前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的开关电源设计主题范文,仅供参考,欢迎阅读并收藏。
本设计是DC/DC直流开关电源设计,首先将开关电源与线性电源进行对比,总结了开关电源的优点,并对其当前的发展以及在发展中存在的问题进行了描述,然后在对开关电源的整体结构进行了介绍的基础上,对开关电源的主回路和控制回路进行设计:在主回路中整流电路采用单相桥式、功率转换电路采用单端正激功率转换电路、采用增加副边绕组的方法实现多路输出,其中功率转换电路(DC/DC变换器)是开关电源的核心部分,对此部分进行了重点设计;控制电路采用PWM控制,控制器采用开关电源集成控制器GW1524、设计了过压保护电路、电压检测电路和电流检测电路,对各个部分的参数进行了计算并进行了元器件的选型。
【关键词】DC/DC变换器、PWM控制、整流、滤波。
Abstract
Inthispaper,Idesignedaswitchpowersupplysystemwiththreeoutputs:Comparetheswitchpowerwithlinearpoweratfirst,hassummarizedtheadvantageoftheswitchpower,havedescribeditspresentdevelopmentandtherearenaturalquestionsindevelopment.Onthebasisofthethingthatthewholestructuretotheswitchpowerhasmadeanintroduction,tothemainreturncircuitandcontrollingthereturncircuittodesignoftheswitchpower:Therectificationcircuitadoptsthesingle-phasebridgetypeinthemainreturncircuit,thepowerchangesthecircuitandadoptsanddefiesthepowertochangethecircuit,realizebyincreasingthewindingofonepairofsidessingleandwellthatmanywaysareexported,itisakeypartoftheswitchpowersupplythatthepowerchangescircuit(DC/DCtransformer),havedesignedthispartespecially;ThecontrolcircuitadoptsPWMtocontrol,thecontrolleradoptstheswitchpowerintegratedcontrollerGW1524,designthecircuittomeasurevoltageandthecircuittoelmeasureectriccurrent,selectingtypeofcalculatingandcarryingonthecomponentsandpartstheparameterofeachpart.
Keyword:DC/DCtransformer,PWMcontrol,rectification,strainingwaves.
1概述
电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。
1.1开关电源的基本原理
开关电源就是采用功率半导体器件作为开关元件,通过周期性通断开关,控制开关元件的占空比调整输出电压,开关电源的基本构成如图1-1所示,DC-DC变换器是进行功率变换的器件,是开关电源的核心部件,此外还有启动电路、过流与过压保护电路、噪声滤波器等组成部分。反馈回路检测其输出电压,并与基准电压比较,其误差通过误差放大器进行放大,控制脉宽调制电路,再经过驱动电路控制半导体开关的通断时间,从而调整输出电压。
1.2开关电源与线性电源的比较
是先将交流电经过变压器变压,再经过整流电路整流滤波得到未稳定的直流电压,要达到高精度的直流电压,必须经过电压反馈调整输出电压。它的缺点是需要庞大而笨重的变压器,所需的滤波电容的体积和重量也相当大,而且电压反馈电路是工作在线性状态,调整管上有一定的电压降,在输出较大工作电流时,致使调整管的功耗太大,转换效率低,还要安装很大的散热片。这种电源不适合计算机等设备的需要,将逐步被开关电源所取代。
1.3开关电源的发展与应用
当前,开关电源新技术产品正在向以下"四化"的方向发展:应用技术的高频化;硬件结构的模块化;软件控制的数字化;产品性能的绿色化。由此,新一代开关电源产品的技术含量大大提高,使之更加可靠、成熟、经济、实用。
开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。
近年,有些公司把开关器件的驱动保护电路也装到功率模块中去,构成了"智能化"功率模块(IPM),这样缩小了整机的体积,方便了整机设计和制造。为了提高系统的可靠性,有些制造商开发了"用户专用"功率模块(ASPM),它把一台整机的几乎所有硬件都以芯片的形式安装到一个模块中,使元器件间不再有传统的引线相连,这样的模块经过严格、合理的、热、电、机械方面的设计,达到优化完善的境地。
开关电源是一种采用开关方式控制的直流稳定电源,它以小型、轻量和高效率的特点被广泛应用于以电子计算机为主导的各种终端设备、通信设备等几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。而当我们把开关电源的研究扩大到可调高电压、大电流时,以及将研究新技术应用于DC/AC变换器,即开拓了大功率应用领域,又使开关电源的应用范围扩大到了从发电厂设备至家用电器的所有应用电力、电子技术的电气工程领域。作为节能、节材、自动化、智能化、机电一体化的基础的开关电源,它的产品展现了广阔的市场前景。例如,发电厂的贮能发电设备、直流输电系统、动态无功补偿、机车牵引、交直流电机传动、不停电电源、汽车电子化、开关电源、中高频感应加热设备以及电视、通讯、办公自动化设备等。
1.4开关电源当前存在的问题
当我们对该技术进行深入研究后却发现它仍然存在着一些问题需要解决,而且有的问题还带有全局性:采用定频调宽的控制方式来设计电源,都以输出功率最大时所需的续流时间为依据来预留开关截止时间的,则负载所需的功率小于电源的最大输出功率时就必然造成了工作电流的不连续;"反峰电压"是开关导通期间存入高频变压器的励磁能量在开关关断时的一种表现,而励磁能量只能在、也必须在开关关断后的截止期间处理掉,既能高效处理励磁能量又能有效限制反峰电压的办法是存在的,那就是要及时地为励磁能量提供一个"低阻抗通道",并且为励磁能量的通过提供一段时间,但"单调"控制方法不具备这一条件;高频变压器的磁通复位问题;传统的电流取样方法是在功率回路中串联电阻,效率不高,这个问题向来是电源技术,尤其是以小体积、高功率密度见长的开关电源技术发展的"瓶颈";高频开关电源的并联同步输出问题。
以上的问题看似彼此独立,其实它们之间存在着一定的关联性解决这些问题,也许还是一条艰难而漫长的路。
2整流电路的设计
整流是将交流电变成脉动直流电的过程。电源变压器输出的交流电经整流电路得到一个大小变化但方向不变的脉动直流电。整流电路是由具有单向导电性的元件例如二极管、晶间管等整流元件组成的。
2.1整流电路的选择
单相整流电路有两种:电容输入型电路和扼流圈输入型电路
电容输入型的基本电路如图2-1:(a)为半波整流电路(b)为中间抽头的全波整流电路(c)桥式整流电路(d)倍压整流电路。
扼流圈输入型基本电路,用于负载电流I0较大的电路,扼流圈L的作用是抑制尖峰电流。
关键词:气隙;RCD;离线式;变换器;电磁辐射
中图分类号:TP212文献标识码:Adoi: 10.3969/j.issn.1003-6970.2011.03.039
0引 言
以往对于小于10W以下的离线式直流电源来说,在效率要求不高的地方,一般认为采用工频变压器加整流电路及线性稳压电路比较合理。因为那时10W以下的工频变压器成本相对于开关变换器来说并不高,而线性稳压器的半导体器件比开关电源的环路控制成本要低,至于说工频变压器转换效率低的问题那是用户的事情,研发者并不关心。而如今提倡节能环保,电子设备高度集成化,体积做得越来越小。相同功率的工频变压器要比开关变换器的重量(体积)大几倍,对于原材料、人工费不断攀升的今天来说用离线式10W小功率开关电源取代线性电源是当勿之急。
110W开关电源的设计制作要点:
1.1频率问题
选择工作频率高的芯片,可以使变换器的体积减小、容性器件的容量及体积减小,PCB尺寸将减小,制作的开关电源体积自然减小,但它所带来的缺点是对变换器的磁芯要求提高,人工缠绕变换器的难度增加,高频磁芯不但成本高而且在国内不易购买;而选择工作频率过低的芯片,所制作出的开关电源其效率降低、体积增大,这不是我们所追求的。
1.2器件是否容易购买
阻容器件在电子市场上容易购买,滤波电感可以自行绕制,磁芯、控制芯片的选取上是令人郁闷的事情。对于小批量生产,为了购买到器件不得不修改合理的设计初宗,但不管怎样,制作出性能稳定的产品才是硬道理。
1.3成本
尽量选用国产器件,以便降低成本。
