工都有了新的标准和要求,在钢筋混凝土结构的设计施工中,不仅仅要使得结构的平面,立面布置符合相关规则,更要使得建筑结构的各种构件的强度和变形能够达到相关的标准,同时,要在满足建筑设计基本目标的基础上,更加重视建筑结构的抗震设计,提高建筑结构的抗震能力,保证整个建筑结构的质量。
二、钢筋混凝土建筑结构设计的优化措施
1.做好结构体系的选型设计与优化
由于大开间剪力墙结构体系,可以做到房间不露出梁柱,有效空间大、隔音效果较好,当采用钢制模板时,墙面和楼板表面平整并且不需要在湿作业的情况下抹灰。另外该结构体系不但用钢量少,施工周期短、造价低,还具有整体性强、侧向刚度大等优点,有利于抗风抗震,所以自九十年代起建筑结构体系基本上都采用大开间现浇钢筋混凝土剪力墙结构。随着经济的发展,为了进一步降低建筑造价,近几年来部分地区越来越多地采用短肢剪力墙与简体或一般剪力墙组成的结构体系。这个结构体系也属于剪力墙结构的一种。它的特点是建筑平面布置更具灵活性,并且又能节省钢筋和混凝土用量,减轻建筑的总重量,从而降低地基基础造价。
2.加强混凝土建筑结构的施工设计
为满足结构承载力的需求,通常在结构设计中柱与梁板选择不同强度等级的混凝土。施工规范规定柱的施工缝宜留设在梁底标高以下20mm-30mm处,其原则是施工缝宜留在结构受力小且便于施工的位置。施工时,为方便柱身混凝土的下料与振捣,在梁内钢筋未绑扎之前进行浇注。按施工规范的要求,当梁柱的混凝土强度等级不同时,节点处应按。弱梁强柱”的原则。在实际施工中,施工班组制定合理的节点保证措施,监理人员加强对浇注质量的监管和提高整体结构的抗震性能十分重要。
3.建筑结构的基础设计方面
在建筑的基础设计中,要综合考虑建筑场地的地质情况以及水位、使用功能、上部结构类型、施工条件和相邻建筑的相互影响,以保证建筑物不会过量沉降或倾斜,而且还能满足正常使用要求。另外还要注意相邻地下建筑物及各类地下设施的位置,以保证施工的安全。
4.建筑结构设计的抗震方面
(一)房建结构设计要从建筑的全局出发
全面考虑各种建筑部位的功能,在此基础上,科学设计每个部分的构件,保证每个部件之间的契合,促使每个部件或者是若干部件组合起来可以完成某一特定的设计要求,满足一定的现实需求,同时,通过抗震设计,使得每个构件都可以具有相应的承载力,当地震来袭,每个构件都可以有着一定的次序先后破坏,整体组合构件将会有着更强大的承载力和柔性,从而延缓地震破坏的速度,消耗爆发的能量。增强建筑的整体抗震能力。
(二)要严格选择地基选址
地基选址是进行建筑结构设计的基础,因此,在房间结构抗震设计中,要科学避开山嘴,山包,陡坡,河流等不利因素,要本着坚硬,牢固,平坦,开阔的选址原则。亲身实地,利用先进技术设备,进行地质勘探,山石水土监测,并取样论证,科学严谨分析。力求使得整个地基牢固可靠,地质稳定无渗漏,无坍塌,无暗河,无熔岩,无火山……从而保证整个地基不会因为承载而发生小范围的坍塌。影响到整体承载能力和抗震能力设计。
(三)采用合理的建筑平立面
建筑物的动力性能基本上取决于其建筑布局和结构布置。建筑布局简单合理,结构布置符合抗震原则,通过无数次的实验表明,简单、规则、对称的建筑结构抗震能力强,对延缓地震烈度范围延伸,消耗地震的能量,减少地震对整体结构的破坏,而且,对称结构容易准确计算其地震反应。
5. 加强对连梁的设计优化
(一)对连梁的刚度进行折减
连梁由于跨高比较小与之相连的墙肢刚度大等原因,在水平力作用下的内力往往很大,在连梁遇到外力发生屈服的过程中,主要有几个表现,比如出现裂缝,连梁的刚度减弱,内力发生重新分布,因此,一般而言,在进行建筑结构设计之前,要对连梁的刚度实施折减,从高规中的相关条款解释而言,是要对整个混凝土建筑结构的各个环节的刚度和弹性进行比较科学合理的分析,但是,在具体实际的操作过程中,各个部分的构件都需要承担比较大的弯矩和剪力,并且配筋设计具有很大的难度,因而,在笔者多年的建筑结构设计过程中,可以减少对竖向荷载能力的考虑,而更多的进行适当的开裂设计,将内力转移到墙体上去,如此,可以更好的实现建筑结构设计的优化。
(二)在设计过程中适当的减少连梁的高度
在进行连梁的设计中,为了达到降低连梁刚度,减少地震影响效果的目的,可以在保证整个建筑功能的基础上,让连梁的总体的跨度不断增加,如此,可以很大程度的让连梁的整体高度降低,一定程度而言,也使得可以讲整个连梁的整体承载能力控制在一定的范围之内,既可以让设计得到优化,又可以让建筑的功能得到正常发挥。
(三)在连梁设计过程中适当增加厚度
在进行连梁设计,在做好各种构件的设计优化的基础上,可以让连梁的整体截面的宽度进一步扩大,如此,不仅仅可以让建筑结构整体的刚度变大,也能够让整个地震过程中产生的各种内力作用相对而言变得更大。而且,由于连梁的抗剪承载力与连梁宽度的增加成正比。通过剪力墙的厚度增加,也有可能达到让连梁抗剪承载力符合限度的目的。
(四)提高混凝土等级
为了让连梁的抗剪承载能力不会超过规定个标准,可以合理的提高剪力墙的混泥土的等级,当混泥土的等级得到提升,混泥土的弹性模量增加比例会小于抗剪承载力的提升比例,从而,可以达到控制目标。
三.、结束语
混凝土建筑结构设计是一项专业性极强的工作,必须综合考虑到多种因素,既要满足居民的生活生产多种需要,更要从地震防护,防水防渗漏等各种因素对建筑结构做出性能设计,同时,从城市整体的人文自然,交通政治等各方面的因素出发,选择合理的建筑结构体系,做出科学严谨的设计,实现实用价值和美学价值的统一,为整个建筑业的发展和居民生活质量的提高,奠定基础。
参考文献:
[1]刘利峰 钢筋混凝土建筑结构设计优化研究 [期刊论文] 《科技资讯》 -2010年20期
[2]张红标 建筑结构设计成本优化研究--以深圳高层钢筋混凝土建筑结构为例 [学位论文] 2011 - 浙江大学:企业管理
[3]张民 钢筋混凝土框架-剪力墙结构设计的优化研究 [学位论文]2008 - 同济大学土木工程学院 同济大学:结构工程
【关键词】建筑主体结构设计要点
中图分类号:TU318文献标识码: A 文章编号:
一、前言
自改革开放以来,城市化进程高速推进,我国的建筑业有了突飞猛进的发展,全国各地的建筑层出不穷。作为土建工作设计人员,对建筑主体结构设计特点及其结构体系必须有充分的了解,才能在此基础上做出优良设计,构建技术先进、经济合理、安全适用、确保质量的建筑。
二、建筑主体结构设计原则
进行建筑主体结构设计时,需要遵循2个原则:
1.钢筋混凝土建筑主体结构设计,需要密切配合建筑、设备和施工,实现安全适用、经济合理以及技术先进,新技术、新工艺和新材料应当积极采用。
2.建筑主体结构设计,应当给予结构选型和构造足够的重视,选择抗震及抗风性能好而经济合理的结构体系与平面、立面布置方案,并注意加强构造连接。抗震设计中,应当着重强调结构整体抗震性能,整个结构需满足足够的承载力、刚度和延性。
三.建筑主体结构设计常见的问题分析
1.屋面梁与配筋
(一)屋面梁配筋太少, 结构建模时, 设计人员图方便, 屋面梁直接拷贝下层梁的尺寸。由于屋面梁荷载较小, 计算结果配筋不多, 这样屋面梁在温度变形, 混凝土收缩和受力等作用下因配筋率过低而裂缝宽度较大。
(二)受扭屋面梁缺少必要的腰筋。对于一般的梁, 为了保持钢筋骨架的刚度, 同时也为了承受温度和收缩应力及防止梁腹出现过大的裂缝, 一般构造措施为板下梁高大于600 时加设腰筋, 其间距≤300, 然后拉筋勾连(参考图集: 混凝土结构施工图平面整体表示方法制图规则和构造详图00G101)。对于受扭构件, 混凝土主体结构设计规范“GB50010 — 2002”第 10.2.5 条第二款规定, 其纵向受力钢筋的间距不应大于 200mm 和梁截面短边长度。对于设置悬挑檐口的屋面梁, 在主体结构设计中误等同一般梁,未按受扭构件设计配筋。
2.楼板设计常见问题
板是建筑工程中的主要承重构件, 是它将楼面, 屋面的荷载传给其周围的墙或梁上, 楼板的设计问题必将连带梁、墙、柱等构件安全。若对整个设计考虑不周, 很容易出现设计质量问题, 有的还可能存在严重的质量隐患。楼板设计中常见如下几个问题。
(一) 设计时为了计算方便或因对板的受力状态认识不足,简单地将双向板作用单向板进行计算。使计算假定与实际受力状态不符, 导致一个方向配筋过大, 而另一方向仅按构造配筋,造成配筋严重不足, 致使板出现裂缝。
(二) 板承受线荷载时弯矩计算问题, 在民用建筑中, 常常在楼板上布置一些非承重隔墙,故大楼板设计中常常将该部分的线荷载换算成等效的均布荷载后, 进行板的配筋计算。但有些设计人员错误地将隔墙的总荷载附以板的总面积。另外, 板上隔墙顶部处理常采用立砖斜砌砌紧顶上部分的楼、屋面板, 这样会给上部的板增加了一个中间支承点, 使其变为连续板, 支承点上部出现了负弯矩, 而在板的设计中又没考虑该部分的影响, 致使板顶出现裂缝。
(三) 双向板有效高度取值偏大。双向板在两个方向均产生弯矩, 由此双向板跨中正弯矩钢筋是纵横叠放, 短跨方向的跨中钢筋应放在下面, 长跨方向的跨中钢筋置于短跨钢筋的上面, 计算时应用两个方向的各自的有效高度。一般长向的有效高度比短向的有效高度小 d ( d 为短向钢筋的直径) 。有的设计者为图省事或对板受力认识不足, 而取两上方向的有效高度一致进行配筋计算, 致使长跨有效高度偏大, 配筋降低, 使结构构件存在的质量隐患, 甚至出现裂缝的现象。