设计一个离线式10W开关电源并不是一件容易的事情,因为它涉及到许多电学、磁学、安全规范方面的知识,在器件的选定上要经过反复大量的计算,试验才能最终敲定。如何利用先人的经验撇开繁琐的计算快速地设计出性能稳定的开关电源,我想这是每个电路设计者所期望的。在芯片高度集成的今天,开关电源的控制、驱动、振荡、比较等电路都集成到一个芯片里,这为对开关电源的拆分设计提供了条件。在离线式10W开关电源应用领域,芯片制造商推出多种型号的开关电源控制芯片,这些芯片虽然型号不同但在性能和使用的方式上却雷同。THX203H是南京通华芯微电子公司制造,它性能稳定、功能多、价格低,工作频率在60KHz左右,易于买到与之相适应的磁芯,是一款比较实用的离线式10W开关电源控制芯片。
2离线式10W开关电源基本框架说明
图1是基于THX203H的离线式10W开关电源的基本框架。
Fuse:选用1.5A保险丝。
Bridge:选用1N4007
Cin:在VAC 85~265V时,一般认为3uF/1W,10W应选30uF/400V的电容。
R1、R2、CT:是THX203H固定搭配电路,按要求设定即可。当然CT、R2尽量选用贴片件,以减少器件的分布电感,且在PCB布线时尽量靠近THX203H。
Clamp Zener、Blocking Diode :两个二极管组合成箝位电路用以消除THX203H内部功率管关断时变换器漏感储能所引起的尖峰,当然这个电路在小于10W功率输出时完全可以用RCD电路替代。 RCD即电阻、电容、二极管。
Clamp Zener选用P6KE200,Blocking Diode选用BYV26C。
光藕、RB、RZ:完成对开关电源输出端的取样、反馈。DZ可选BZX79-B4V7,RB可选39Ω。一般认为选用这种反馈电路VOUT精度较低,约为±5%,利用TL431构成的反馈电路VOUT精度更高,约为±1%。
VDB:可选1N4148,Cb可选47uF/50V。
VD:整流管,可选肖特基1N5822。
Cm:VOUT输出5-24V,1A时选330uF/35V。VOUT输出5-24V,2A时选1000uF/35V。这种选择是有条件的,要求电解的ESR(等效内阻)要低。我们在市场上购得的电解性能优劣不一,所以在选定电解容量时,要比上述容量大100-200uF 比较合理。
Lf、Cf:起消除纹波作用。Lf选8-12uH,Cf选470uF/35V。
磁芯的选定[1]:有一个非常简单的预测典型铁氧体反激变器的能量转换关系式,PO≈100×f×Ve(W)。这里f为工作频率,单位为HZ,Ve铁氧体体积单位为m3,EE25磁芯
Ve=1890×10-9m3。设f=60kHZ,则磁芯转换出的功率PO≈11.34W。满足10W要求。
初级线圈匝数的确定[2] :首先确定初级线圈的电感量,10W离线式开关电源工作频率在100KHz时,初级线圈电感量一般在1~2mH之间,我们所设计的开关电源工作频率为60kHz,所以首先设定初级线圈电感量为2mH。气隙的设定,气隙就是在组装变换器时在变换器的两个E型磁芯之间保留一段距离,大批量生产通过研磨E型磁芯中间柱实现,小批量生产通过在E型磁芯的两边柱中间加垫绝缘层来实现。为了便于加工,气隙要大于0.051mm。气隙即不能太小也不能太大,太大会大大降低磁导率。在磁芯中加上气隙是为了防止磁饱和。 青稞纸,防静电、绝缘性好、耐压性强。用0.12mm厚度的青稞纸作为气隙绝缘层。磁芯、初级电感量、气隙确定之后初级线圈匝数基本确定。
初级线圈要排绕、密绕、布满整个骨架的绕线窗,留够爬线距离。直径0.21mm漆包线绕3层,每层40圈,实测变换器初级绕组电感量为1.9mH±0.1mH。
次级线圈、偏置绕组线圈匝数的确定:对于VOUT=5V这类开关电源匝比多设在14:1左右。现在按照14:1匝比进行设置,次级线圈的匝数为8圈。那么,次级每圈对应0.625V。偏置绕组设为9圈,则偏执绕组产生的电压约为5.6V接近THX203H的典型供电值。如果次级还有其它绕组,只需按照 0.625V/1圈 进行推算即可。
3一款完整离线式10W开关电源电路的推荐
下面介绍一个成型电路,AC输入电压范围:130V―250V;DC输出:5V、5V、15V;第二绕组输出电流可达1A,精度±0.2V,纹波小于30mV。第四绕组输出电流可达200mA,电压精度在10%以内,纹波小于30mV。
原理图如图2所示:
4变换器的绕制
磁芯参数:EE25,TDK PC40,骨架:10脚,立式。
4.1变换器的绕制方法
4.2变换器绕制要点
1.变换器1、2脚爬线距离大于6mm,不同绕组之间的爬线距离大于3mm,每层排绕。
2.第一绕组的电感量=19mH±0.1mH,通过调整磁芯的气隙实现。气隙的实现:在E型磁芯的两端的柱上,分别加上约0.12mm厚的青稞纸。
3.PCB布线问题,器件尽量紧凑,以减少分布电容、分布电感、电磁辐射。
4.THX203H的散热问题[3],在THX203H的7、8脚上铺设200mm 以上的铜箔,最好将铺设的铜箔定义成焊盘,在焊盘上加焊锡以提高其散热能力。
5.漆包线绕的一定要紧。如果制作的开关电源用于商品出售,变换器要浸漆,要是自用可不必浸漆。
5结论
本文介绍了离线式10W开关电源的设计制作方法,提供了一些经验数据及相关公式,对离线式10W开关电源的设计制作要点进行了阐述。文中所用电路是经过实践检验的,所选磁芯、芯片只要上网查找均可轻松查到,文中公式、数据多数是笔者查阅相关资料获得,也有些是笔者长期工作经验的总结。希望对此方面感兴趣的朋友阅读此文时,剔除糟粕汲取精华。
参考文献
[1] Sanjaya Maniktala 著王志强、郑俊杰译. 开关电源设计与优化[M]. 北京:电子工业出版社,2006
[2] Abraham I. Pressman, Switching Power Supply Design (2nded.), New York, McGraw-Hill, Inc., 1991
关键词:RCC; 开关电源; 频率计算; 变压器设计
中图分类号:TN710-34; TM433 文献标识码:A 文章编号:1004-373X(2011)24-0199-03
Design for RCC Switch Mode Power Supply Based on Frequency Account
YANG Shu-tao, GU Jia-chen, QI Li, WANG Zai-li
(Unit 63889 of PLA, Mengzhou 454750, China)
Abstract: RCC (ringing choke convertor) is one of the most popular ways to design low/medium SMPS (switch mode power supply). Due to the parameters are interactional in the design of RCC SMPS, the interaction makes calculation and debugging complex. The existing ways preelect the frequency, and then validate them repeatedly by AP. Several time calculation is needed. Moreover, the system is hard to work in the best state. The transformer design is the key link in SMPS, and the most important reference is frequency in transformer design. If the working frequency can be obtained in advance, or at least make certain of the influence factors, the account and debugging time will be shorten obviously. The formula for frequency is derived first to determine the main source of frequency, and the relation of the transformer inductance and the input voltage. And then the other parameters of the transformer are confirmed, at last the other parameters of whole SMPS are determined. The rationality of the design was proved by the simple debugging for SMPS hardwares.
Keywords: RCC; switch mode power supply; frequency account; transformer design
RCC(Ringing Choke Convertor)式开关电源具有所需器件少,成本低,不用外部时钟控制,工作于临界连续状态,可以方便地实现电流型控制,在结构上是单极点系统,容易得到快速稳定的响应,具有自动功率限制等优点 [1-2 ]。RCC电路原理简单,由开关变压器和主开关管谐振产生振荡,副开关管可以调节占空比,以此调节输出电压 [3-4 ]。但是RCC电源的占空比、工作频率随使用环境和内部参数的变化而改变,使得开关管控制极的电流驱动波形难以确定,给器件参数选定,尤其是变压器的设计带来困难 [5-6 ]。传统设计主要有诺模图法和磁芯面积乘积AP计算校验法 [3-4 ]。这两种方法在定频率计算中较实用,但若未知频率,将不能用以上两种方式设计。传统的方法是给RCC电源预设一频率,然后设计变压器 [1,3,5 ]。但因变压器参数直接影响到电源的工作频率,所设计的变压器工作频率经常与预设频率相差太大而不能正常工作;电源参数需多次重复设计,导致初期设计计算量大,而且该“拼凑法”在后期调试中,实际频率很难与理论值吻合,导致电源不能工作在设计的最佳状态。
本文推导出频率计算公式,并得出频率与输入电压成正比,与负载电流、初、次级电感量成反比。在确定的输入电压和已知的最大输出功率下,根据电源给定的输入电压、输出电压、额定工作频率和占空比直接求取变压器的初、次级匝数,一次设计就能确定变压器所有参数,解决了高频变压器设计中需要反复设计与验证的问题。基于该方法设计了一台5 V/10 A的开关电源,并对电源的工作频率、占空比等参数进行了验证。
1 RCC原理
1.1 RCC原理
RCC原理图如图1所示。上电后,C3两端电压使电流经起振电阻R1,R2,驱使主开关管Q1导通,随着Q1导通,经由反馈电感T1的反馈信号加强对Q1控制极正向驱动,使Q1迅速导通。因感应电动势与电流变化率成正比,当变压器初级电流最大(饱和导通)时,T1′两端电压为0,Q1退出饱和状态开始关断。此时,T1′感生反向电动势,加速Q1关断,同时饱和状态R4两端电压驱使Q2开通,并将Q1控制极短路,使Q1关断,经起振电阻R1,R2重新使Q1导通,依此循环 [3,7-8 ]。RCC电路始终工作在临界导通模式,不会出现反激变换中的连续能量传递模式,其初级电流始终都是一个锯齿形三角波形,而不会出现梯形波 [8-10 ]。RCC电路调节电压的输入方式是通过控制初级峰值电流来实现的[3]。
1.2 自振荡频率计算
若变压器T1的初级、次级电流为i1,i2,电压为u1,u2,匝数为N1,N2,电感量为L1,L2,分析变压器初级电感,由电磁感应定律知,在导通时间Δt下有以下关系:u1=L1i1Δt
(1) 在Δt为导通时间Ton时,初级有电流最大值:I1max=u1Ton/L1
(2) 则导通时间:Ton=L1I1max/u1
(3) 由变压器基本原理得次级最大电流值为:I2max=N1N2•u1L1Ton
(4) 由于次级电流以u2/L2比率减小,则次级输出瞬时电流为:i2=I2max-u2L2Δt
(5) 当Δt=Toff时,有:I2max-u2ToffL2=0
(6) 由式(3),式(4),式(6)可知,关断时间为:Toff=N1N2Ton=N1N2•L2u2I1max
(7) 由式(3),式(7)可知,占空比为:D=11+u1u2L2L1
(8) 由式(8)可知,占空比与变压器初级电感量L1成正比,与输入电压u1、次级电感量L2成反比,占空比不受初、次级电流变化的影响。
理想状态下变压器的输入输出能量相等:12L1I21maxf=u1i1
(9)由式(3),式(7),式(9)整理得: f=12i2u2u2L1/u1+L22
(10) 由式(10)可知,振荡频率f随u1的升高而升高,随输出电流i2、初次级电感量L1,L2的增大而减小。根据式(8),式(10),可确定变压器的初、次级电感L1,L2,它们是检验电源能否达到设计要求的重要参考。
2 设计实例
基于频率计算法设计了一个50 W的RCC开关电源,其原理图如图2所示。为了图面清晰,图中未画出工频滤波和整流电路。该电源采用典型RCC拓扑结构,其整流、滤波、缓冲吸收电路、电压负反馈电路、过流控制的设计可参照文献[3,11-12]。
2.1 选择磁芯
所设计的电源最大输出功率为Pout=50 W,所需的输入功率Pin=Pout/η,预计效率为0.8,以时变压器能承载的最大功率应不小于62.5 W。若设计的电源最低工作频率不低于50 kHz,查磁芯参数表知,EE30磁芯在50 kHz时最大输出功率为64 W [13-14 ],能满足所需功率的要求,其磁芯有效截面积Ae=109 mm2。
2.2 求初、次级匝数
自激反激式变压器匝数N的计算公式为[1]:N=u22BwAef
(11)式中:输出电压u2=5.7 V(含整流管压降0.7 V),若允许磁芯工作磁通密度Bw≤120 mT,将Bw代入式(11)得N2≥4.35,则取整为5匝。
由于变压器的输入/输出能量相等:12u1I1maxTon=12u2I2maxToff=u2i2T
(12) 从而有:I2max=2i21-D
(13) 由于次级最大平均电流为10 A,设计占空比D为0.3,则输出瞬时极限电流I2max=28.57 A,由式(6)解出次级电感量L2=2.45 μH。同理可以得出初级极限电流I1max=1.34 A,初级电感量L1=1.39 mH。由式(4)知N1=106。
2.3 选定线径
漆包线电流密度J=4 A/mm2,则线径为:Φ=2×I/(J×π)
(14) 相应可得初次级绕组线径分别为:Φ1=0.253 mm,Φ2=1.784 mm。对照GB(国标)线径表,取接近且不小于计算值的初级线径为0.28 mm,次级线径为1.25 mm,两股并绕。
2.4 磁芯窗口空间校验
线圈所占窗口面积为:Aw1=πΦ214N1+πΦ222N2=17.6 mm2
(15) 查相应磁芯参数表知,EE30磁芯的窗口面积Aw=73.35 mm2,若窗口使用系数取推荐经验值 [3 ]0.4,则0.4Aw=29.34 mm2>Aw1,磁芯空间可以容下绕组。
2.5 气隙计算
为了有效防止磁芯磁饱和,RCC式开关电源高频变压器应在磁芯中插入气隙 [10,14 ],使磁芯的导磁率下降。气隙Lg的计算公式为 [3 ]:Lg=μ0AeN21L1
(16)式中:μ0为真空中磁导率,所有量均为已知。计算得Lg=1.26 mm。由于磁芯为EE型对称安装,磁芯气隙均分到磁芯所留空隙中,EE30磁芯安装时,需要保留Lg/2=0.63 mm的间隙。变压器的主要参数如表1所示。
3 实验结果及分析
输出电流为10 A时初级电流i1和次级电压u2如图3所示。从数字示波器的波形可以看出,此时的占空比D为0.31,与设定的占空比相差3.33%,频率f为47.6 kHz,与设定频率相差3.93%。这是由于高频变压器次级线圈取整引起的,通过调节磁芯气隙可以简捷调节变压器初、次级线圈的电感值,使各项指标与理论值相吻合。因误差不大,该设计中没有做此调整。
采用自耦变压器调压,测得在母线电压降低为250 V,次级电流保持10 A时次级电压如图4所示。
图3 满载时的初级电流、次级电压此时的占空比D为0.36,频率f为40 kHz,说明RCC变压器工作占空比随输入电压的减小而增大,工作频率随输入电压的减小而减小。将u1=250 V代入占空比计算式(8)和频率计算式(10),求解得出D=0.343,f=40.7 kHz,实际工作占空比与理论值相差5.56%,工作频率与理论值相差1.72%。输入直流电压为300 V,输出电流为5 A时,变压器次级线圈电压如图5所示。
此时的占空比D为0.3,频率f为100 kHz,说明当改变输出电流值时,电源的工作占空比并没有发生变化,占空比与输出电流大小没有关系。而工作频率随输出电流的减小而线性增大。将io=5 A代入占空比计算式(8)及频率计算式(10),求解得出D=0.3,f=92 kHz,工作频率与理论值相差8.69%。
4 结 语
RCC电路通过变压器初级线圈与开关管谐振产生自振荡,在输入电压和负载一定时,振荡频率受初、次级电感量的影响较大。因RCC工作频率可变,而过低频率将导致磁芯磁饱和,因此设计RCC变压器时必须留有气隙,以增大磁阻,防止磁芯饱和。与普通变压器工作方式不用,RCC变压器初、次级线圈相当于储能电感,加之变压器磁芯装配预留气隙产生的漏感以及缓冲网络引发的损耗,不能简单用初级的压匝比求次级匝数。为此,本文提出了一种用于RCC开关电源设计的频率计算验证方法,可以根据变压器的输入电压、输出电压、工作频率和占空比等参数直接计算变压器的相关参数。依照该方法设计的电源不需重复设计和校验即可工作在预设的状态,解决了RCC变压器需反复设计的问题。基于该方法设计了一台实验样机,实验表明,其工作状态与设定状态基本一致,说明用变压器匝数直接计算法设计RCC电源是可行和有效的。本文推导出了RCC电源的工作频率、占空比与变压器初、次级电感量、输入电压、输出电流的关系,为RCC式开关电源的设计和调试提供了依据。
参 考 文 献
[1] 徐丽红,王佰营.ST自激式开关电源设计[EB/OL]. [2008-11-16 ]..
[3] BILLINGS Keith. Switchmode power supply handbook [M ]. 2nd ed. Beijing: Posts&Telecom Press, 2007: 161-170; 193-197.
[4] 张占松,蔡宣三.开关电源的原理与设计修订版[M].北京:电子工业出版社,2007.
[5] Runlife.RCC培训资料[EB/OL]. [2011-11-13 ]..
[7] 王兆安,黄俊.电力电子技术[M].4版.北京:机械工业出版社,1996.
[8] 丁道宏.电力电子技术[M].北京:北京航空工业出版社,1998.
[9] 佚名.RCC电路间歇振荡现象的研究[D].南京:南京航空航天大学,2002.
[10] 蔡宣三,龚绍文.高频功率电子学[M].北京:科学出版社,1993.
[11] 赵春云,曹经稳.常用电子元器件及应用电路[M].北京:电子工业出版社,2007.
[12] 邱关源.电路[M].4版.北京:高等教育出版社,1999.
[13] 赵修科.实用电源技术手册(磁性元器件分册)[M].沈阳:辽宁科学技术出版社,2002.