3.楼层平面刚度
建筑结构的整体计算通常都是使用电算程序进行,而以前常用的程序除极个别考虑楼层平面内可以变形(即弹性楼板)外,人部分都将楼层假设为刚性楼面(即楼板平面内刚度无限人)。笔者认为这种假设不仅是对复杂结构计算进行必要简化的需要,而当建筑布局及结构布置基本上符合刚性楼板的假设时,其计算结果(结构的变形及构件内力)则基本上能反映结构的真实受力情况,按此设计出来的结构其安全是有保障的,所体现的安全度也是合适的。相反,如果建筑设计缺乏基本的结构观念或结构布置缺乏必要措施而采用楼板变形的计算程序(明知楼板有变形而采用刚性楼板假设的程序进行计算,尽管程序的编程在数学力学模型上是成立的甚至是准确无误的,但在确定楼板变形程度上却很难做到准确。作为计算的人前提都无法“准确”,就不可能指望其结果会“正确”了,据此进行的主体结构设计肯定存在着结构不安全成分或者结构某些部位或构件安全储备过大等现象。
因此,为了使程序的计算结果基本上反映结构的真实受力状况而不致出现根本性的误差,设计时应尽可能将楼层设计成刚性楼面。要做到这一点,首先应在建筑设计甚至方案阶段就避免采用楼面有变形的平面(比如楼层大开洞、外伸翼块太长、块体之间成“缩颈”连接、凹槽缺口太深等)。
其次要从结构布置和配筋构造上给予保证,对于使用功能确实必需的,或者建筑效果十分优越的建筑设计,如果其平面无法完全符合刚性楼板的假定,那么在主体结构设计时可以通过增设连系梁(板)、洞口边加设暗梁边梁、提高连系梁(板)或暗梁边梁的配筋量、采用斜向配筋或双层配筋形式等方法,尽量满足刚性楼板的基本假设,或者弥补由于不是绝对的刚性楼板假定而产生的计算“误差”。总之,在建筑及主体结构设计上应有意识地考虑刚性楼板,再用这种假设的程序进行计算,这样计算结果会较可信,设计出的结构的安全度也更有保障。
4.砌体结构
(一)房屋四角与其余部位构造柱一样配筋。建筑抗震设计规范“GB50011-2001”第7.3.2 条第一款规定, 房屋四角构造柱可适当加大截面及配筋。有的设计不分部位一样设置, 构造柱对提高墙体受剪承载力有限, 但对墙体的约束和防止墙体开裂后砖的散落有明显的作用, 房屋外墙四角是容易损坏的部位, 其构造柱的设计一般应加强, 而其余部位的构造如同外墙四角一样设计, 其作用不能充分发挥,结果造成浪费。
(二)构造柱截面设计时未考虑相连的小墙垛。虽然小墙垛通过拉接筋与构造柱相连接, 但是实际上这部分小墙体很难发挥有效作用, 并且施工也不方便, 所以设计时应该把两者合二为一。
(三)错层房间周围的构造柱未加强设计。错层部位的横墙与外纵横的交接处是容易损坏的地方, 应加强构造措施。
四.结束语
综上所述,作为土建工作设计人员,需要对建筑主体结构设计要点和原则有充分的了解,同时需要掌握建筑主体结构设计存在的一些问题,在此基础上才能根据实际情况,做出合理而优良的建筑主体设计,构造技术先进、经济合理、安全适用的高层建筑。因此,在今后的建筑主体结构设计中,应该不断加强对建筑主体结构设计的研究,提高主体建筑结构设计的水平。
参考文献:
[1]杨颜志 土体-复杂结构耦合系统地震响应数值模拟方法及应用上海交通大学2012-02-01博士
[2]续晓春; 李靖颉; 邢铂 高层建筑主体结构现浇混凝土模板体系的合理选择太原工业大学学报1997-12-30期刊
[3]安志宏 高层建筑结构设计不规则性的研究与应用吉林大学2004-10-01硕士
[4]李社生 空旷建筑主体结构与屋面网架协同工作的设计探讨兰州石化职业技术学院学报2003-09-15期刊
会议收到论文报告58篇并印发了文集,有140人参加会议,在第一天的大会和第二天的分组会上分别有17位和26位专家作了报告,另外还安排了半天时间进行自由发言和讨论。会议气氛热烈,取得了预期的效果,不同观点之间也进行了较为充分的交流。
鉴于这一会议的论坛性质,以下仅就会上提出的一些问题及建议作一归纳,提交与会专家考虑并审议。
一、土建结构工程的安全性
结构安全性是结构防止破坏倒塌的能力,是结构工程最重要的质量指标。结构工程的安全性主要决定于结构的设计与施工水准,也与结构的正确使用(维护、检测)有关,而这些又与土建工程法规和技术标准(规范、规程、条例等)的合理设置及运用相关联。
1.我国结构设计规范的安全设置水准
对结构工程的设计来说,结构的安全性主要体现在结构构件承载能力的安全性、结构的整体牢固性与结构的耐久性等几个方面。我国建筑物和桥梁等土建结构的设计规范在这些方面的安全设置水准,总体上要比国外同类规范低得多。
1.1构件承载能力的安全设置水准
与结构构件安全水准关系最大的二个因素是:1)规范规定结构需要承受多大的荷载(荷载标准值),比如同样是办公楼,我国规范自1959年以来均规定楼板承受的活荷载是每平方米150公斤(现已确定在新的规范里将改回到200公斤),而美、英则为240和250公斤;2)规范规定的荷载分项系数与材料强度分项系数的大小,前者是计算确定荷载对结构构件的作用时,将荷载标准值加以放大的一个系数,后者是计算确定结构构件固有的承载能力时,将构件材料的强度标准值加以缩小的一个系数。这些用量值表示的系数体现了结构构件在给定标准荷载作用下的安全度,在安全系数设计方法(如我国的公路桥涵结构设计规范)中称为安全系数,体现了安全储备的需要;而在可靠度设计方法(如我国的建筑结构设计规范)中称为分项系数,体现了一定的名义失效概率或可靠指标。安全系数或分项系数越大,表明安全度越高。我国建筑结构设计规范规定活荷载与恒载(如结构自重)的分项系数分别为1.4和1.2,而美国则分别为1.7和1.4,英国1.6和1.4;这样根据我国规范设计办公楼时,所依据的楼层设计荷载(荷载标准值与荷载分项系数的乘积)值大约只有英美的52%(考虑人员和设施等活载)和85%(对结构自重等恒载),而设计时据以确定构件能够承受荷载的能力(与材料强度分项系数有关)却要比英美规范高出的10~15%,二者都使构件承载力的安全水准下降。日本与德国的设计规范在某些方面比英美还要保守些。一些发展中国家的结构设计多根据发达国家的规范,就如我国解放前和建国初期的结构设计方法参照美国规范一样。至于中国的香港和台湾,至今仍分别以英国和参考美国规范为依据。这里需要说明的是,在其他建筑物的活荷载标准值上,与国外的差别并没有象办公楼、公寓、宿舍中这样大。不同材料、不同类型的结构在安全设置水准上与国际间的差距并不相同,比如钢结构的差距可能相对小些。
公路桥梁结构的情况也与房屋建筑结构类似,除车载标准外,荷载分项安全系数(我国规范对车载取1.4,比国际著名的美国AASHTO规范的1.75约低25%)与材料强度分项安全系数均规定较低。
尽管我国设计规范所设定的安全贮备较低,但是某些工程的材料用量反而有高于国外同类工程的,这里的问题主要在于设计墨守陈规,在结构方案、材料选用、分析计算、结构构造上缺乏创新。
1.2结构的整体牢固性
除了结构构件要有足够承载能力外,结构物还要有整体牢固性。结构的整体牢固性是结构出现某处的局部破坏不至于导致大范围连续破坏倒塌的能力,或者说是结构不应出现与其原因不相称的破坏后果。结构的整体牢固性主要依靠结构能有良好的延性和必要的冗余度,用来对付地震、爆炸等灾害荷载或因人为差错导致的灾难后果,可以减轻灾害损失。唐山地震造成的巨大伤亡与当地房屋结构缺乏整体牢固性有很大关系。2001年石家庄发生故意破坏的恶性爆炸事件,一栋住宅楼因土炸药爆炸造成的墙体局部破坏,竟导致整栋楼的连续倒塌,也是房屋设计牢固性不足的表现。
1.3结构的耐久安全性
我国土建结构的设计与施工规范,重点放在各种荷载作用下的结构强度要求,而对环境因素作用(如干湿、冻融等大气侵蚀以及工程周围水、土中有害化学介质侵蚀)下的耐久性要求则相对考虑较少。混凝土结构因钢筋锈蚀或混凝土腐蚀导致的结构安全事故,其严重程度已远过于因结构构件承载力安全水准设置偏低所带来的危害,所以这个问题必须引起格外重视。我国规范规定的与耐久性有关的一些要求,如保护钢筋免遭锈蚀的混凝土保护层最小厚度和混凝土的最低强度等级,都显著低于国外规范。损害结构承载力的安全性只是耐久性不足的后果之一;提高结构构件承载能力的安全设置水准,在一些情况下也有利于结构的耐久性与结构使用寿命。
2.调整结构安全设置水准的不同见解
我国结构设计规范的安全设置水准较低,与我国建国后长期处于短缺经济和计划体制的历史条件有关。但是,能够对土建结构取用较低的安全水准并基本满足了当时的生产与生活需求,而且业已历经了较长时间的考验,这是国内土建科技人员经过巨大努力所取得的重大成就;但是,由于安全储备较低,抵御意外作用的能力相对不足。如果适当提高安全设置水准将有利于减少事故的发生频率和提高工程抗御灾害的能力。国内发生的大量工程安全事故,主要是由于管理上的腐败和不善以及严重的人为错误所致。现在提出要重新审视结构的安全设置水准,主要是基于客观形势的变化,是由于我们现在从事的基础设施建设要为今后的现代化奠定基础,要满足今后几十年、上百年内人们生产生活水平发展的需要,有些土建结构如商品房屋则更要满足市场经济条件下具备商品属性的需要。国内近几年来已对建筑结构安全度的设置水准组织过几次讨论,在如何调整的问题上存在较大的意见分歧,这次科技论坛上同样反映了这些不同的见解:
1)认为我国现行规范的安全设置水准是足够的,并已为长期实践所证明,而国外就没有这种经验。我国取得的这一成功经验决不能轻易丢掉,在安全度上不能跟着英美的高标准走;安全度高了是浪费,除个别需调整外,总体上不必变动。
2)认为我国规范的安全度设置水准尽管不高,但在全面遵守标准规范有关规定,即在正常设计、正常施工和正常使用的“三正常”条件下,据此建成的上百亿平米的建筑物绝大多数至今仍在安全使用,表明这些规范规定的水准仍然适用;但是理想的“三正常”很难做到,同时为了缩小与先进国际标准的差距以及鉴于可持续发展和提高耐久性的需要,在物质供应条件业已改善的市场经济条件下,结构的安全设置水准应适当提高。这种提高只能适度,因为我国目前尚属发展中国家。
3)认为我国规范的安全设置水准应该大体与国际水准接近,需要大幅度提高。这是由于随着我国经济发展和生活水平不断提高,土建工程特别是重大基础设施工程出现事故所造成的风险损失后果将愈益严重,而为了提高工程安全程度所需要的经费投入在整个工程(特别是建筑工程)造价中所占的比重现在已愈来愈低,材料供应也十分充裕。过去的低安全水准只是适应了以往短缺型计划经济年代的需要,但决不是没有风险,如果规范的安全水准较高,曾经发生过的有些安全事故本来是可以避免的,而规范的这一缺陷在一定程度上为“三正常”的提法所掩盖。在建的工程要为将来的现代化社会服务,安全性上一定要有高标准。低的安全质量标准在参与将来的国际竞争中也难以被承认,即使结构设计的安全设置水准能够提高到与发达国家一样,由于我们的施工质量总体较差,结构的安全性依然会有差距。
3、结构设计规范的概率可靠度设计方法
自1984年国家建委和国家建设部颁布了建筑结构设计统一标准以来,我国的建筑结构设计规范已从80年代末期起抛弃了传统的多安全系数设计方法,从而统一采用以概率理论为基础的可靠度设计方法;其它的工程部门如公路、铁路、港口、水利的结构设计规范也正在或计划作这样的转变。我国规范的可靠度设计方法是参考国际上的相应标准ISO2394并经过国内科技人员努力后得以实施的。将可靠度设计方法用于结构设计规范,在国际学术界内通常被看成是一种发展趋势,但在工程内界则存在不同看法。尽管有了ISO2394,国外却鲜有重要或著名的结构设计规范已直接采用了可靠度设计方法,至今仍采用多安全系数设计方法或称荷载抗力系数法。在我国,对于建筑结构设计规范中的可靠度设计方法以及企图将我国各个行业的各种结构设计规范都用可靠度方法统一起来的做法,虽然工程设计界颇有微词,但学术界持赞成和肯定者是主流,不过仍不时有人对可靠度方法用于设计规范的适用性提出质疑。这次科技论坛上则较为集中地反映了对规范可靠度方法的意见分歧。
对我国规范的可靠度设计方法持肯定意见的专家认为这是重大的科技进步,可靠度方法对安全度的概率定义要比定值的安全系数更清晰、更科学、更合理,当然概率可靠度设计方法本身尚有不少缺陷,有待进一步修改完善。持相反意见的人则认为,结构设计规范所面向的是类型多样的复杂群体,在安全度上需要考虑的不确定性与不确知性非常复杂,并不是“从统计数学观点出发的概率定义”所能科学描述或处理;规范可靠度方法在我国十多年的实践表明,它并没有给结构设计的安全性带来明显实效,反而造成了安全概念上的某些混乱;对工程技术人员来说,结构的安全度用可靠指标和虚假的失效概率表达后变得更加不可揣摩和模糊不清,不如安全系数那样从安全储备出发的度量方法更为直观和便于处理具体工程的安全问题;现行设计规范中的可靠度方法很不成熟,存在不少根本缺陷;他们认为半概率的多安全系数方法更适用于规范,也不排斥可靠度分析的结果可以作为一种参考,在综合判断安全系数的合理取值时予以考虑。
二、土建结构工程的耐久性
土建结构工程的耐久性与工程的使用寿命相联系,是使用期内结构保持正常功能的能力,这一正常功能包括结构的安全性和结构的适用性,而且更多地体现在适用性上。
1、土建结构工程的耐久性现状
大多数土建结构由混凝土建造。混凝土结构的耐久性是当前困扰土建基础设施工程的世界性问题,并非我国所特有,但是至今尚未引起我国政府主管部门和广大设计与施工部门的足够重视。
长期以来,人们一直以为混凝土应是非常耐久的材料。直到70年代末期,发达国家才逐渐发现原先建成的基础设施工程在一些环境下出现过早损坏。美国许多城市的混凝土基础设施工程和港口工程建成后不到二、三十年甚至在更短的时期内就出现劣化;据1998年美国土木工程学会的一份材料估计,他们需要有1.3万亿美元来处理美国国内基础设施工程存在的问题,仅修理与更换公路桥梁的混凝土桥面板一项就需800亿美无,而现在联邦政府每年为此的拨款只有50~60亿美元。另有资料指出,美国因除冰盐引起钢筋锈蚀需限载通行的公路桥梁已占这一环境下桥梁的1/4。发达国家为混凝土结构耐久性投入了大量科研经费并积极采取应对措施,如加拿大安大略省的公路桥梁为对付除冰盐侵蚀及冻融损害,钢筋的混凝土保护层最小厚度从50年代的2.5cm逐渐增加到4cm、6cm直到80年代后的7cm,而混凝土强度的最低等级也从50年代的C25增到后来的C40,桥面板混凝土从不要求外加引气剂、不设防水层到必须引气以及需要设置高级防水胶膜并引入环氧涂膜钢筋。而我国遭受盐冻侵蚀地区的公路桥梁在耐久性设计方面至今仍无明确要求,对混凝土保护层和强度的要求仅为2.5cm与C25,与上面提到的加拿大50年代水准一致。国内按这种标准设计的一座大桥,建成后仅8年,由于盐冻侵蚀,现已不得不部分拆除重建。
我国建设部于80年代的一项调查表明,国内大多数工业建筑物在使用25~30年后即需大修,处于严酷环境下的建筑物使用寿命仅15~20年。民用建筑和公共建筑的使用环境相对较好,一般可维持50年以上,但室外的阳台、雨罩等露天构件的使用寿命通常仅有30~40年。桥梁、港工等基础设施工程的耐久性问题更为严重,由于钢筋的混凝土保护层过薄且密实性差,许多工程建成后几年就出现钢筋锈蚀、混凝土开裂。海港码头一般使用十年左右就因混凝土顺筋开裂和剥落,需要大修。京津地区的城市立交桥由于冬天洒除冰盐及冰冻作用,使用十几年后就出现问题,有的不得不限载、大修或拆除。盐冻也对混凝土路面造成伤害,东北地区一条高等级公路只经过一个冬天就大面积剥蚀。我国铁路隧道用低强度的C15混凝土作衬砌材料,密实度和抗渗性差,不耐地下水与机车废气侵蚀,开裂与渗漏严重;对几个路局所辖的隧道进行抽样调查表明,漏水的占50.4%,其中1/3渗漏严重,并导致钢轨等配件锈蚀以及电力牵引地段漏电,影响正常运行,而1999年颁布的铁路隧道设计规范仍未能对隧道的耐久性问题采取适当的对策,如适当提高混凝土的最低强度等级和在混凝土中掺入化学纤维等。
耐久性问题的严重性和迫切性在于我们许多正在建设的工程仍未吸取国际和国内的大量惨痛教训,还沿着老路重蹈覆辙。一些北方城市新建成的立交桥和高速公路桥,仍没有在材料性能和结构构造等方面采取必要的防治冻融和盐害的综合措施。甚至大型工程如2000年投入运行的珠海莲花跨海大桥,其主体结构在浪溅区仍采用不耐海水干湿交替侵蚀的C30混凝土与3~4cm厚的保护层厚度。
有专家估计,我国“大干”基础设施工程建设的还可延续20年,由于忽视耐久性,迎接我们的还会有“大修”20年的,这个可能不用很久就将到来,其耗费将倍增于当初这些工程施工建设时的投资。
使混凝土结构的耐久性问题进一步加剧的原因有:
1)由于混凝土的质量检验习惯上以单一的强度指标作为衡量标准,导致水泥工业对水泥强度的不适当追求,使水泥细度增加,早强的矿物成份比例提高,这些都不利于混凝土的耐久性。我国对水泥质量的检验在强度上只要求不低于规定的最低许可值,而国外则同时还要求不高于规定的最高值,如果强度超过了也被认为不合格,这种要求还有利于水泥产品质量的均匀性。
2)工程施工单位不适当地加快施工进度,尤其是政府行政领导对工程进度的不适当干预。混凝土的耐久性质量尤其需要有足够的施工养护期加以保证,早产有损生命健康的概念同样适用于混凝土。国内媒体上大加宣传的所谓几个月就修成一条大路、建成一座大桥、或盖成一幢高楼的工程以及抢工献礼工程,很可能就是今后注定要花掉更多资金进行大修的短命工程。提前完成合同规定施工期的在国外要被罚款,因为意味着工程质量有遭到损害的可能。
3)环境的不断恶化,如废气、酸雨,我国的酸雨面积已超过国土的30%。
当前迫切需要进行的工作是尽快编制桥梁、隧道、港工等基础设施工程耐久性设计的技术条例,修订补充现行规范中对结构耐久性的要求。首先需要明确的是各种基础设施工程的设计工作寿命,在重要工程的设计文件中必须有使用寿命的要求和论证。当前在建的众多工程在耐久性上之所以仍然沿着重蹈覆辙的道路走,很重要的一个原因是工程设计施工技术人员在耐久性上没有可资遵循的新依据。更为严重的是现行规范中的有些条文,本身就对耐久性有害。为了提高混凝土耐久性,在混凝土中合理使用粉煤灰、矿渣等矿物掺合料是重要的技术手段,国外有的规范甚至规定在桥梁等混凝土结构中必须加入粉煤灰等掺合料,而我国的铁路混凝土桥隧施工规范仍在明文禁止使用。此外,工程技术界还存在长期形成的一些过时的看法,对改善混凝土的耐久性能造成阻力。例如,顾虑会影响混凝土强度而不愿使用引气剂,而引气本应作为改善混凝土耐久性和工作性的常规手段;又如,希望加大水泥用量来保证混凝土强度,而尽可能低的水泥用量本应是提高混凝土抗裂和耐久性能的重要途径。