电气工程及自动化
大功率开关电源的设计
一、
综述本课题国内外研究动态,说明选题的依据和意义
开关电源的前身是线性稳压电源。在开关电源出现之前,各种电子装置、电气控制设备的工作电源都采用线性稳压电源。随着电子技术的迅猛发展,集成度的不断增加,计算机等各种电子设备体积越来越小而功能却越来越强大,因此,迫切需要重量轻、体积小、效率高的新型电源,这就为开关电源技术的发展提供了强大的动力。
可以说,开关电源技术的发展是随着电力电子器件的发展而发展的。新型电力电子器件的发展为开关电源的发展提供了物质条件。20世纪60年代末,耐高压、大电流的双极型电力晶体管(亦称巨型晶体管,BJT、GTR)的问世使得采用高工作频率的开关电源的出现称为可能。
早期的开关电源开关频率仅为几千赫兹,随着磁性材料及大功率硅晶体管的耐压提高,二极管反向恢复时间的缩短,开关电源工作频率逐步提高。到了1969年,终于做成了25千赫兹的开关电源。由于它突破了人耳听觉极限的20千赫兹,这一变化甚至被称为“20千赫兹革命”。
在20世纪80年代以前,开关电源作为线性稳压电源的更新换代产品,主要应用于小功率场合。而中大功率直流电源则以晶闸管相控整流电源为主。但是,这一格局从20世纪80年代起,由于绝缘栅极双极型晶体管(简称IGBT)的出现而被打破。IGBT属于电压驱动型器件,与GTR相比前者易于驱动,工作频率更高,有突出的优点而没有明显的缺点。因而,IGBT迅速取代了GTR,成为中等功率范围的主流器件,并且不断向大功率方向拓展。
开关电源开关频率的提高可以使电源重量减轻、体积减小,但使开关损耗增大,电源效率降低,电磁干扰问题变得突出起来。为了解决因提高开关电源工作频率而带来的负面影响,同样在20世纪80年代,出现了软开关技术。软开关技术采用准谐振技术的零电压开关(ZVS)电路和零电流开关(ZCS)电路。在理想情况下,采用软开关技术,可使开关损耗降为零。正是软开关技术的应用,使开关电源进一步向效率高、重量轻、体积小、功率密度大的方向发展。经过近30年的发展,对软开关技术的研究可谓方兴未艾,它已成为各种电力电子电路的一项基础性技术。迄今为止,软开关技术应用最为成功的领域非开关电源莫属。
最近几年,“绿色电源”这一名词开始进入人们的视野。所谓“绿色”是指,对环境不产生噪声、不产生电磁干扰,对电网不产生谐波污染。为了提高开关电源的功率因数,降低开关电源对电网的谐波污染,在20世纪90年代,出现了功率因数校正(Power
Factor
Correction——PFC)技术。目前,单相PFC技术已比较成熟,相关的控制芯片已在各种开关电源中广泛应用,相比之下三相PFC技术则还处在起步阶段。
高频化是开关电源轻、薄、小的关键技术,国外各大开关电源制造商都在功率铁氧体材料上加大科技创新,并致力于开发新型高智能化的元器件,尤其是改善整流器件的损耗,以提高在高频率和较大磁通密度下获得高的磁性能。另外,电容器的小型化和表面粘着(SMT)技术的应用为开关电源向轻、薄、小型化发展奠定了良好的技术支持。目前市场上出售的采用双极性晶体管制成的100千赫兹开关电源和用场效应管制成的500千赫兹开关电源虽已使用化,但其工作频率还有待进一步的提高。
模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,实现并联方式的容量扩展。
选择本课题可以使我掌握开关电源的工作原理,进一步加深对开关电源的理解。并把所学的专业知识(包括单片机原理与应用技术、电力电子技术、大学物理、计算机辅助设计等)应用到具体实例中,有效地巩固所学的基础理论知识,真正做到学有所用。
二、研究的基本内容,拟解决的主要问题:
1、研究的基本内容包括:开关电源的工作原理,大功率开关电源中普遍采用的全桥型电路及其驱动电路以及高频变压器的设计与制作等。
2、计划将此系统分成四部分——功率因数校正(PFC)电路、辅助电源模块、主电路以及控制电路。
3、功率因数校正电路用来提高整流电路的功率因数,防止大量的谐波分量涌入电网,造成对电网的谐波污染,干扰其它用电设备的正常运行。
4、辅助电源模块用来为控制电路提供电能。拟用单片集成开关电源芯片(TOP204)来实现。
5、控制电路用场效应管集成驱动芯片IR2155,驱动全桥电路。
6、主电路的设计主要包括高频变压器的设计和全桥型电路中功率管的选型。
三、研究步骤、方法及措施:
步骤:
(1)查阅相关的技术资料,制定初步的方案;
(2)利用适当的计算机辅助设计软件(如Proteus、PI
Expert
6.5、Multism等)对设计方案进行模拟仿真;
(3)四个模块设计的先后顺序为功率因数校正电路、辅助电源模块、控制电路和主电路。
方法:化繁为简,将整个系统分解成四个部分,方便设计、调试。对局部电路预先进行仿真,对结果有所预期。
措施:查阅于毕业设计有关资料和文献(图书馆、超星电子图书阅览室等)。经常与指导老师取得联系,一起探讨有关电路的设计方案等问题。
四、参考文献
[1]
康华光.
电子技术基础.模拟部分(第五版)[M].北京:高等教育出版社,2005.
[2]
周志敏,周纪海,纪爱华.
高频开关电源设计与应用实例[M].北京:人民邮电出版社,2004.
[3]
张占松,蔡宣三.
开关电源的原理与设计[M].北京:电子工业出版社,2000.
[4]
蒋玉萍,倪海东.高频开关电源与应用[M].北京:机械工业出版社,2004.
[5]
翟亮,凌民.基于MATLAB有控制系统计算机仿真[M].北京:清华大学出版社,2006.
[6]
王庆.Protel
99
SE及DXP电路设计教程[M].北京:电子工业出版社,2006.
[7]
刘国权,韩晓东.Protel
DXP
电路原理图设计指南[M].北京:中国铁道出版社,2003.
关键词:单片开关电源快速设计
TOPSwithⅡ
TheWayofQuickDesignforSinglechipSwitchingPowerSupplyAbctract:Threeendssinglechipswitchingpowersupplyisnewtypeswitchingpowersupplycorewhichhasbeenpopularsince1990.Thispaperintroducesquickdesignforsinglechipswitchingpowersupply.
Keywords:Singlechipswitchingpowersupply,Quickdesign,TopswithⅡ
在设计开关电源时,首先面临的问题是如何选择合适的单片开关电源芯片,既能满足要求,又不因选型不当而造成资源的浪费。然而,这并非易事。原因之一是单片开关电源现已形成四大系列、近70种型号,即使采用同一种封装的不同型号,其输出功率也各不相同;原因之二是选择芯片时,不仅要知道设计的输出功率PO,还必须预先确定开关电源的效率η和芯片的功率损耗PD,而后两个特征参数只有在设计安装好开关电源时才能测出来,在设计之前它们是未知的。
下面重点介绍利用TOPSwitch-II系列单片开关电源的功率损耗(PD)与电源效率(η)、输出功率(PO)关系曲线,快速选择芯片的方法,可圆满解决上述难题。在设计前,只要根据预期的输出功率和电源效率值,即可从曲线上查出最合适的单片开关电源型号及功率损耗值,这不仅简化了设计,还为选择散热器提
η/%(Uimin=85V)
中图法分类号:TN86文献标识码:A文章编码:02192713(2000)0948805
PO/W
图1宽范围输入且输出为5V时PD与η,PO的关系曲线
图2宽范围输入且输出为12V时PD与η,PO的关系曲线
图3固定输入且输出为5V时PD与η,PO的关系曲线
供了依据。
1TOPSwitch-II的PD与η、PO关系曲线
TOPSwitch-II系列的交流输入电压分宽范围输入(亦称通用输入),固定输入(也叫单一电压输入)两种情况。二者的交流输入电压分别为Ui=85V~265V,230V±15%。
1.1宽范围输入时PD与η,PO的关系曲线
TOP221~TOP227系列单片开关电源在宽范围输入(85V~265V)的条件下,当UO=+5V或者+12V时,PD与η、PO的关系曲线分别如图1、图2所示。这里假定交流输入电压最小值Uimin=85V,最高
η/%(Uimin=85V)
η/%(Uimin=195V)
交流输入电压Uimax=265V。图中的横坐标代表输出功率PO,纵坐标表示电源效率η。所画出的7条实线分别对应于TOP221~TOP227的电源效率,而15条虚线均为芯片功耗的等值线(下同)。
1.2固定输入时PD与η、PO的关系曲线
TOP221~TOP227系列在固定交流输入(230V±15%)条件下,当UO=+5V或+12V时,PD与η、PO的关系曲线分别如图3、图4所示。这两个曲线族对于208V、220V、240V也同样适用。现假定Uimin=195V,Uimax=265V。
2正确选择TOPSwitch-II芯片的方法
利用上述关系曲线迅速确定TOPSwitch-II芯片型号的设计程序如下:
(1)首先确定哪一幅曲线图适用。例如,当Ui=85V~265V,UO=+5V时,应选择图1。而当Ui=220V(即230V-230V×4.3%),UO=+12V时,就只能选图4;
(2)然后在横坐标上找出欲设计的输出功率点位置(PO);
(3)从输出功率点垂直向上移动,直到选中合适芯片所指的那条实曲线。如不适用,可继续向上查找另一条实线;
(4)再从等值线(虚线)上读出芯片的功耗PD。进而还可求出芯片的结温(Tj)以确定散热片的大小;
(5)最后转入电路设计阶段,包括高频变压器设计,元器件参数的选择等。
下面将通过3个典型设计实例加以说明。
例1:设计输出为5V、300W的通用开关电源
通用开关电源就意味着交流输入电压范围是85V~265V。又因UO=+5V,故必须查图1所示的曲线。首先从横坐标上找到PO=30W的输出功率点,然后垂直上移与TOP224的实线相交于一点,由纵坐标上查出该点的η=71.2%,最后从经过这点的那条等值线上查得PD=2.5W。这表明,选择TOP224就能输出30W功率,并且预期的电源效率为71.2%,芯片功耗为2.5W。
若觉得η=71.2%的效率指标偏低,还可继续往上查找TOP225的实线。同理,选择TOP225也能输出30W功率,而预期的电源效率将提高到75%,芯片功耗降至1.7W。
根据所得到的PD值,进而可完成散热片设计。这是因为在设计前对所用芯片功耗做出的估计是完全可信的。
例2:设计交流固定输入230V±15%,输出为直流12V、30W开关电源。
图4固定输入且输出为12V时PD与η,PO的关系曲线
η/%(Uimin=195V)
图5宽范围输入时K与Uimin′的关系
图6固定输入时K与Uimin′的关系
根据已知条件,从图4中可以查出,TOP223是最佳选择,此时PO=30W,η=85.2%,PD=0.8W。
例3:计算TOPswitch-II的结温
这里讲的结温是指管芯温度Tj。假定已知从结到器件表面的热阻为RθA(它包括TOPSwitch-II管芯到外壳的热阻Rθ1和外壳到散热片的热阻Rθ2)、环境温度为TA。再从相关曲线图中查出PD值,即可用下式求出芯片的结温:
Tj=PD·RθA+TA(1)
举例说明,TOP225的设计功耗为1.7W,RθA=20℃/W,TA=40℃,代入式(1)中得到Tj=74℃。设计时必须保证,在最高环境温度TAM下,芯片结温Tj低于100℃,才能使开关电源长期正常工作。
3根据输出功率比来修正等效输出功率等参数
3.1修正方法
如上所述,PD与η,PO的关系曲线均对交流输入电压最小值作了限制。图1和图2规定的Uimin=85V,而图3与图4规定Uimin=195V(即230V-230V×15%)。若交流输入电压最小值不符合上述规定,就会直接影响芯片的正确选择。此时须将实际的交流输入电压最小值Uimin′所对应的输入功率PO′,折算成Uimin为规定值时的等效功率PO,才能使用上述4图。折算系数亦称输出功率比(PO′/PO)用K表示。TOPSwitch-II在宽范围输入、固定输入两种情况下,K与U′min的特性曲线分别如图5、图6中的实线所示。需要说明几点:
(1)图5和图6的额定交流输入电压最小值Uimin依次为85V,195V,图中的横坐标仅标出Ui在低端的电压范围。
(2)当Uimin′>Uimin时K>1,即PO′>PO,这表明原来选中的芯片此时已具有更大的可用功率,必要时可选输出功率略低的芯片。当Uimin′(3)设初级电压为UOR,其典型值为135V。但在Uimin′<85V时,受TOPSwitch-II调节占空比能力的限制,UOR会按线性规律降低UOR′。此时折算系数K="UOR′"/UOR<1。图5和图6中的虚线表示UOR′/UOR与Uimin′的特性曲线,利用它可以修正初级感应电压值。
现将对输出功率进行修正的工作程序归纳如下:
(1)首先从图5、图6中选择适用的特性曲线,然后根据已知的Uimin′值查出折算系数K。
(2)将PO′折算成Uimin为规定值时的等效功率PO,有公式
PO=PO′/K(2)
(3)最后从图1~图4中选取适用的关系曲线,并根据PO值查出合适的芯片型号以及η、PD参数值。
下面通过一个典型的实例来说明修正方法。
例4:设计12V,35W的通用开关电源
已知Uimin=85V,假定Uimin′=90%×115V=103.5V。从图5中查出K=1.15。将PO′=35W、K=1.15一并代入式(2)中,计算出PO=30.4W。再根据PO值,从图2上查出最佳选择应是TOP224型芯片,此时η=81.6%,PD=2W。
若选TOP223,则η降至73.5%,PD增加到5W,显然不合适。倘若选TOP225型,就会造成资源浪费,因为它比TOP224的价格要高一些,且适合输出40W~60W的更大功率。
3.2相关参数的修正及选择
(1)修正初级电感量
在使用TOPSwitch-II系列设计开关电源时,高频变压器以及相关元件参数的典型情况见表1,这些数值可做为初选值。当Uimin′LP′=KLP(3)
查表1可知,使用TOP224时,LP=1475μH。当K=1.15时,LP′=1.15×1475=1696μH。
表2光耦合器参数随Uimin′的变化
最低交流输入电压Uimin(V)85195
LED的工作电流IF(mA)3.55.0
光敏三极管的发射极电流IE(mA)3.55.0
(2)对其他参数的影响
关键词:开关电源; ARM7; 高频变压器; 变换器
中图分类号:TN86 文献标识码:B
文章编号:1004-373X(2010)12-0208-03
Design of Digital Intelligent Switch Power Based on ARM
WU Qiong, PENG Bao-jin
(Institute of Information Optics, Zhejiang Normal University, Jinhua 321004, China)
Abstract:The digital intelligent switch power-supply system based on ARM7 was designed. The performance and working princilple of the COMS chips which constitutes the power-supply systemareanalysed. The circuit design, ARM control system and function implementation of the system are elaborated empnatically. The BUCK convertor is adopted in the power-supply system to reduce and adjust the output voltage and push-pull DC convertor to heighten the output voltage. The controlling core of the power-supply system is a SC344B0X AMR7 chip. The output voltage can be regulated continuously. The output voltage stability is less than 0.3%. And the ripple factor is less than 0.5%. Experiment indicates that the performance of the system is stable.
Keywords:switching power-supply; ARM7; high-frequency transformer; convertor
0 引 言
随着现代科技事业的发展,电器设备的精度提高、可靠性加强,智能化和数字化的实现,开关电源正朝着高精度、智能化、数字化的方向发展[1-3]。开关电源通过控制开关通断的时间比率来维持输出电压的稳定,具有体积小、重量轻、效率高、纹波小、噪声低、易扩容、智能化程度高等特点[4-7]。
本文采用SAMSUNG公司的SC344B0X 的ARM7芯片设计了一种智能化、数字化的可调开关直流电源,对电源主电路实现了全数字控制,输出电压可调,并提高了输出电压的精度和稳定度。控制算法通过软编程可以使系统升级,也便于用户根据各自的需要灵活地选择不同的控制功能。
1 电源系统的总体设计
电源系统的设计要求是:工频电源交流220 V输入,直流电压可调输出10~2 000 V,输出电流小于100 mA,用户可以使用键盘随时更改输出电压,显示屏上显示当前的工作状态。根据要求设计的电源系统由电源电路和控制电路两部分组成,如图1所示。
图1 智能数字开关电源总体设计
电源电路部分主要包括整流滤波、BUCK变换器、推挽式直流变换器、滤波器,把工频电源转化成所需要的直流电源。控制电路部分主要包括ARM7控制单元、电压分压反馈取样、键盘/显示,根据用户的输入参数来调整输出的直流电压,并把当前的工作状态显示出来。EMC保护用来消除工频电源中的噪声干扰,保护系统电路不被损坏。
2 电源电路部分的工作原理及设计
2.1 整流滤波及BUCK变换器的设计
整流滤波把工频的交流电源变成直流电源,其电路如图2所示,输入/输出的波形如图3所示。为了提高整流效率,采用全桥整流,整流桥硅使用性价比高的KBP3510,2个400 V的47 μF电容并联,输出直流电压Uo约为300 V。
图2 整流滤波电路
BUCK变换器又称降压变换器,它是ARM根据当前输入的参数和反馈电压,产生 PWM1,使用IGBT集成驱动器来驱动主电路中的IGBT,由于占空比的变化控制了输出电压的值,电路如图4所示。BUCK变换器必须工作在连续工作状态,则电感L的临界值为ИL=(Uo1)22Po1fs(1-D)АS捎诘缭聪低呈涑龉β饰150 W,则 Po1>150 W,取Po1=200 W且D=Uo1Uo,fs=100 kHz;Uo1的值在2~200 V之间可变,则可得;L=(Uo1)2400×105(1-Uo1300)×106 μH,其关系曲线如图5所示。所以当L>340 μH,电容C3为500 V的470 μF,就可以保证变换器保持连续工作状态。
图3 输入/输出电压波形
图4 BUCH 变换器电路
图5 U01与L关系曲线图
2.2 推挽式直流变换器及滤波器的设计
由于电源的输出功率小于200 W,采用推挽式直流变换器可以满足此要求。如图6所示,S1和S2是IGBT,它们交替导通,每个开关导通比为50%,S1,S2导通分别由PWM2,PWM3控制,PWM2,PWM3是ARM给出的控制信号。S1,S2的作用是在高频变压器T的初级产生对称的交变方波,当S2导通(S1截止)时,T的磁芯中磁通上升,当S1导通(S2截止)时,T的磁芯磁通下降。在次级产生一个变电压,经D1,D2整流后,便得到直流的输出电压Uo2,在理想状态下 Uo2=Uo1NsNp,Np,Ns分别为变压器的初级和次级绕线的匝数。因为与Uo1相连的初级绕组上的电压反射到初级绕组的另一半上,所以S1或S2在不导通时,两端的电压为2Uo1,所以IGBT耐压要大于2Uo1,即IGBT的耐压大于400 V。
图6 推挽式直流变换器
在高频上,变压器通常采用导磁较高的铁氧体磁芯或铍莫合金铁芯等磁性材料,其目的是为了获得大的励磁电感,减小磁路中的功率损耗,使之能以最小的损耗和失真传输具有宽频带的脉冲能量。本文采用PQ型铁氧体磁芯,内芯为圆柱,绕线方便同时也便于绕成蜂房式线圈以减小分布电容,且没有棱角,高压时不易打火击穿,次级边的匝数不超过2 000圈,初、次级的匝数比为1∶12。
由于高压变压器的匝数多,初次级之间的耦合度较强,且寄生电容大,它的输出波形接不连续,波形如图7所示。因此输出的电压要有滤波器,才能得到比较稳定的电压。滤波器的设计如图6所示,电容耐压3 kV,容量为470 pF。
图7 Uo2的输出
3 ARM控制系统及其软件实现功能
该系统采用的ARM是SAMSUNG公司的SC344B0X芯片,是一款低价格、高性能的ARM芯片,拥有出色的外设模块 ,适用于工业控制、 生物识别、多媒体监控、网络流媒体和智能电器等[8-9]。其主要特点有:
(1) ARM7TDMI内核,支持Thumb(16位)/ARM(32位)双指令集,能很好的兼容8位/16位器件;带有8 KB高速缓存器,主频可达66 MHz;
(2) LCD控制器,可以支持256色STN,且LCD有专用DMA;
(3) 5个PWM定时器,1通道内部定时器;
(4) 16位看门狗定时器;
(5) 8通道10位ADC;
(6) 71个通用I/O口,8通道外部中断源。
采用SC344B0X所设计的系统,几乎所有的指令都可以在20 ns内完成,配合强大的指令运算功能,很容易实现各种控制算法及高速采样,为了减小系统的静差,采用了闭环来实现对整个系统的控制。
该电源系统中ARM的主要功能及软件实现如下:
① 产生PWM波。PWM1用于对BUCK电路中的IGBT的驱动。根据输出采样,设定和调整定时器中周期寄存器的值和比较寄存器中的值来改变输出PWM1波的周其期和脉冲宽度。PWM2,PWM3设定周期为50 kHz的彼此交互的方波。
② 实时采样。采用SC344B0X 中集成的8路10位的ADC 转换电路实现电压、电流实时采样,每一通道的最小转换时间为500 ns,通过采样模块MAX122,将采样信号转换为2407 的ADC 所需的0~3.3 V电平,在1个开关周期中,将采样80 次(开关频率为50 kHz),采样后,通过软件编程调整驱动BUCK中电路中的IGBT管的PWM1 波形,达到稳压的目的,同时当输出电压、电流过高或欠压时,ARM调用相应的子程序来处理突发事件,起到保护作用。
③ 软件编程时设置看门狗电路防止死机。
4 结 语
本文在上述分析的基础上,设计出一台基于ARM智能数字控制技术的开关电源。电源的指标满足性能要求:输出电压连续可调、纹波系数低于0.5%、输出电压稳定度小于0.3%。该电源现已投入使用,运行良好。
参考文献
[1]周志敏,周纪海,纪爱华.开关电源实用技术[M].北京:人民邮电出版社,2007.