在修订规范的耐久性要求上,交通部于2001年颁布的港工混凝土结构防腐蚀技术规范已为其它土建工程行业起到较好的示范作用。我们一方面要参照国内外已有的资料和经验,尽快编写出相应的设计施工技术文件以应急需,另一方面则要安排系统的研究项目,加大耐久性研究工作的支持力度;混凝土结构的耐久性是当前国际上结构工程学科最为重要的前沿研究领域之一,而我国在这一方面相当落后。混凝土的耐久性研究离不开原材料和环境等特定条件,需要考虑本国的特点,是不能完全依赖国外研究成果的。
重视混凝土结构的耐久性也是可持续发展的需要。生产混凝土所需的水泥、砂、石等原材料均需大量消耗国土资源并破坏植被与河床,水泥生产排放的二氧化碳已占人类活动排放总量的1/5~1/6,而我国排放的二氧化碳量已居世界第二。我国现在每年生产5亿多吨水泥,与之相伴的是年耗20多亿方的砂石,长此以往实难以为继。延长结构使用寿命意味着节约材料,而耐久的混凝土一般又应是水泥用量较低和矿物掺合料(工业废料)用量较高的混凝土,所以耐久的混凝土正适应环境保护的需要。国际上对桥梁、隧道等土木工程的设计工作寿命多为100年,有的如英国为120年。考虑到耐久性不足所造成的巨大经济损失和资源浪费,国际上近年来有要求将这些工程的最低工作寿命进一步延长的趋势,如提出城市环境中的桥梁至少应有150年。
2.土建结构工程使用阶段的正常检测与维护
结构耐久性和使用寿命的概念,与使用阶段的检测、维护和修理不能分割,对处于露天和恶劣环境下的基础设施工程来说尤其如此。为了保证结构安全性和耐久性,一些工程在建成后的使用过程中,应该进行定期检测和维护。我国有结构工程的设计规范与施工规范,但没有如何使用的规范。有些工程倒塌事故,例如最近四川宜宾的南门大桥发生桥面坍落事故,就是因为桥面结构与主拱之间的吊杆在连接处发生锈蚀,如果有定期的检测要求,这样的事故很有可能避免。有些国家对于结构的损坏可能导致公众安全的建筑物与桥、隧等公共工程,强制规定必须定期检测;即使是建筑物的玻璃幕墙和外墙面砖等建筑部件,因其坠落后容易伤及公众,也有强制定期检测的要求。我国由于施工管理水平和事故操作人员的素质相对较差,质量控制与质量保证制度不够健全,规范对结构安全与耐久性的设置水准又相对较低,已建的工程中往往存在较多隐患,所以更有必要从法制上确定土建工程的正常使用和定期检测的要求。对于土建结构工程的安全质量,虽然政府已作出了设计与施工的责任单位和个人需对其“终身负责”的规定,但是这种要求执行起来缺乏可操作性。要将结构安全质量事故减少到最低程度,还应以预防为主,通过例行检测及时发现问题。
现在国内有大量土建工程因步入老化期需要诊治,也有大量已建的违章工程需要评估,更有许多工程发生病害需要诊断和加固,各地已涌现了不少从事土建工程诊断、治理与加固的队伍,并有蓬勃发展成为一种新兴行业的趋势。出现问题和病害以后再来治理固然重要,但是我们应该更加强调预防。对于在役土建工程的检测和评估,要建立相应的法规和标准,要有从业人员的注册和从业机构的资质认证制度,在管理体制上予以规范。
从国家对公共工程建设的投资和对工程设计的要求来看,需要有工程整个使用期限即全寿命费用支出的论证。只注意工程项目建设的一次投资支出,很少考虑工程建成后需要正常维护与修理的长期费用,不但可能损害工程使用寿命和正常使用功能,而且经济上算总账会很不合算。在发达国家,由于新建工程少,用于维修的费用往往更为主要,英国1978年的土建维修费上升到1965年的3.7倍,1980年的维修费占当年土建费用总支出的2/3。我国虽是发展中国家,现在正大兴土木,可是过去建成的大量工程已经或过早老化。国内40%公路桥梁的桥龄已大于25年,加上进入90年代以后交通量猛增,超载严重,以往的设计标准又低,路、桥的维修问题十分突出。由于养护维修费用得不到保证,造成工程安全隐患并在以后需要支出更多的大修费用。在土建工程的投资上,希望有关部门能加大已建工程维修的费用。
为加速路桥等公共工程建设,国家现在鼓励投资公司出资并给以一定期限如30年的经营收入作为补偿。如果对重要土建工程有必须进行定期检测与评估的法规,就能保证这些工程在一定期限后归还国家管理和经营时的良好功能,对于设计工作寿命为100年的桥梁,至少还可正常使用70年,而不至于30年到期后国家接收的已是一个破旧的工程。
三、技术规范的作用与管理
这次科技论坛对于土建结构工程技术规范的定位、作用与管理也进行了讨论并提出了一些看法。
长期以来,受计划经济体制的影响,我们往往视技术规范为法,将规范的具体规定和要求等同于法律条文来对待。技术规范或规程,与各种技术条例、技术要求、工法、指南等技术文件一样都是技术标准,本身不具有法律作用,只当工程各方(业主、设计、施工企业)认同作为设计与施工的依据并在契约的基础上,才能作为法律仲裁的依据。将技术问题法制化并强制执行,不利于技术进步和创造性的发挥,反而容易成为推卸责任的借口。当然,政府部门从国家和公众的整体利益出发,需要在安全、环保等重大原则上对土建工程的设计施工提出必须满足的最低要求并制定相应的法规,但法规一般并不需要提供如何达到这些要求的具体技术途径和方法,后者是技术标准的任务。政府也可以原则认可或批准某些重要的技术规范或其中某些内容使用。
土建工程有着强烈的个性,需要工程技术人员针对具体特点去解决设计与施工问题。所以规范作为技术标准宜强调其指导性而不是强制性。如果规范条文看作为一般意义上的法律条文,就有可能束缚设计施工人员的主动创造性并阻碍新技术的应用。。我国土建工程在结构设计上与国外相比的最大差距就在于方案与技术上的创新,这与以往过分强调规范的法律地位从而形成所谓“结构设计就是规范加计算”的倾向不无关联。我国的技术规范在编写风格上也有模仿法律的倾向,极少提及使用者需要注意规范可能存在的某些不足之处或允许并鼓励使用者在某些问题上可以另辟蹊径。如果在设计施工中要取代规范中已经落后过时甚至有害的技术规定,则无异于违法行为。相反,只要墨守规范,即使出了事故,就可不负法律责任。这样就在客观上降低了对工程技术人员的业务技能要求与职责要求,不利于提高我国建筑企业和从业人员的素质以及参与今后的国际竞争。为了消除这些负面影响并杜绝钻规范条文的空子进行偷工减料,应有必要建立这样的共识并作出规定,即遵守了规范条文并不意味着就可免除法律责任。国外有些规范就是这样规定的。
企图不断加强技术规范的强制性来解决屡禁不止的工程事故,不是解决问题的有效途径。现在,有关主管部门将建筑结构设计规范中的部分条文抽出来,明确列为强制性条文,同时规定各个设计单位完成的设计,须通过有关部门或其授权委任的其他企事业设计单位的审查,而审查的主要内容就在于对照规范强制性条文的要求,其任务已类似于执法;这种做法是否明智似可商榷。我国土建工程事故频繁的原因,主要在于管理不善,特别是管理环节上的腐败;其次是施工操作人员素质低,又难以短期解决;过分强调规范的地位与作用,未能建立与规范配套的完整标准体系,比如缺乏指南、工法等更为详尽具体的技术文件,可以用来指导和规范设计与施工的各个具体环节,也有一定的关系。从设计角度看,出现事故主要不是由于没有按照规范强制性条文的规定,而是方案性的错误或忽略主要的设计条件;也有一些工程则因过去的设计标准过低,耐久性不足,在使用过程中又缺乏应有的例行检测而导致失效。其实,要做到设计规范强制条文的要求最为容易,为此请专业人士审查似无必要。重要的工程设计应规定请专业单位全面审核,其要点也应在结构方案、构造方法与计算分析的原则上。从结构设计的国家规范中抽出的强制性条文不免支离破碎,个别条文的规定也不一定适合某些地区和某些工程的具体特点,反而造成麻烦。
我国幅员广阔,各地经济发展很不平衡,技术力量悬殊,环境条件各异,客观上要求规范能给设计人员更多灵活性,少一些强制性,这样才能更好地在规范的指导下,根据工程的特点和具体条件去解决问题。总之,在规范标准上,要摆脱计划经济年代遗留下来的过分强求统一、较少考虑个性和缺乏实事求是灵活性的倾向。要提倡和鼓励各省市编制地方性规范,在工程的安全性和耐久性标准上,可有不同的设置水准。比如上海、北京、广州这些大城市应该高些,在抗震防灾要求上,更应区别对待。全国性的规范订得愈详细,其适用性可能变得愈差,造成的混乱也可能愈多;特别象岩土工程那样的规范更是如此。
技术标准中的强制性越多,也意味着政府有关部门在具体技术问题上需要承担的责任越重,而这些本来不该是政府部门的职责。规范中的要求是最低要求,在安全设置水准上,政府需要干预的也应是保证公众安全的最低要求。对于土建结构的抗震设计,政府有关部门至今仍规定任何部门和个人不得随意提高抗震的设防标准(建抗586号文件)。事实上,如将商品房的抗震设防烈度提高1度,抗震能力可提高约1倍,而增加的房屋造价相当有限,在众多城市中可能仅及居民用于室内装修费用的几分之一。政府的这一规定无异于限制居民只能购置抗震安全质量标准最低的房屋,如果发生地震造成损害,有关部门如何解释?