[2]蔡宣三,龚绍文,高频功率电子学[M].北京:科学出版社,1993.
[3]胥静.嵌入式系统设计与开发实例详解 基于ARM的应用[M].北京:北京航空航天大学出版社,2005.
[4]孟建辉.开关电源的基本原理及发展趋势[J].通信电源技术,2009,26(6):62-63.
[5]雷媛媛,吴胜益.试论开关电源技术的发展[J].通信电源技术,2008,25(4):75-76.
[6]王晓雷,吴必瑞,蒋群.基于MSP430 单片机的开关稳压电源设计[J].现代电子技术,2008,31(12):186-187.
[7]高锐,陈丹,杨贵恒.开关电源的数字控制技术[J].通信电源技术,2009,26(3):36-39.
关键字: 开关电源; 模糊PID控制; DSP; 电源控制算法
中图分类号: TN79?34 文献标识码: A 文章编号: 1004?373X(2014)21?0149?03
Design and control algorithm of switching power supply with DSP digital control
ZHANG Guo?long, ZHENG Chen?yao
(Detachment 93, Unit 91388 of PLA, Zhanjiang 524022, China)
Abstract: A technology of DSP digital processing combined with fuzzy PID control is proposed in this paper, and ?an intelligent switching power with fast response and high efficiency was designed to make the switching power supply be small, intelligent, etc. Through the cooperation of the external EMI filtering circuit, optical isolation and protection circuit, the power grid pollution caused by switching power supply was solved, this switching power supply which may be damaged by temperature and other uncertain factors was protected. This control algorithm of switching power supply is advanced, its design is reasonable and it has strong reference value for engineering application.
Keywords: switching power supply; fuzzy PID control; DSP; power supply control algorithm
近年来,随着电力电子技术高速发展,开关电源得到广泛应用,普通模拟开关电源逐渐显示出其不足之处:采用模拟器件会导致元器件比较多,分散性大,稳定性差;设计缺乏灵活性,不便于修改,调试不方便,控制不灵活,无法实现复杂的控制算法。为设计出更精确、响应速度更快、效率更高、体积更小的开关电源,开关电源设计人员采用数字化电路与开关电源相结合来设计数字化开关电源。以DSP系统为基础的开关电源电路简单,结构紧凑,性能卓越,功能齐全。DSP系统具有较高的计算与控制能力,利用DSP进行A/D转换后进行运算,可以有效抑制或消除各个功能模块间相互干扰,提高开关电源输出电压的稳定性和精度。本文将重点分析和讨论利用DSP系统设计开关电源的实现方法和控制算法。
1 基于DSP控制的实现方法
DSP系统已广泛应用于开关电源控制电路,是开关电源的控制核心电路,可以有效利用DSP系统的高速性、可编程性、可靠性等特点,结合相应算法实现特定功能,可为开关电源输出质量好、频率和幅值可以任意改变的控制信号。图1为采用DSP系统的控制电路开关变频电源基本控制硬件框图。
图1 开关变频电源基本控制硬件框图
开关电源采用高频SPWM技术和普通电压逆变电路,DSP系统与IGBT功率模块构成全数字控制电路。输出的电压和电感电流经过网络转换成DSP所需要的电平,连接至DSP的A/D单元进行模数变换;控制输入单元输入需要的电压值及频率值,从而得到逆变电路的基准电压。
DSP系统经过特点算法进行相关计算后会产生一定死区的控制信号。由于输出的数字PWM控制信号不足以驱动IGBT开关管,需要经过驱动电路对开关管进行驱动。DSP芯片具有较高的采样速度和运算速度,可以快速地进行各种复杂的运算对电源进行控制,可以实现较高的动态性能和稳压精度。为了有效保护开关电源器件,防止出现过压、欠压、过载等情况,系统专门设计了保护电路,一旦出现故障,DSP控制系统封锁PWM脉冲控制信号,切断开关电源电压输出。
2 开关电源基本控制算法
2.1 PID控制
开关电源的数字化控制需要进行一定的控制算法来产生控制信号,实现控制规律。数字开关电源控制最初是借鉴模拟控制原理,通过数字化实现模拟控制信号。PID算法在数字控制中应用比较广泛,它具有原理简单、易于实现、适用面广、控制参数相互独立、参数的选定比较简单等优点。
PID控制是应用最广泛的控制规律。图2为常规PID控制原理图,系统由PID控制器与被控对象组成。PID控制器是一种线性控制器,它根据给定值[r(t)]与实际输出值[y(t)]构成的控制偏差[e(t)]来计算:
[e(t)=r(t)-y(t)] (1)
将偏差的比例[P、]积分[I]和微分[D]通过线性组合构成控制量,对被控对象进行控制。其控制规律为:
[u(t)=KPe(t)+1TI0te(t)+TDde(t)dt] (2)
或写成传递函数的形式:
[G(s)=U(s)E(s)=KP1+1TIS+TDS] (3)
式中:[Kp]为比例系数;[TI]为积分时间常数;[TD]为微分时间常数。
图2 PID控制框图
数字PID控制是一种采样控制,它只能根据采用时刻的偏差值计算控制量。因此,连续域PID控制算法不能直接使用,需要采用离散化方法。数字PID控制算法又分为位置式PID控制算法和增量式PID控制算法,还有一些微分先行法和带死区的PID控制算法等。
2.2 模糊PID控制算法
目前,开关电源的各种应用场合对电源的动态性能提出了越来越高的要求,其中电压超调与恢复时间是重要指标。负载的变化或者输入电压的变化引起输出电压变化,而输出电压值取决于滤波器和控制策略。由于开关变换器为一个时变、非线性系统,无法建立精确的数字模型。而模糊PID控制算法的优点在于不需要建立准确的变换器数字模型,非常适合DC?DC变换器的强非线性。自适应的模糊控制可以保证控制系统的信号稳定性。
模糊控制器是以误差量化因子[e]和误差变化率量化因子[ec]作为输入,利用模糊控制规律自整定找出PID控制器三参数[KP,][KI,][KD]与和之间的模糊关系。模糊PID控制原理框图如图3所示。
图3 模糊控制原理框图
取[e]和[ec]为输入语言变量,每个语言变量取“大、中、小”三个词汇来描述输入输出变量的状态。模糊推理的模糊规则一般形式为:
If [e=Ai]and [ec=Bj]then[Δu=Ci]
其中[Ai,][Bj,][Ci]为其理论上的语言值。
上述规则可以用一个模糊关系矩阵来描述:
[R=i,jAi×Bj×Ci]
根据各模糊子集的隶属度幅值表和各参数模糊控制规则,应用模糊合成推理设计PID参数的模糊矩阵得到[KP,][KI,][KD]参数调整算式如下:
[KP=K′P+ei,ecj×KuP]
[KI=K′I+ei,ecj×KuI] (4)
[KD=K′D+ei,ecj×KuD]
式中:[KP,][KI,][KD]是PID控制参数,[{e,ec}]是误差[e]和误差变化率[ec]对应控制表中的值,它需要查控制表得到。[KuP,][KuI,][KuD]作为修正系统,在控制过程中,控制系统通过对模糊逻辑规则的结果处理、查表和运算,完成PID参数的在线自校正。
3 系统硬件及关键点设计
3.1 硬件主体
本文设计的开关电源主要是将开关电源优良特性和DSP系统精细化控制相结合。开关电源采用反激式拓扑结构,包括EMI滤波电路、整流/直流平波电路、控制器、信号采样、PWM驱动、键盘及显示部件组成,力求使开关电源具有高效低耗、便携化、负载输出稳定、电路保护可靠、电网宽电压输入、电网污染小等特点。图4为硬件系统主体设计示意图。
图4 系统主体设计示意图
3.2 输出电压检测隔离设计
开关电源输出电压检测过程中对控制电路的隔离保护是非常必要的,这样不仅可以实现控制电路的安全工作,而且避免了将输出电路的噪声引入控制电路中。电压检测电路与控制电路隔离保护采用光耦合器进行隔离,它由发光二极管LED、输出光电二极管PD组成。光耦合器在开关电源的主振回路与输出采样之间进行电气隔离,并为电源稳压控制电路提供信号通路。
3.3 EMI滤波器设计
开关电源在正常工作时会产生传导噪声和辐射噪声,毫无疑问噪声主要产生于电源开关过程。开关过程中包含了最大的功率以及最大的电压变化率dV/dt,同时也包括了最高频率成分。噪声的存在将污染电力线路,影响周围精密电子仪器的运行,比如设计滤波器。EMI滤波器是一种由电感、电容组成的低通滤波器,它允许直流或者工频信号通过,对频率较高的其他信号有较大的衰减作用。图5为EMI滤波模型,滤波器的基本结构就是一个分离的二阶LC滤波器,其取值原则就是在最小的体积下可以获得期望的抑制效果。在滤波器模型中还有一个额外的高频LC滤波器;高频滤波器当寄生参数使得前面的LC滤波器性能变差时,用来抑制这些高频噪声。
图5 EMI滤波器模型
3.4 高温保护电路
开关电源在设计中由于转换效率不同,将部分能量以热量辐射。温度升高将影响系统正常工作甚至产生人身危险,为了保证系统安全,开关电源工作时温度需要实时监控。图6为温度采集电路部分电路图。当系统检测到温度过高时,控制模块立即关断开关电源输出,待系统温度达到工作温度范围后开始继续工作。
图6 温度采集电路
4 开关电源性能分析
本文采用反激式开关电源和模糊PID控制算法进行仿真。反激式开关电源的等效模型传递函数为:
[U(S)d(s)=K1s+K2B1s2+B2s+B3] (5)
式中:[K1,][K2,][B1,][B2,][B3]为系统比例系数,由开关电源电器元件参数决定。
模糊PID控制器由系统误差[e]和误差变化率[ec]为输入,通过不同时刻的[e]和[ec]值,利用模糊控制规则在线对PID控制器参数[KP,][KI,][KD]参数进行修改。模糊PID控制系统组成如图7,图8所示,阶跃响应曲线如图9所示。
图7 模糊控制PID控制系统组成
图8 误差[e]和误差变化率[ec]的隶属函数
本设计开关电源把DSP完美融入到开关电源设计中,充分利用了DSP系统快速运算能力,采用模糊控制算法使开关电源控制智能化,电源快速达到稳定输出,提高了抗负载扰动能力。
图9 系统阶跃响应
5 结 论
本系统将DSP作为开关电源控制单元,应用模糊PID控制算法,使开关电源和DSP系统完美配合工作。利用了DSP快速处理能力特点产生开关电源PWM控制信号,对开关电源输出进行精确控制,提高了开关电源输出精度和转换效率,使开关电源控制实现智能化;能够按照负载情况进行实时修正,使电源达到快速稳定输出;同时利用DSP资源设计完成开关电源显控单元及保护模块,提高了开关电源操作性和安全性。
参考文献
[1] LENK R.实用开关电源设计[M].北京:人民邮电出版社,2006.
[2] 张占松,蔡宣三.开关电源的原理与设计[M].北京:电子工业出版社,1998.
[3] 赵同贺,刘军.开关电源设计技术与应用实例[M].北京:人民邮电出版社,2007.
[4] 许邦建,唐涛.DSP处理器算法概论[M].北京:国防工业出版社,2012.
3.1 基本理论
常用的开关电压电源未补偿的开环传递函数Tu可分为单极点和双极点两种,对于单极点一般采用PI(比例积分)补偿,双极点一般采用PID(比例积分微分)补偿。也可以大致理解为电流型控制的采用PI补偿,电压型控制的采用PID补偿。
PI补偿可以用如下电路实现:
WL=1/(R2C2) Wp=1/(R2C1) Gc=R2/R1 (C2>>C1)
Gc是比例因子;零点WL引入积分,当频率小于WL,增益增加,直流增益提高,意味着稳压精度提高;极点Wp使高频的干扰信号迅速衰减。需要注意的是上面的等式是在C2>>C1的假设下得到的,实际选择反馈参数时要注意满足这个条件。
PID补偿可以采用如下方式:
若R1>>R3,C2>>C1,有:
为在fc点获得θ的超前补偿,有:
fL使低频增益加大,提高稳压精度;fz引入相位超前补偿,增加相位裕度;fp1、fp2使高频干扰衰减。注意满足:R1>>R3,C2>>C1。
3.2补偿网络设计实例
画出Tu的Bode图之后,就可以设计补偿网络了。下面对几个实际电路进行分析。
3.2.1 非隔离的电压型BUCK(TPS40007)
输入5.5V,输出3.3V/5A,开关频率fs=300kHz。按照TPS40007的内部结构,锯齿波的幅值是Vm=0.9V,所以控制电压Vc到占空比D的传递函数Gain=1/Vm。补偿网络的设计步骤如下:
/psimu/ZXTJ/TJ6700/small signal 3V
第一步:去掉补偿网络,对控制电压Vc(即补偿网络的输出)进行直流扫描,找到使Vo=3.3V时的Vc值,将Vc的直流分量设为次值,即设置了电路的静态工作点。
第二步:对Vc进行交流扫描,得到未补偿的Vc到Vo的传递函数Tu。Tu的直流增益为15.7dB,交越频率为10.5kHz。
第三步:设计补偿网络参数。由于是电压型控制,所以采用PID补偿。设补偿后的交越频率fc=20kHz,在fc处得到60°的相位补偿;而Tu在fc处的增益是dbGc=-12.38;设置极点fp2=180kHz以抑制高频干扰;R1=36K。按上述参数得到补偿网络的反馈参数:R2=40K(取39k), C2=7.4nF(取4.7nF),C1=53pF(取47pF),R3=1k, C3=820pF(取1nF)。
仿真结果:fc=24.7kHz, 相位裕度φm=43°。下面是实测的环路BODE 图。
实测的交越频率及相位裕度都比仿真的大些,这是由于频率高了以后,电路的分布参数影响的结果。
3.2.2 隔离的电流型BUCK(TDA16888)
输入400Vdc,输出54V/5A,开关频率fs=100kHz。
/psimu/zx500W/main/small signal1
为便于补偿网络的设计,将光藕部分也归入未补偿的传递函数Tu,即:只将补偿网络分开。那么Tu是光藕的输入Vc(补偿网络运放的输出)到输出Vo的传递函数。
补偿斜率mva的计算:芯片15脚的外接电容100pF,通过内部的10K电阻充电,时间常数只有1us,电源的开关频率是100kHz,在电流信号与Vc比较的瞬间,外接电容已经基本充满了电,对斜率补偿没有多大影响,实际上此处电容的作用只是消除电流检测波形前端的尖峰。对环路特性有影响的斜率是指锯齿波与Vc比较时的斜率。TDA16888芯片内部是将电流检测信号放大了5倍,即加在电流锯齿波信号上的补偿斜率是电流信号本身斜率的4倍。根据实际电路结构,可以算出在变压器原边检流电阻上的电流信号(实际是电压信号)的斜率:
输入电压Vi=400V,变压器变比n=2.875,输出电感Lo=200uH,输出电压Vo=54V,输出电感电流的上升斜率mi=(Vi/n-Vo)/Lo=0.425A/us,折合到原边,电流上升斜率mip=mi/n=0.148A/us,在检流电阻上的电压上升率mv=mip*Rs(0.22)=0.0325V/us=32.5K V/s,也可以通过仿真直接得到电流斜率。由此得到补偿斜率mva=4*mv=130K V/s。
V9是芯片内部的压降。
第一步:先得到Vc到Vo的传递函数Tu。方法是对Vc进行DC扫描,得到使输出电压为Vo时的Vc值,从而确定了电路的工作点(Bias point)。设定Vc的直流分量为工作点的值,然后进行AC扫描,得到Tu:DC增益32.84dB、转折频率fo=23.6Hz。
第二步:确定补偿网络的形式。因为是电流型控制,可以采用PI补偿。补偿前Tu的直流增益dbTuo=32.84dB,Tu的转折频率fo=23.57Hz,Tu的交越频率fc’=1kHz。为提高系统的动态响应,将补偿后的fc提高到2kHz(由于光藕的带宽只有10kHz左右,所以在有光藕隔离的场合,很难将交越频率提得很高);为提高稳压精度,加入零点fL=fc/10;为抑制高频干扰,加入极点fp=10*fc;在确定R1=33k后,可以算出反馈网络的参数:R2=64k C2=12nF C1=120pF
第三步:将补偿网络加入环路中,此时得到的电路就和实际的一样了。进行偏置点扫描(biaos point swip),得到电路各点的电压,与实际的测试结果比较,保证电路的参数设计合适,比如可以看看光藕的If是否合适。将环路中各器件设计到合适的工作点是保证电路在各种环境下稳定工作及长的工作寿命的前提。注意:补偿网络的参数不会影响电路的静态工作点。确定环路的静态工作点后,加入Lf、Cf及Vsti进行AC扫描,得到整个系统补偿后的开环传递函数T。
在上述仿真电路中,电感Lf很大,对直流信号相当于短路,所以不会影响整个环路的静态工作点,Lf对交流信号来说相当于开路,所以仿真出的T是开环传递函数;Cf也很大,对激励源Vsti来说相当于短路,从而引入激励信号,Cf对直流信号相当于开路,Vsti的任何直流分量不会影响环路的静态工作点。
从仿真结果可以看出,交越频率fc处的相位裕度φm=66°,且频率低于fc的最低相位裕度也有36°,所以系统是稳定的。下面是实测的开环Bode图。
3.2.3 带前馈的电压型隔离BUCK(LM5025)
输入48V,输出3.3V/40A,LM5025控制器,开关频率fs=280kHz,下图是实际电路参数,可以看出测试结果与仿真结果很相似,表示所建的仿真模型准确度是可以信赖的!