规范等技术标准的管理体制亟待改善。建国以来,由政府部门负责统管并指定有关企事业单位分别承担每本规范编写和修订工作的做法已越来越不能适应当前的形势,有些在经费和人力上得不到保证,平时基本上没有专门人员去搜集了解规范使用中的问题并及时修改补充规范条文;面对新的结构型式、新的材料和新的工艺,规范的过时条文不但成为推广新技术的阻力,而且有被误用或盲目套用而造成工程质量安全事故。
发达国家有关土建结构工程的规范及与之配套的各类技术标准多由行业协会或专业学会编制及管理,规范的翻新周期短,不象我们要长达10年以上。我国的学会与协会重复设置,分工不明,并且至今还依附于某一政府部门,基本上只起到政府职能部门非官方代言人的作用,距离独立和富有活力的健全机构还差的很远,如何发挥这些机构在技术标准编写和管理中的作用也是值得探讨的一个问题。建议随着改革的深入,整顿合并有关的学会、协会,加强其职能,并逐渐成为技术标准编制管理的主体。
四、准备提交政府有关部门考虑的建议
为了改善我国土建结构工程的安全性与耐久性,这次论坛中提出了以下建议供政府有关部门考虑,:
1、桥梁、隧道、道路、港口等基础设施工程的混凝土结构耐久性,已是当前亟待采取措施应对的重大问题。否则,一些工程的正常使用功能和安全性将得不到有效保证,我国的现代化建设和国民经济会蒙受巨大损失,并将给生产和公众生活带来长期困扰。
建议国家建设部、交通部、铁道部主管土建工程设计标准的部门,能对工程的耐久性要求作重点审查,明确土建工程的设计应有最低使用寿命的要求,重要工程的设计文件中应有正常使用寿命和耐久性设计的独立章节与论证;
建议国家自然科学基金委员会能在今后一段时期内对混凝土工程耐久性的基础理论研究给予重点支持;
建议国家安全生产监督管理局为在近期内编订有关法规标准给以立项资助;
建议中国工程院土木水利建筑学部在其咨询研究项目中,联络国内有关专家,促进土建结构耐久性设计指导性技术条例的编制。
2、土建工程使用过程中的安全性,应有定期的检测和正常的维护修理加以保证。对于重要土建工程,我国尚无必须进行安全检测的法规。在基础设施工程的投资上有重新建、轻维修的倾向,不利于工程寿命和投资效益。
建议对桥、隧等重要公共基础设施和公共建筑物,在其使用期内实施强制性的定期安全检测。为此,需要制定法规,编制相应的技术标准;对于土建结构工程的检测与评估,需要建立从业人员的注册制度和从业机构的资质认证与监管体制。凡属已建工程的安全诊断也可一并归入这一行业。
建议政府有关部门在桥、隧、道路等土建基础设施工程投资上,根据需要,加大工程维修费的比例。
3、完善技术标准体系与管理体制,发挥学会、协会在技术标准编制、修订和管理中的作用;逐步淡化技术规范条文的强制性质;鼓励编制地方性规范(标准)和企业标准,适应不同地区在环境地质和经济、技术水平上的差异,并鼓励科技创新和技术进步。
摘要:建筑结构的造价在建筑工程中占有较大的比例,结构设计优化技术的应用可以产生可观的经济效益。建筑设计部门和设计人员应严格遵守“经济、适用、合理”的设计原则,精心设计,应用现代化科技手段,选择合理的建筑结构设计方案,实现降低建筑工程造价并取得最大经济效益的目的。
1建筑结构设计优化方法的应用及实践价值
1.1 结构设计优化方法的应用结构设计优化方法和技术的应用具体体现在房屋工程结构总体的优化设计和房屋工程分部结构的优化设计两方面。其中房屋工程分部结构的优化设计包括:基础结构方案的优化设计、屋盖系统方案的优化设计、围护结构方案的优化设计和结构细部设计的优化设计。对以上几个方面的优化设计还包含选型、布置、受力分析、造价分析等内容,并应在满足设计规范和使用要求的前提下,结合具体工程的实际情况,围绕其综合经济效益的目标进行结构优化设计。
1.2 结构设计优化方法的实践价值笔者认为,在满足建筑结构长远效益的前提下,应尽量减少建筑结构的近期投资并提高建筑结构的可靠度和合理性。与传统设计相比,采用设计优化技术可以使建筑工程造价降低5%~30%。优化技术的实现,可以最合理的利用材料的性能,使建筑结构内部各单元得到最好的协调,并具有建筑规范所规定的安全度。同时,它还可为建筑整体性方案设计进行合理的决策,优化技术是实现建筑设计的“适用、安全和经济”目标的有效途径。
2民用建筑结构设计与经济性的关系
2.1 结构设计与用地的关系多层或高层住宅建筑中,总建筑面积是各层建筑面积的总和,层数越多,单位建筑面积所分摊的房屋占地面积就越少。但随着建筑层数的增加,房屋的总高度也增加,房屋之间的间距也必须增大。因此,用地的节约量并不随建筑层数的增加而按同一比例递增。
2.2 结构设计与造价的关系建筑层数对单位建筑面积造价有直接影响,但影响程度对各分部结构却是不同的。屋盖部分,不管层数多少,都共用一个屋盖,并不因层数增加而使屋盖的投资增加。因此,屋盖部分的单位面积造价随层数增加而明显下降。基础部分,各层共用基础,随着层数增加,基础结构的荷载加大,必须加大基础的承载力,虽然基础部分的单位面积造价随层数增加而有所降低,但不如屋盖那样显著。承重结构,如墙、柱、梁等,随层数增加而要增强承载能力和抗震能力,这些分部结构的单位建筑造价将有所提高。
2.3 高层住宅结构设计与经济性的关系住宅的层高直接影响住宅的造价,因为层高增加,墙体面积和柱体积增加,并增加结构的自重,会增加基础和柱的承载力,并使水卫和电气的管线加长。降低层高,可节省材料、节约能源,有利于抗震,节省造价。同时,除降低层高可以减少住宅建筑总高度,缩小建筑之间的日照距离,所以降低层高能也取得节约用地的效果。
在相同建筑面积时,住宅建筑平面形状不同,住宅的外墙周长系数也不相同。显然平面形状越接近方形或圆形,外墙周长系数越小,外墙砌体、基础、内外表面装修等也随之减少,并且受力性能好,造价会降低。考虑到住宅的使用功能和方便性,通常单体住宅建筑的平面形状多为矩形。
3结构设计优化技术在建筑结构设计中的应用
3.1 直觉优化(概念设计优化)技术与建筑结构设计对于同一建筑方案,可以有许多不同的结构布置设计;确定了结构布置的建筑物,即使在同种荷载情况下也存在不同的分析方法;分析过程中设计参数、材料、荷载的取值也不是惟一的:建筑物细部的处理更是不尽相同,这些问题是计算机无法完全解决的,都需要设计人员自己作出判断。而判断只能在结构设计的一般规律指导下,根据工程实践经验进行,这便是前面所说的概念设计。因此,概念设计存在于设计师对多种备选方案进行选择的过程中。
3.2 概念设计处理的实际建筑设计问题概念设计所要处理的问题多种多样。但可以肯定的是希望通过概念设计,建筑结构能在各种不期而遇的外部作用下不受破坏,或将破坏程度降至最低。因此,分析如何应付建筑物可能遭遇的各种不确定因素成为概念设计的重要内容。其中,地震作用最为难以琢磨,破坏性也最大。故而,建筑设计过程中就应该未雨绸缪,从计算及构造等各个方面都要采取一些有助于提高抗震能力的措施,不利于抗震的作法则应尽量避免。刚度均匀、对称是减小地震在结构中产生不利影响的重要手段;延性设计则能有效地防止结构在地震作用下发生脆性破坏;多道设防思想能使建筑在特大地震作用下次要的构件先破坏,消耗一部分地震能量。这些抗震设防思想在整个设计过程中都应该作为概念设计的重要指导思想。
4结语
建筑是凝固的艺术,建筑师总是希望通过建筑物表达自己的设计意图,力求艺术性和实用性的完美结合。结构师在保证安全性的前提下,当然应该敢于挑战新的结构形式,使建筑师的意图得以实现。在建筑结构设计的过程中,在基本满足建筑师设计意图的基础上,平面布置应尽量规则,对称,尽量缩小质量中心和刚度中心的差异;使建筑物在水平荷载作用下不致产生太大的扭转效应。竖向布置上,在满足功能要求的前提下,尽量使竖向承重构件上下贯通;能不使用转换层的就应避免使用,以减小结构分析和设计上的困难,另外也不经济,还容易造成应力集中;竖向刚度最好不要突变,而要渐变,否则突变处在水平荷载作用下会出现严重的应力集中现象,这对结构抵抗水平动力荷载是十分不利的。
参考文献:
[1]张炳华.土建结构优化设计[M].上海:同济大学出版社,2008:34-36.
[2]汪树玉.结构优化设计的现状与进展[J].基建优化,2007:12-13.
[3]王光远.工程结构与系统抗震优化设计的实用方法[M].北京:中国建筑工业出版社,2007:35-37.
[论文摘要]文章分析高层建筑结构的六个特点,并介绍目前国内高层建筑的四大结构体系:框架结构、剪力墙结构、框架剪力墙结构和筒体结构。
我国改革开放以来,建筑业有了突飞猛进的发展,近十几年我国已建成高层建筑万栋,建筑面积达到2亿平方米,其中具有代表性的建筑如深圳地王大厦81层,高325米;广州中天广场80层,高322米;上海金茂大厦88层,高420.5米。另外在南宁市也建起第一高楼:地王国际商会中心即地王大厦共54层,高206.3米。随着城市化进程加速发展,全国各地的高层建筑不断涌现,作为土建工作设计人员,必须充分了解高层建筑结构设计特点及其结构体系,只有这样才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。
一、高层建筑结构设计的特点
高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。其主要特点有:
(一)水平力是设计主要因素
在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。
(二)侧移成为控指标
与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。随着建筑高度的增加,水平荷载下结构的侧向变形迅速增大,与建筑高度H的4次方成正比(=qH4/8EI)。
另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的迅速增大,在设计中不仅要求结构具有足够的强度,还要求具有足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生以下情况:
1.因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。
2.使居住人员感到不适或惊慌。
3.使填充墙或建筑装饰开裂或损坏,使机电设备管道损坏,使电梯轨道变型造成不能正常运行。
4.使主体结构构件出现大裂缝,甚至损坏。
(三)抗震设计要求更高
有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具有良好的抗震性能,做到小震不坏、大震不倒。
(四)减轻高层建筑自重比多层建筑更为重要
高层建筑减轻自重比多层建筑更有意义。从地基承载力或桩基承载力考虑,如果在同样地基或桩基的情况下,减轻房屋自重意昧着不增加基础造价和处理措施,可以多建层数,这在软弱土层有突出的经济效益。
地震效应与建筑的重量成正比,减轻房屋自重是提高结构抗震能力的有效办法。高层建筑重量大了,不仅作用于结构上的地震剪力大,还由于重心高地震作用倾覆力矩大,对竖向构件产生很大的附加轴力,从而造成附加弯矩更大。
(五)轴向变形不容忽视
采用框架体系和框架——剪力墙体系的高层建筑中,框架中柱的轴压应力往往大于边柱的轴压应力,中柱的轴向压缩变形大于边柱的轴向压缩变形。当房屋很高时,此种轴向变形的差异将会达到较大的数值,其后果相当于连续梁中间支座沉陷,从而使连续梁中间支座处的负弯矩值减小,跨中正弯矩值和端支座负弯矩值增大。
(六)概念设计与理论计算同样重要
抗震设计可以分为计算设计和概念设计两部分。高层建筑结构的抗震设计计算是在一定的假想条件下进行的,尽管分析手段不断提高,分析的原则不断完善,但由于地震作用的复杂性和不确定性,地基土影响的复杂性和结构体系本身的复杂性,可能导致理论分析计算和实际情况相差数倍之多,尤其是当结构进入弹塑性阶段之后,会出现构件局部开裂甚至破坏,这时结构已很难用常规的计算原理去进行分析。实践表明,在设计中把握好高层建筑的概念设计也是很重要的。
二、高层建筑的结构体系
(一)高层建筑结构设计原则
1.钢筋混凝土高层建筑结构设计应与建筑、设备和施工密切配合,做到安全适用、技术先进、经济合理,并积极采用新技术、新工艺和新材料。
2.高层建筑结构设计应重视结构选型和构造,择优选择抗震及抗风性能好而经济合理的结构体系与平、立面布置方案,并注意加强构造连接。在抗震设计中,应保证结构整体抗震性能,使整个结构有足够的承载力、刚度和延性。
(二)高层建筑结构体系及适用范围
目前国内的高层建筑基本上采用钢筋混凝土结构。其结构体系有:框架结构、剪力墙结构、框架—剪力墙结构、筒体结构等。
1.框架结构体系。框架结构体系是由楼板、梁、柱及基础四种承重构件组成。由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由连系梁连系起来,即形成一个空间结构体系,它是高层建筑中常用的结构形式之一。
框架结构体系优点是:建筑平面布置灵活,能获得大空间,建筑立面也容易处理,结构自重轻,计算理论也比较成熟,在一定高度范围内造价较低。
框架结构的缺点是:框架结构本身柔性较大,抗侧力能力较差,在风荷载作用下会产生较大的水平位移,在地震荷载作用下,非结构构件破坏比较严重。
框架结构的适用范围:框架结构的合理层数一般是6到15层,最经济的层数是10层左右。由于框架结构能提供较大的建筑空间,平面布置灵活,可适合多种工艺与使用的要求,已广泛应用于办公、住宅、商店、医院、旅馆、学校及多层工业厂房和仓库中。
2.剪力墙结构体系。在高层建筑中为了提高房屋结构的抗侧力刚度,在其中设置的钢筋混凝土墙体称为“剪力墙”,剪力墙的主要作用在于提高整个房屋的抗剪强度和刚度,墙体同时也作为维护及房间分格构件。剪力墙结构中,由钢筋混凝土墙体承受全部水平和竖向荷载,剪力墙沿横向纵向正交布置或沿多轴线斜交布置,它刚度大,空间整体性好,用钢量省。历史地震中,剪力墙结构表现了良好的抗震性能,震害较少发生,而且程度也较轻微,在住宅和旅馆客房中采用剪力墙结构可以较好地适应墙体较多、房间面积不太大的特点,而且可以使房间不露梁柱,整齐美观。
剪力墙结构墙体较多,不容易布置面积较大的房间,为了满足旅馆布置门厅、餐厅、会议室等大面积公共用房的要求,以及在住宅楼底层布置商店和公共设施的要求,可以将部分底层或部分层取消剪力墙代之以框架,形成框支剪力墙结构。
在框支剪力墙中,底层柱的刚度小,形成上下刚度突变,在地震作用下底层柱会产生很大内力及塑性变形,因此,在地震区不允许采用这种框支剪力墙结构。
3.框架—剪力墙结构体系。在框架结构中布置一定数量的剪力墙,可以组成框架—剪力墙结构,这种结构既有框架结构布置灵活、使用方便的特点,又有较大的刚度和较强的抗震能力,因而广泛地应用于高层建筑中的办公楼和旅馆。
4.筒体结构体系。随着建筑层数、高度的增长和抗震设防要求的提高,以平面工作状态的框架、剪力墙来组成高层建筑结构体系,往往不能满足要求。这时可以由剪力墙构成空间薄壁筒体,成为竖向悬臂箱形梁,加密柱子,以增强梁的刚度,也可以形成空间整体受力的框筒,由一个或多个筒体为主抵抗水平力的结构称为筒体结构。通常筒体结构有:
(1)框架—筒体结构。中央布置剪力墙薄壁筒,由它受大部分水平力,周边布置大柱距的普通框架,这种结构受力特点类似框架—剪力墙结构,目前南宁市的地王大厦也用这种结构。
(2)筒中筒结构。筒中筒结构由内、外两个筒体组合而成,内筒为剪力墙薄壁筒,外筒为密柱(通常柱距不大于3米)组成的框筒。由于外柱很密,梁刚度很大,门密洞口面积小(一般不大于墙体面积50%),因而框筒工作不同于普通平面框架,而有很好的空间整体作用,类似一个多孔的竖向箱形梁,有很好的抗风和抗震性能。目前国内最高的钢筋混凝土结构如上海金茂大厦(88层、420.5米)、广州中天广场大厦(80层、320米)都是采用筒中筒结构。
(3)成束筒结构。在平面内设置多个剪力墙薄壁筒体,每个筒体都比较小,这种结构多用于平面形状复杂的建筑中。
(4)巨型结构体系。巨型结构是由若干个巨柱(通常由电梯井或大面积实体柱组成)以及巨梁(每隔几层或十几个楼层设一道,梁截面一般占一至二层楼高度)组成一级巨型框架,承受主要水平力和竖向荷载,其余的楼面梁、柱组成二级结构,它只是将楼面荷载传递到第一级框架结构上去。这种结构的二级结构梁柱截面较小,使建筑布置有更大的灵活性和平面空间。
除以上介绍的几种结构体系外,还有其他一些结构形式,也可应用,如薄壳、悬索、膜结构、网架等,不过目前应用最广泛的还是框架、剪力墙、框架—剪力墙和筒体等四种结构。
[参考文献]
[1]GB50011-2001建筑抗震设计规范.
[2]GB50010-2002混凝土结构设计规范.
关键词:混凝土框架;连续性倒塌;拆除构件法;加固措施;数值模拟
中图分类号:TU37文献标识码:A 文章编号:
1. 引言
结构的连续倒塌是由偶然荷载造成结构的局部破坏,进而引发连锁反应导致破坏向结构的其它部分扩散,最终使结构主体丧失承载能力,造成大范围坍塌。近年来,由于火灾、地质灾害、恐怖袭击、燃气爆炸等引发的连续倒塌正对人们的生命、财产安全造成巨大的威胁,并产生严重的社会影响。因而抗连续倒塌问题已日益受到公众的关注和研究者的重视,并成为近年来结构领域的热点问题。
国际上,对结构的连续倒塌问题已进行了四十多年的研究,从1968年英国Ronan Point公寓楼倒塌事件开始,此后的十余年中,出现了很多连续倒塌领域的权威论文。1995年美国的俄克拉荷马市爆炸事件之后,很多工作者针对该事件中建筑物的破坏撰写了一些关于倒塌破坏和连续性的调查研究论文。其中有很多文章指出了未来设计规范中需要考虑的设计推荐标准。自2001年美国9•11事件后,土木工程界对建筑结构连续倒塌的关注程度居于最高水平。[1]
目前,一些国外的规范中均有改善结构抗连续倒塌能力的相关规定。英国是最早对建筑结构进行抗连续倒塌设计的国家之一。为了防止结构发生连续倒塌,英国设计规范
BS8110[2]提出了三个准则:首先控制事件的发生,也就是消除或减少偶然事件的发生;其次保证结构具备一定的连续性和冗余度;此外对关键构件要明确考虑偶然作用的影响。欧洲的Eurocode1[3]规定,结构必须具有足够的强度以抵御可预测或不可预测的意外荷载,规范中分两个方面进行抗连续倒塌设计,一方面基于具体的意外事件,另一方面独立于意外事件,该设计的目的在于控制意外事件造成的局部破坏。该规范采用了拉结强度法、拆除构件法和关键构件法三种方法。美国混凝土协会编制的ACI318-02中要求,构件的配筋和构件的连接构造应有效的保证结构构件之间的拉结连接,改善结构的整体性。美国公共事务管理局编制的《联邦政府办公楼以及大型现代建筑连续倒塌分析和设计指南》(GSA2003)[4]和美国国防部编制的《建筑抗连续倒塌设计》修订版(DOD2009)[5]详细的阐述了结构抗连续倒塌的设计方法及流程。而我国现行的规范中尚未规定详细的抗连续倒塌设计方法。
建筑结构的抗连续倒塌研究的常用方法有数值模拟和试验研究。湖南大学易伟建等对缩尺的四层钢筋混凝土框架结构进行了连续倒塌破坏试验,用于验证数值模拟分析结果的可靠性[6],因此数值模拟仍是研究结构抗连续倒塌的重要方法。美国波士顿东北大学的Sasani等人运用SAP2000预测分析了一栋10层钢筋混凝土建筑在首层一根外柱爆炸后(突然拆除)和一栋6层钢筋混凝土填充墙结构同时拆除两根毗邻外柱(一根为角柱)后结构的响应。与试验数据的比较表明软件在预测拆除柱上方节点的最终位移上非常精确[7]。现有国外规范中提高结构的抗连续倒塌的设计方法主要可以归纳为四种:概念设计法、拉结强度法、拆除构件法和局部加强法。
本文参照DOD2009提供的设计流程,采用拆除构件法对一栋4层钢筋混凝土结构进行了抗连续倒塌分析。
2. 美国关于建筑抗连续倒塌设计有关要求
在抗连续倒塌总向导中,GSA2003 要求钢筋混凝土结构具有较好的多余约束性能、连接性能、延性和较强的抗反向荷载和抗剪切破坏能力。基于设计效率和实用性,GSA推荐设计过程中采用静力线弹性计算方法。在对钢筋混凝土结构的抗连续倒塌设计中, DOD2009采用多重荷载路径设计方法,它要求“拿掉”一个竖向承力构件后的模型具有足够的跨越能力,不允许任何构件发生完全失效破坏。
首先按照DOD2009规范施加荷载,荷载组合为
1.2DL+0.5LL+0.2WL (1)
其中DL为恒荷载;LL为活荷载;WL为风荷载。
线性静力分析时,在拆除承重柱上部相邻开间施加2(DL+0.5LL)的等效静力荷载,其它部位施加(DL+0.5LL)的荷载。
构件的失效准则采用通用的性能指标DCR(Demand capacity Ratio)评估构件塑性能力的大小与分布,即
DCR=QUD/QCE
其中,QUD指按照线性静力分析所得构件的作用力(弯矩、轴力、剪力或组合内力),QCE指实际构件或节点所能承受的极限承载力(弯矩、轴力、剪力或组合内力)。此时材料强度取其标准值并乘以1.25的增大系数。
根据DOD2009准则构件应满足DCR≤1.0。如果一个构件的连接或者构件两端的弯矩DCR值都超标,包括梁跨在内,产生三铰失效机制,也认为构件失效。经过DCR判断后如果有构件发生破坏,将破坏构件从原计算模型中去掉,形成新的计算模型,重新计算模型的DCR值,直到没有新的破坏为止。然后将结构的破坏范围与允许的破坏范围进行比较,确定其是否满足抗倒塌设计要求。
3. 我国现行规范的框架结构设计及连续倒塌设能力分析
3.1 模型的建立
本文建筑模型为4层钢筋混凝土框架结构。按照我国现行混凝土结构设计规范[8]的设计要求,建立该建筑物的结构PKPM模型,并计算得到配筋结果,在此基础上采用SAP2000软件建立倒塌模型。
图1 结构平面
建筑物各层层高3.9m,柱网布置如图一所示。框架结构梁、板、柱均为现浇,混凝土等级C30。纵向受力钢筋选用HRB400,箍筋选用HPB235。建筑场地类别为Ⅰ类,设防烈度为8度。楼面恒荷载由楼板自重和楼面附加均布恒荷载组成,楼面恒荷载为3.5kN/m2,活荷载为2.0kN/m2,屋面恒荷载为5.0KN/m2活荷载为0.5KN/m2。首层和标准层除楼道外均布置隔墙,荷载为6KN/m,屋面女儿墙荷载为3KN/m。基本风压Wo=0.45 KN/m2。[9]对应的各层梁极限承载力见表1。
表1 梁的极限承载力
将按照PKPM软件给出的配筋结果建立的框架模型作为原始结构,在SAP2000中建立分析模型。对该模型遵循DOD2009中的拆除构件法则,依次拆除某些竖向构件,并进行线性静力分析。对照我国现行规范,评价该结构的抗连续倒塌能力。
3.2 抗连续倒塌分析
【关键词】水利水电工程 水电施工机电安装 安装问题 问题分析 机电问题
中图分类号: TV 文献标识码: A 文章编号:
一.引言。
随着我国经济的快速发展,水利水电工程作为经济发展的动力支柱,其建设规模和建设数量正在不断扩大。相对于的在水利水电工程施工过程中,机电安装工程也经历了从少到多,从慢到快,从小到大的发展过程。面临越来越大的建设规模,单机容量日益增大,机组的数量也所有增加,这就对机电安装提出了挑战,增加了安装的难度。目前,在水利水电施工中,机电安装还存在许多啊问题,既影响了工程的质量,同时也影响了水利水电工程的经济效益。
二. 水利水电工程施工的特点。
1.施工过程受环境影响较大。
在水利水电工程施工过程中,经常是在河流上进行,施工中受河流的地形、地质、气象和水文都周边环境的影响较大,在施工进度控制管理中,围堰填筑、施工导流和基坑排水都是主要控制因素。
2.施工组织困难。
绝大多数的水利水电工程,都处于交通条件不是很发达的偏远地区,在工程施工过程中,材料及机械设备的运输难度加大,不仅仅是运输成本有所增加,也增加了设备的运输风险,加大了施工的组织管理难度。
3.环境苛刻,要求严格。
水利水电工程的建设规模都较大,施工涉及的工种较多,工程量巨大,施工的强度较高,周围的环境干扰较为严重,施工过程中需要进行反复的论证和进行优选,才能保证施工质量,而对工程的质量要求通常都较高。
4.施工过程中操作类型较多且复杂。
水利水电工程在施工过程中,需要进行隧洞开挖、石方爆破、高空作业和水下作业、水上作业等,作业类型较多,作业工序较为复杂,施工存在一定的难度。
三.水利水电工程施工中机电安装工程的特点。
1.安装工程组织难度大,技术要求高。
水利水电工程在安装过程中,经常涉及到大量的超级超限部件需要在施工工地上进行焊接、组装,而对于水利水电工程的特殊性质来讲,通常都不会存在较为平整的大片施工工地,机电设备安装前组装作业的基本要求很难满足,同时由于场地的交叉使用和多台安装机组的平行流水作业,存在一定的矛盾和冲突,对土建施工造成影响,加大了安装工程的组织和管理难度,相应的提高了安装的技术要求。
2.安装强度高,设备要求精度高。
在水利水电工程施工中,建设规模不断扩大,需要安装的机组台数也逐渐增多,导致机组安装强度越来越高。同时,水利水电工程的机电设备对安装的精度要求较高,以水轮发电机组安装为例,其安装误差范围通常都是采用1/100mm来进行控制,部分工程中误差要求甚至更小,这就要求具备高超的安装技术,追求安装“零”误差。
3.安装工艺复杂,交叉作业较多。
水利水电工程机电安装时,受制于工程运输条件的约束,许多发电机组的部件都无法在制造厂完成加工和组装后,运输到工地进行安装,而是需要将零散的部件运输到施工现场后,在现场进行组装,导致原本就不宽敞的施工工地上堆放了大量的待组装零件,同施工现场其他工程施工造成作业交叉,加大了安装的复杂程度,增加了安装工作量。
四.水利水电工程施工中机电安装容易出现的问题及防治措施。
1.安装施工过程中容易出现的问题。
(1)设备的基础尺寸、位置和标高出现偏差。
设备的基础尺寸、位置和标高出现偏差,出现此类问题绝大多数原因都是由于施工图纸标注的尺寸和机电安装时的尺寸存在偏差导致的,例如在土建施工图纸上所标注的机组标高和水利机械图纸上所标注的标高不完全相同,在土建施工图纸上未考虑垫铁厚度因素,对设备进行绷重梁配筋布置时,就缺失对垫铁高度的计算,导致在机组进行安装就位时,无法按照设计的高程进行安装,而只好采取去除基础表面的混凝土,降低高度,或是放弃使用可以调节的垫铁,来保证机组的安装高程。
(2)安装前预留的孔洞存在位置偏差和尺寸误差。
机电设备安装前,在进行基础混凝土浇筑时,由于支撑模板的材质较差,导致在振捣时因为挤压而使模板变形,从而导致混凝土凝结后,出现预留的孔洞位置和尺寸与设计的标准存在误差,另外,土建工程施工时,对孔洞的定位时,参照的基准线不准确,也对导致孔洞的偏差。
(3)遗漏预留的电缆孔洞、电缆沟转弯位置的空间不够。
在泵站工程中,机电设备的结构较为复杂,电缆的数量较多且走向非常复杂,由于土建工程施工时,极容易遗漏预留的电缆孔洞,在进行电缆转向操作时,没有电缆转向的空间,另外由于工程设计的原因,导致电缆转弯半径太小,无法满足电缆转向的要求。
2.防治质量问题的相关措施。
1.做好安装工程施工前的准备工作。
在水利水电工程施工过程中,工程项目的施工图设计阶段时,要由具有机电安装专业知识的设计人员对土建结构设计、机电安装工程等提出自己的技术要求,如:穿墙管道预埋、电气设备和线路的固定件预埋、主机组地脚螺栓的孔洞预留、电缆孔洞预留、通风设备构件预留等。要将核心的技术要求在土建结构图上反映出来。在进行土建施工之前,土建施工技术人员要和机电安装人员共同对土建工程和机电专业的施工图纸进行审核,以避免后期施工出现差错。这就要求机电安装人员要有一定的土建相关知识,以看懂包括结构预留孔洞图等土建施工的图纸,要了解土建施工进度计划和施工管控,同时也要求土建施工技术人员要熟悉机电安装的施工图纸。
2.提高机电安装施工方案的合理性。
水利水电工程施工中,土建工程和机电安装的施工方案存在一定的交叉,有时也存在一定的相互矛盾,相互受到影响。如土建工程施工过程中,浇筑混凝土和预埋的部件时,对预留的孔洞位置要确保准确,而在进行立模和振捣操作时,又容易造成预留的孔洞和预留位置发生偏差;在进行主机组安装调试时,要求工作环境保持安静和清洁,而施工现场往往存在室内装饰施工和工程的机械作业等交叉作业,这就要求要保证机电安装施工方案要保持灵活性,要适合工程实际情况,在拟定方案时,要考虑其他因素的影响,注重各项因素的协调配合,这样才能设计出合理的安装施工方案。
3.做好交叉施工的配合。
水利水电工程施工时,机电安装过程中交叉作业较多,不仅仅涉及到施工场地,甚至出现工序相互交叉,相互影响。为了提高机电设备的安装水平,就有必要提高整体工程的施工质量,在保证施工安全的前提下,做好工程的配合和协调,共同做好工程施工。
五.结束语。
水利水电工程施工过程中,机电安装时出现的问题较多,设备安装单位要提前采取相关措施,做好质量事故的预防工作,通过加强施工管控,提高设备安装质量,保障水利水电工程的安全性。
参考文献:
[1] 王永刚 水利水电施工中机电安装出现的问题及对策分析 [期刊论文] 《科技致富向导》 -2012年24期
[2]邹伟清 浅议水利水电施工中的机电安装问题 [期刊论文] 《科技致富向导》 -2011年21期
[3]陈华 水利水电施工中机电安装出现的问题及对策 [期刊论文] 《科技信息》 -2011年3期
[4]黄小松 水电站机电安装施工中存在的问题与策略探讨 [期刊论文] 《商》 -2012年23期
[5]龙光森 阐述在水电施工中机电安装的问题与对策 [期刊论文] 《城市建设理论研究(电子版)》 -2011年22期
关键词:高空散装;异形钢管桁架;设计;施工
1.工程概况
本工程位于济南市城东龙洞地区,规划建设用地北临经十东路,南临体育北路,西临体育西路,东临体育东路,游泳馆为济南奥体中心主体建筑之一,位于奥体中心东区中轴线北侧,与中轴线南侧的的网球中心相对,其东南侧为体育馆,均为大型体育建筑。本工程地下一层,标高-6.2000;地上三层,标高±0.000,5.400,7.700,局部四层,结构顶为30.000。
结构概况:游泳馆钢结构按建筑功能不同,采用不同的结构形式,
其中比赛大厅屋盖采用平面管桁架结构,训练厅屋盖采用工字钢梁结构,墙体钢桁架采用柳叶形空间折板结构,上部钢结构屋盖由北向南渐低,钢结构结构标高最高点为30m,最低点为20m。最大跨度90m。支承于下部砼结构框架柱、基础或型钢砼柱上。结构示意图如下:
2.游泳馆钢结构体系设计分析
游泳馆钢结构体系按设计功能和布局位置,主要有三种型式:比赛大厅屋顶相贯节点平面钢管桁架、训练厅柱梁结构以及游泳馆墙体(折板)柳叶形相贯节点钢管桁架。
比赛大厅的钢桁架为平面桁架,桁架的上弦杆规格为Ф377x12,下弦杆为Ф351x16,腹杆最大为Ф245x12,桁架最大跨度为90m,最小跨度为65m,最重的一榀桁架为跨度90m的桁架(1GJ-4),重约34t,位于大厅中部1-24轴线处,桁架自身截面高5.09m。
训练厅为柱梁结构,钢管柱型号为Ф508X16,屋面钢梁规格为H1000X600X25X30,单榀长约24m,重约12t。
墙体采用折板柳叶形相贯节点钢管桁架,是游泳馆工程的重要特点。整个奥体中心一场三馆贯彻了“东荷西柳”的设计风格,通过巧妙的结构设计,使得建筑效果栩栩如生,东面场馆荷花造型、西面场馆柳叶造型充分体现了山东济南的地方特色,
上述独具匠心的结构设计,给钢结构施工提出了非常高的要求,墙体管桁架杆件数量多且复杂、定位精度要求严格,选择正确的、合理的施工方法显得极其关键。
3.钢结构施工方法分析
3.1、比赛大厅桁架由于是较为常见的平面桁架,在工程初期曾考虑用分段吊装的方案,但由于后来现场条件不具备,大型吊装机械不能靠近,最终,该部位的钢结构桁架采用了下部搭设条形承重架,利用塔吊进行配合高空散装的方法进行安装。
3.2、训练厅钢柱和钢梁利用塔吊和拔杆相结合的方法安装。
3.3、墙体桁架根据结构形式,一开始打算采用墙体单元(如上图)地面整体拼装再整体吊装的方案,但由于现场场地实在太有限,且因墙体桁架结构形状相对复杂,地面整体拼装仍需要大量辅材胎架,且整拼以后吊装定位难度更高,一旦积累误差过多,返工量将相当大,综合考虑这些因素,最后采用搭设操作脚手架分段分层、逐层高空散装为主要安装方法,这样风险最小,特别是墙体杆件无论主杆件还是次杆件都可逐根进行全站仪测量定位安装,尺寸控制相对更有把握。
4.实际施工时重点、难点讨论
4.1比赛大厅屋面钢管桁架结构施工时,大厅下部的土建结构已施工完毕,吊机无法进入比赛大厅内部进行钢桁架的吊装,同时,在比赛大厅的1-E轴线外侧的架空屋面及室外平台也施工完毕,吊机无法靠近进行钢桁架的安装,因此比赛大厅屋面钢管桁架的的安装成为本工程的一个难点。
经过仔细分析现场条件和结构特点,对比赛大厅钢桁架采用了“条形脚手架高空散装”的方法进行施工,条形脚手架为承重型脚手架,采用Ø48×3.5钢管及扣件进行搭设,立杆间距为1.0m×1.2m,步高1.5m,并通过严格的计算,受力均能满足施工要求。运用该方法的好处是:解决了大型吊机无法进到内场进行桁架整榀吊装的难题,同时,又避免了传统的满堂脚手架费用过大。条形承重脚手架显得构造简单清晰,使用功能明确,在实际施工过程中,将此种脚手架与塔吊结合,将杆件一根一根地吊到架子平台上进行原位拼装,使屋面钢桁架的安装过程容易控制,并充分利用塔吊的起重性能,先吊装桁架下弦并逐根对接固定,再将架子延伸至桁架上弦杆高度,进行桁架上弦及腹杆的吊装拼接,条形承重架兼顾了临时支撑及操作平台的双重作用。条形架平面图如下图所示:
4.2本工程最难的就是墙体钢结构(折板)柳叶形相贯节点钢管桁架的安装,一般情况下,会采用地面整个墙体单元拼装,然后整体吊装的施工方案。
在墙体钢结构实际安装时,受场地条件限制,给墙体钢桁架进行整体单元拼装的场地根本就没有,现场的道路又非常狭窄,大型吊装机械设备根本无法自由通行,这种情况下,如何安全地、高效地完成墙体钢结构的安装,成为本工程最大的重点与难点。
通过技术经济比较分析,结合比赛大厅条形承重架高空散装的思路,仍利用高空散装的理念,对墙体桁架采取了搭设操作脚手架,逐层搭设、逐层散装的方法进行安装,取得了较好的效果。
具体做法是:
在墙体桁架宽度范围内(宽约5米)搭设满堂操作脚手架,而该架子又不是一次搭到顶,而是根据墙体钢桁架的结构分段,共分为三层逐层搭设,因此,按深化设计分段,第一层架子先搭设好,将主钢管柱与土建原有落点或埋件连接,全站仪定位进行桁架的主次杆件拼装和焊接。在此过程中脚手架并不承受桁架自重。仅相当于一个操作架,墙体钢结构的杆件数量又特别大,在测量定位过程中,墙体钢结构的腹杆定位可依靠架子进行侧向固定。第一层范围内的桁架包括主杆和腹杆拼焊好后,再依次进行第二层、第三层脚手架的搭设和墙体桁架的安装。吊装机械可根据现场实际情况,灵活选用塔吊或汽车吊进行吊装。
利用此方法可分轴线、分层将搭架子与安装桁架设为流水交替作业,更加能确保工期。安装精度的控制虽有一定的难度,但相对整榀桁架吊装定位来说,用全站仪进行杆件散件全程监控测量,只要精确定位好墙体钢桁架主杆,腹杆就相对容易。且在安全方面,架子与钢结构杆件紧密相连,相互依附穿插,安装过程当中的结构安全有保证。
如下图所示:
通过以上方法的应用,顺利完成了济南奥体游泳馆钢结构的安装工作。
5.结束语