LM5025-2
下面对此电路按上面的方法重新设计补偿网络。
首先,将补偿网络移出,画出从光藕输入到Vo的未补偿传递函数Tu。C8、C9、C6、R12不要,R6及Vr1是芯片内部参数,需保留。
从仿真结果可以看出,Tu的直流增益很小,只有-0.44dB。原因是光藕的电阻R5接到了输出Vo,从而降低了Vo对Vc的增益。若将R5接到一个固定电平VCC上,则整个增益增加了,Tu的直流增益增加到25.6dB!以此为基础进行补偿网络设计。由于是电压型控制,所以采用PID补偿。由于本电源的开关频率很高,达fs=280kHz,若没有光藕隔离限制,补偿后的交越频率可取fc=0.2*fs=56kHz,但由于光藕的带宽只有10kHz左右,且光藕引入的相位滞后在5kHz 以后急剧增加,所以为了得到尽可能大的带宽,首先应对光藕进行适当补偿以拓展其带宽。此处在光藕的输出加入RC零点。设补偿后的交越频率为fc=20kHz,Tu在fc处的增益dbGc=-8.67dB,希望在fc处得到60°的相位补偿,设置极点fp2=180kHz以抑制高频干扰,R1=100k//56k=35.9k,计算得到补偿网络如下:
补偿后带宽20kHz,相位裕度30°。仿真得到的相位裕度往往小于预期的值,这是由于补偿网络的运放及未完全补偿的光藕造成的。
3.2.4 准谐振Flyback(UCC28600)
220Vac输入、28V/2.3A输出,光藕+TL431反馈。
UCC28600
先把补偿网络去掉,计算未补偿的Vc到Vo的传递函数Tu,由于光藕直接接到输出,所以Tu的直流增益很低。
下面是实测的环路BODE图,可见仿真结果与实测符合得很好。
【关键词】单片机;反馈;DC/DC
1.引言
近一些年来,随着微电子技术和工艺、磁性材料科学以及烧结加工工艺与其它边沿技术科学的不断改进和快速发展,开关稳压技术,有了突破性进展,并且由此也产生了许多能提高人们生活水平和改善人们工作和学习条件的新工艺产品,如电动自行车,逆变焊机等设备。开关稳压电源以其独有的体积小、效率高、重量轻、输出形式多样化、功率因数大,稳压范围宽等优点已经涉及到了与电有关的所有领域。在这个领域之中,开关稳压电源已取代前级线性稳压电源和前级相控开关电源,此外,开关稳压电源技术和实用技术产品出现后,使得许多电子产品所采用的电池供电成为可能,是许多电子产品微型化和小型化后变为便携式产品成为可能。所以开关稳压电源成为各种电子设备和系统高效率、安全可靠运行、低功耗的关键,同时开关稳压电源技术已成为电子技术中备受人们关注的科技领域。
2.方案设计与比较
2.1 方案论证
方案一:题目要求设计并制作一个由两个额定输出功率均为16W的8VDC/DC模块构成的并联供电系统。由题目已知,采用TI公司的脉宽调制控制器UC3843作为BUCK型拓扑的PWM控制芯片。UC3843集成电路的一般特性及由它组成小功率开关电源的方法。它是通过高性能固定频率电流模式的控制器专为离线和直流变换器应用所设计的,只需要最少外部元件就能获得成本效益高的方案。电流工作频率能到500KHZ,能进行温度补偿的参考电流取样比较器,精确的占空比控制和大电流图腾柱式输出是驱动MOSET管得理想元器件,并且UC3843具有自动锁存脉宽调制的功能有利于电流比的设定。
优点:以MSP430单片机为主控制器和PWM信号发生器,能根据反馈信号对PWM信号做出调整,从而实现稳压输出。系统输出电压8.0+0.4V可调,可以通过键盘设定和步进调整,电压调整率和负载调整率低,DC/DC变换器能达到较高的效率。
方案二:利用单片机MSP430,以电压型PWM控制器TL494为核心,设计一种稳压输出开关电源,其回路控制器方框图如图1,2,这种方案虽然实现起来较为灵活,可以通过调试针对本身系统做出配套的优化,但是系统调试比较复杂。鉴于此,我们选择方案一。
2.2 控制方法及实现方案
方案一:利用PWM专用芯片产生PWM控制信号。此法较易实现,工作较稳定,但不易实现输出电压的键盘设定和步进调整。
方案二:利用单片机产生PWM控制信号。让单片机根据反馈信号对PWM信号做出相应调整以实现稳压输出。这种方案控制系统软件编程工作量较小,难度不是很大,用脉宽调制型的控制器实现PWM控制,并且完全由硬件产生高频脉冲,实时性比较好,单片机控制的任务较轻,对单片机硬件资源要求不高,实现起来较为灵活,可以通过调试针对本身系统做出配套的优化。但是此方案硬件电器设计难度较大,电路板布线工作量较大,系统调试比较复杂。
根据要求选择方案二。单片机和脉宽调制型控制器共同实现整个系统的控制。系统组成框图如图3所示,脉宽调制器产生高频脉冲直接DC/DC变换模块,单片机实现液晶显示、AD/DA转换、、处理电压反馈信号、过流保护、对脉宽调制器进行控制、显示等功能;过流保护电路负载电流不超过2.5A;负载电压负反馈电路进一步对负载电压进行精确控制。
3.理论分析与计算
DC/DC变换器稳压方法:
单端反激DC/DC变换器电路拓扑电路的原理:变压器T1所引起的隔离和传递存储能量的作用,即使在开关管VT开通的时候,Np会存储能量,当开关管VT关断时,NP会向NS释放出能量。当在输出端加电感器L0和电容C0构成低通滤波器时,变压器的初级会有由Cr、Rr和VDr构成的RCD漏感尖峰吸收电路,输出回路有一个整流的二极管VD1。若变压器使用有气隙的磁心,则其铜损耗会较大,变压器温升会相对较高,并且输出的纹波电压比较大;但是电路结构简单,适用于200W以下电源,并且多路输出交调特性相对比较好。
电流电压检测:(1)电压检测是采用电阻分压的方法取得的,通过两只大交流电路进行分压,二极管的正负钳位电压送入跟随器的电压在-5~+5之间,经过跟随器隔离之后再通过比例运算放大器等比例放大,然后送入采样保持器。这样就可以得到被测的信号。(2)电流的检测,一般使用互感器,分流器等将电流信号处理并放大,作为后面电路保护和检测用。
均流方法:工作框图:所采用的是自动均流方法,这种均流方法采用一个窄带电流放大器,输出端口通过阻值为阻值为R连到均流的母线上,n个单元使用n个这种结构。
当输出达到均流时,电流放大器输出电流的I1这时I01处于均流的工作状态。相反地,电阻R产生一个电压,由这个电压控制A1,然后A1再控制单元功率级输出电流,最终使之达到均流。采用这种方法,可以使均流效果比较好,从而比较容易实现准确均流。在具体使用过程中,如果出现均流母线短路或者接在母线上的一个单元不处于工作状态时,母线电压会下降,将会使得每个单元输出电压会下调,甚至有可能达到下限,从而造成故障。并且当某一个模块的电流上升至最大输出电流,电流放大器输出电流也会达到极限值,同时使得其他的单元输出电压自动下降。可以构成多余系统,均流模块在数理论上可以不限。但是此方法的缺点是为使系统在动态调节过程中始终保持稳定状态,通常要限制最大调节的范围,要将所有电压调节到电压捕捉的范围以内。如果有一个模块均流线意外短路,则使得系统无法均流。单个的模块限流可能引起系统的不稳定。在大系统中,系统稳定性与负载均流瞬间响应的矛盾很难解决。如果图5中的电阻R支路上串一只二极管,则构成所谓的最大电流自动均流法。
过流保护方法:如图6所示,利用电流互感器T2来监视负载的电流IT,IT在通过互感器的初级时,会把电流的变化耦合到它的次级,从而在电阻R1上会产生压降。二极管D3会对脉冲电流进行整流,经过整流后再由电阻R2和电容C1进行平滑滤波。如果发生过载现象的时候,电容器C1两端的电压会迅速地增加,会使得齐纳管D4处于导通状态,从而驱动晶体管S1的导通,然后S1集电极的信号可以用来作为电源变换器调节电路的信号驱动。
电流互感器也可以用铁氧体磁芯或MPP环形磁芯来绕制,但是要经过反复的试验,从而来确保磁芯不饱和。理想的电流互感器应该达到匝数比是电流比一般地,互感器的Np=1,Ns=NpIpR1/(Vs+VD3)。具体绕制数据还要最后经过实验调整,使其性能达到最佳的状态。
4.设计实现
在设计中碰到的一些问题,比如,单片机产生的PWM好像驱动不了MOS管,我们得外加驱动;又控制信号不用单片机,只用一个电容电阻,或555定时器,再用一个三极管和滑动变阻器,反馈也可以。
5.测试
(1)测试使用的仪器:万用表,接触调压器,示波器。
(2)产生偏差的原因:a.对效率所进行的理论分析和理论计算时,采用的器件参数的典型值,但实际器件的参数有明显的离散性,电路性能可能因此而无法达到理论分析数值。b.电路的制作工艺并不是理想的,从而会增加电路中的损耗。
(3)改进方法:a.使用性能更好的器件,如换用导通电阻更小的电力MOS管,采用低阻电容;b.采用软开关技术,从而进一步减小电力MOS管的开关损耗;c.采用同步式开关电源的方案,用电力MOS管代替肖特基二极管以减小损耗;d.优化软件控制算法,进一步减小电压调整率和负载调整率。
参考文献
[1]沈建华,杨艳琴.MSP430系列16位超低功耗单片机原理与实践[M].北京:北京航空航天大学出版社,2008.
[2]杨素行.模拟电子技术基础简明教程[M].北京:高等教育出版社,2005.
[3]阎石.数字电子技术基础[M].北京:高等教育出版社,1997.
[4]王水平等.开关稳压电源原理及设计[M].北京:人民邮电出版社,2008.
作者简介: