公务员期刊网 精选范文 雷达技术论文范文

雷达技术论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的雷达技术论文主题范文,仅供参考,欢迎阅读并收藏。

雷达技术论文

第1篇:雷达技术论文范文

对近岸浅水区域的海底地形的掌握对于近岸活动比如捕鱼,码头建设,铺设石油管道以及形态动力学的研究等都有着至关重要的作用。传统获取水深的方法包括船载声呐探测、机载激光测探、潜水器测量、超光谱图像测量等。但是它们普遍具有成本高、效率低的缺点,并且测量精度会受海水清澈度的影响。为了克服传统测量方法所存在的不足,基于X波段雷达图像序列反演水深的方法得到发展。

在浅水区域,局部的海底地形对表面波的传播有着重要的影响。当波移动至浅水区域,波的周期不发生变化,但是波的传播速度会发生变化,继而波长减小,波数增加。表面流的存在也影响表面波的传播,因此水深场以及表面流速场的反演方法都是基于这种传播变化——在物理学中被描述为表面波的色散关系。

1998年 Paul Bell运用连续的雷达图像序列之间的互相关性推导出了空间变化的表面波速[1],同时利用从浮标中获取的频率信息,通过运用线性重力波的色散关系计算出了空间变化的水深,但是没有考虑海流的存在。Hessner等人运用一维FFT变换实现了对图像序列的频率分解[2],某一固定频率的波所对应的波长通过确定局部空间的相位梯度计算得到。但是此方法的局限性在于它不能运用到包含同一频率但不同传播方向的波的波场,同时也没有考虑到海流的存在。

对时间序列的雷达图像进行3?D FFT变化,并取模的平方得到三维图像谱,由于波数和频率被色散关系联系在一起,因此线性表面波的信号应该很好地分布于其确定的三维形状上。色散关系的形状取决于水深和表面流速,因此通过拟合理论的色散关系和三维图像谱的坐标分布便可反演出大的空间范围内的平均水深以及流速[3?4]。但是此方法中的3?D FFT是针对全局范围的算子,因此假定了波场的均匀性以及稳定性。如果在深水区存在变化的流速或者浅水区存在变化的水深,波的折射将会产生,波场变成了非均匀场,以上方法不再适用,因此需要在局部空间范围内对波参数进行分析。

自1999年以来,Seemann等人针对非均匀波场做了一系列研究[5?10],推导出了局部三维图像谱,同时反演出了局部范围内的水深以及流速。

本文将利用模拟的X波段雷达图像展开近岸浅水区域的水深的反演工作,该工作考虑到了表面波场的非均匀性,因此采用了局部反演算法,反演出了局部的水深值。

1 色散关系与水深以及流速的关系

色散关系描述了波数[k]和角频率[ω]之间的动力学关系,正常的色散关系适用于海表面重力波,线性色散关系可表示为:

[ωk,uc,d=±gktanhkd+k.uc] (1)

式中:[g]表示为重力加速度;[d]为水深;[uc]为近表面流速。在式(1)中,第一部分称为固有频率[ζ=±gktanhkd,]第二部分称为多普勒频率[ωD=k.uc。]多普勒频率部分表明受表面流速的影响。在式(1)中,水深[d]和表面流速矢量[uc]在波数?频率域中影响色散关系的形状,因此色散关系的形状可以被用来反演这些参数值。图1显示了水深以及流速对色散关系的影响。

图1 三维波数?频率域中线性表面重力波的色散关系

2 水深及流速局部反演方法介绍

在浅水区域中,由于空间变化的水深,波的周期不变,既波场保持了稳定性,但是波长发生了变化,波场变成了非均匀场,因此需要在局部空间范围内对海态参数进行分析,得到空间分布的海态参数场。海洋表面波的特性由波长[λ、]波数[k、]角频率[ω、]振幅[ξ]和它们的传播方向[?]来描述。表面波场由一系列不同频率不同传播方向的单一成分的波(简称单波)叠加得到,因此其是多成分的,需要将其分解为单成分波。本文将按照以下步骤反演局部的水深及流速:

(1) 对时间序列的雷达图像进行3?D FFT变换,得到复数值的三维图像谱[G(k,ω)];

(2) 对三维图像谱进行频率分解和方向分解得到单波成分的波谱 [Gk|ω,?];

(3) 进行2?D 反FFT变化,到空间域,产生单波复数值的空间场[gx,y|ω,?];

(4) 由单波空间场及其梯度图像得到波数场;

(5) 由单波空间场以及其对应的波数场得到5?D时空频率场[Ix,y|k,ω];

(6) 由局部的3?D图像谱反演局部的水深及流速。

该算法是针对由岸基X波段雷达获取的时间序列的雷达图像,最终得到水深场。

3 数值模拟及分析

3.1 模拟非均匀波场及雷达图像

基于线性波理论,海浪可看成是各种不同的余弦波的线性叠加,该过程可利用频谱来模拟,本文选用与波浪相近的P?M谱。只有频谱还不足以描述海浪的特性,需要加入方向分布函数组成方向谱,才能符合实际的海面波场状况,本文的方向分布函数采用改进的光易型方向分布函数。同时考虑到波场的非均匀性,加入非等水深值及表面流速值,利用色散关系式(1),可确定不同区域的波数与频率的关系,利用不同频率和传播方向的余弦波的叠加,可模拟出浅水区的非均匀波场的时间序列。图2所示是模拟的64幅时间序列的非均匀波场的前两幅(图像中像素点的个数为128×128个,每个像素点的分辨率为7.5 m×7.5 m)。

图2 模拟的64幅时间序列的非均匀波场的前两幅

根据雷达成像机理,利用起主要作用的阴影调制及倾斜调制模拟出时间序列的雷达图像。图3所示是模拟的64幅时间序列的雷达图像的前两幅。

图3 模拟的64幅时间序列的雷达图像的前两幅

3.3 对模拟数据进行处理

(1) 对64幅时间序列的雷达图像[G(Θ)]进行三维傅里叶变化得到复数值的三维波数?频率谱:

(2)

其中三维谱的谱分辨率为:

[Δkx=2πX, Δky=2πY, Δω=2πT] (3)

(2) 对得到的三维谱进行阈值滤波,滤除信号中包含的噪声,然后利用色散关系进行带通滤波,得到海浪信号。接下来将对滤波后的三维谱进行分解,得到单波成分的波谱,既进行频率分解和方向分解。在时间轴上进行的傅里叶变化使得频率分解被执行,既一系列不同频率所对应的二维波数谱,接着进行方向分解。本文采用了一组楔形滤波器,首先产生一个原型楔形滤波器,然后再通过旋转,双线性插值,得到一组滤波器,原型滤波器如图4(a)所示,旋转得到的部分滤波器如图4(b)~(d)所示。运用这一组方向滤波器对二维谱进行分解,最终得到一系列不同频率和传播方向所对应的单一成分的波谱[Gk|ω,?]。

(3) 对单一成分的波谱[ Gkω,?]进行二维反傅里叶变化得到复数值的单波空间场[ gx,y|ω,?]:

[gx,y|ω,?=2D IFFT(Gk|ω,?)] (4)

图4 一组方向滤波器中的前四个

单波空间场包含了幅值及相位模式信息:

[gx,y|ω,?=Ax,y|ω,?expi?x,y|ω,?=Regx,y|ω,?+iImgx,yω,?] (5)

与单波空间场对应的梯度图像:

[??x,??ygx,yω,?=2D IFFTi?kx,ky?Gkω,?] (6)

其中[kx,ky]代表复数值的波数向量,其实部代表局部的波数值。局部区域的大小选为8×8个像素点,因此要得到局部区域的波数,需要分析局部点所包含的所有像素点。

位于色散关系滤波器带宽内的背景噪声重新分布在了单波波数场中,因此为了消除噪声的影响,运用方差最小拟合法得到复数值的波数向量。

[kx=-i?v+?vxv2ky=-i?v+?vyv2] (7)

其中向量[v,][vx,][vy]通过行扫描局部区域内的单波空间场及其梯度图像获得,向量[v+]是向量[v]的共轭向量。

(4) 由一系列的单波空间场以及单波波数场可得到五维的时空频率谱 [Ix,yk,ω。]表面波信号的能量谱应分布在色散关系曲面上,将由色散关系式(1)得到的谱分量[ω]与图像谱[Ix,y|k,ω]中的分量[ωi]取加权方差,得到一个函数。本文利用该函数寻找最小值的方法求得局部的流速[ux,uy]及水深[d。]该加权方差函数表示为:

[fux,uy,d=i=0Ngkitanhkid+kx,iux+ky,iuy-ωi2?Ix,y|ki,ωi] (8)

式中:[N]表示谱坐标集[{kx,i,ky,i,ωi}]中元素的个数,通过设置阈值从局部能量谱中选取出谱坐标集:

[M0=(kx,i,ky,i,ωi)Ix,y|ki,ωiMAXIx,y|ki,ωiε] (9)

式中[ε]表示能量阈值。

加权方差函数是一个非线性函数,含有三个变量,求该函数最小值属于优化问题,本文采用拟牛顿法搜索最小值,并得到局部的水深及流速。

4 数据处理结果

模拟雷达图像时输入的非等值水深场如图5(a)所示,每8×8个像素点设置一个水深值,为减少模拟时的计算量,水深值只沿一维变化。反演得到的水深场如图5(b)所示,反演时选择的局部区域的大小为8×8个像素点。反演的水深值与输入的水深值吻合较好,平均误差约为2%,相比于过去的均匀场水深反演方法,该反演方法可将水深值的分辨率缩小到8×8个像素点。

5 结 语

利用X波段雷达图像可提取出重要的海态信息,比如水深、流速等等。均匀场的水深及流速的反演方法已相对成熟,本文的工作是针对非均匀场反演浅水水深值。由于实际的海况比较复杂,并且还没有得到可以用于比测的实际水深值,本文采用数值模拟的方法,通过输入非等值的水深仿真出非均匀波场及其雷达图像。利用仿真的雷达图像反演出局部水深值,并与输入的水深值进行对比,结果吻合较好,对利用实际的雷达图像反演非均匀场的水深具有重要的指导意义。本文的工作是基于岸基X波段雷达,对于船基X波段雷达来说,还要考虑运动补偿等因素,并且实际海况复杂多变,水深的反演过程有待进一步分析研究。

图5 输入的水深场与反演得到的水深场对比图

参考文献

. Coast. Eng., 1999, 37(3): 513?527.

, 1999: 16?20.

[3] SENET C, SEEMANN J, ZIEMER F. An iterative technique to determine the near surface current velocity from time series of sea surface images [C]// Proceedings of Oceans MTS/IEEE Conference?500 Years of Ocean Exploration. [S.l.]: IEEE,1997: 66?72.

IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(12): 2606?2618.

. Procee?dings of SPIE 1999, 3808: 536?546.

: IEEE, 2000: 1898?1900.

[7] SEEMANN J, SENET C, ZIEMER F. Local analysis of inhomogeneous sea surfaces in coastal waters using nautical radar image sequences. Berlin, Germany: Springer?Verlag, 2000: 179?186.

第2篇:雷达技术论文范文

关键词:无损检测;沥青路面;应用

中图分类号:U416.217文献标识码:A文章编号:1673-0992(2010)03-068-01

我国高速公路的通车里程目前已经居于世界第二位,其中,沥青路面占我国公路的大部分,因此,必须加强对沥青路面的养护管理,确保提供可接受的服务水平。传统的检测手段和评价方法很难对路面的离析做出准确和定量的判断。综合采用适当的无损检测技术,才有可能获取大样本的检测数据进行统计分析,快速直观地发现离析范围及分析离析产生的原因,针对性地提出防止离析的措施,从而有效提高沥青混凝土路面的施工质量。本文结合目前路面检测分析总结了路面承载力、平整度、路面损坏状况主要检测新技术的应用。

一、路面无损检测技术发展现状

无损检测技术主要应用于施工质量检测与控制,通过采用先进、高效的检测评价技术,能够及时发现工程质量隐患,有效地防止路面出现各种早期破坏。在道路建成后的养护管理阶段,随着使用时间的增加,相应地,在不同时期恢复路面使用性能所需要的费用也明显不同,这就给养护决策提出了最佳修复方案或养路资金优化分配问题。当前公路路面检测的总体趋势是由人工检测向自动化检测技术发展,由破损类检测向无损检测技术发展,由低速度、低精度向高速度、高精度发展。常用的无损检测技术主要有以下几种:

1.超声波检测技术

超声波路面检测技术主要是通过发射超声波到材料介质,接收反射波的相关参数,进而判断结构内部破损情况的一种新型无损检测方法,在接收超声波的主要参数中,最常用的是波速参数,即通过检测超声波在路面材料中的传播速度来分析其力学性能的方法。由于它具有激发容易、检测简单、操作方便、价格便宜等优点,在路面检测中的前景非常广阔,现已成功地应用于检测路基路面材料的密实度与弹性模量,检测混凝土的抗压强度、抗折强度,检测路基路面的厚度与孔隙以及路基快速测湿等。

2.激光检测技术

激光全息技术是激光无损检测中应用最早且最多的一种方法,其基本原理是通过对被测物体施加外加载荷,利用有缺陷部位的形变量与其他部位不同的特点,通过加载前、后所形成的全息图像的叠加来判断材料、结构内部是否存在不连续性。激光超声技术是近年无损检测领域中迅速发展并得到工程应用的一项十分引人注目的新技术,在路基和路面检测中,激光主要应用于距离测定、纹理深度测定、弯沉测定、车辙深度及平整度测定几个主要方面。

3.图像技术

图像技术包括红外成像技术和激光全息图像技术。红外成像技术主要是利用不同材料介质导热性能不同的原理,利用高精度的热敏传感器可以检测结构物内部的热传导规律和温度场分布状况,将检测得到的数据图像化,从而将结构内部状况呈现出来。具有精细度高、直观可靠、能够给出全场情况等优点。

4.探地雷达技术

探地雷达技术作为一种无损检测高新技术,具有精度高、图像直观等特点。探地雷达可对对象作连续检测,能比较直观地表现检测目标物;其具有非破坏性探测、速度快、轻便小巧、抗干扰性强、分辨率高、操作方便等优点,由于探地雷达方法具有快速、连续、无损检测的特点,在检测混凝土路面质量起到了一定的作用。

二、探地雷达技术的定义及工作原理

1.探地雷达技术的定义

探地雷达是利用高频或超高频脉冲电磁波探测地下介质分布的一种地球物理勘探方法。实践表明,它可以分辨地下较浅范围内的介质分布。因此,雷达方法以其特有的高分辨率,在工程地质勘察,灾害地质调查,公路工程质量的无损检测,考古调查以及工程施工质量监测等浅层与超浅层地质调查中得到越来越广泛的应用。

2.雷达病害识别的原理与方法

在道路结构层内部的检测中,结构层内部的病害主要表现为如下三种形式:(l)层间脱空:沥青面层与基层表面之间出现空隙,这主要是两个层面之间施工时粘合不好或是透水性设计不当造成的。如:有许多钻孔资料显示,在脱空部位常常存在lmm~2mm的灰土层,这是由于施工期间清理不完善的所造成的;另外,如果基层透水性较好,则很容易在层间形成充气脱空;如果基层透水性不好就很可能会使面层与基层之间形成充水脱空。(2)层内蜂窝:这主要是在施工时由于压实度不够造成的。若是深入了水则会形成层内富水区。(3)地基基础变形:主要会引起沥青面层发生裂隙、脱空甚至塌陷等现象。由此可以看出,结构层的病害的表现千差万别,但具体原因主要是由于空气或水的进入而造成的,这便成了我们应用路面雷达进行病害检测的前提。

三、探地雷达无损检测沥青路面缺陷的具体应用

1.沥青路面缺陷的具体表现

一般情况下,沥青路面的损坏,可以分为两类:一类是结构性损坏,包括路面结构整体或其中某一个或几个组成部分的破坏,使路面达到不能承受预定的车辆荷载;另一类是功能性损坏,它也有可能并不伴随有结构性损坏而发生,但由于平整性、抗滑能力等因素的下降,使其不再具有预定的使用功能,从而影响行车质量。功能性破损一般是表面性的,易于识别,其破损原因也比较清楚。

2.结构缺陷的基层探地雷达信号特征

根据上述分析,施工过程中基层缺陷可分为:层间分界面处出现松散夹层,连接性差;层内局部孔隙度大,内部松散;局部离析。以下就三类基层施工过程中出现的缺陷探地雷达信号特征结合实际资料分别研究说明:

(1)层间连接性差的探地雷达信号特征。这种现象主要发生在路面基层的底界面、或基层较厚而分层铺筑的分界面处,产生该类缺陷的原因往往是因为上层铺筑时对下层表面处理不当或筑料搅拌不均或出现离析而导致的,在探地雷达检测剖面图上呈现出较强的异常带。钻芯验证表明,一旦出现明显的此类异常,按垂向分辨率理论分析,其松散夹层厚度往往大于3cm。

(2)结构层离析的探地雷达信号特征。路面基层内的离析部位,因铺筑材料出现结构松散,空隙度变大,空隙内充填为相对介电常数为1的气体,而周围的正常密实区因密实并具有足够的湿度,其相对介电常数远大于松散与离析部位,二者间的界面将成为很强的电磁波反射界面,若离析体充有饱和水,其介电常数远木周围介质,二者间的界面仍将成为很强的电磁波反射界面。由此可见,只要路面基层内存在离析,即具备开展雷达技术探测的物理前提条件,从而达到检测路面基层内松散与离析的目的。

(3)结构层松散的探地雷达信号特征。这种现象多出现在桥涵两侧,一般是由于下层(如垫层)标高低于设计标高,造成上层单层厚度超过分层碾压厚度要求,使其因压实度降低而引起。路面基层内若存在局部松散(压实度底)必然会导致介电常数的不同,电磁波在此发生反射,地面可接收到相应的雷达剖面异常图像。这种松散体界面处引起的异常幅度一般较大,判断其边界的定性方法为:依据在不均匀体边界处有连续的反射波同相轴中断或弯曲分布叉,其内波长变长,波幅明显变化,反射波组特征也发生明显变化。

通过对路面病害的实地踏勘、钻孔取芯、探坑挖验及无破损检测等手段,相互验证了路面病害的范围、程度,经过大量试验的验证,基本符合路面病害的实际状况。

四、结语

总之,路面检测与评价技术在检测和控制施工质量、提高公路养护管理科学化水平及改进路面设计等方面都具有十分重要的地位和作用,路面检测评价技术水平的不断提高,对病害进行针对性、预防性养护,防止病害的快速发展,甚至根治这些病害,对于延长道路使用寿命,降低运营成本有着积极的意义。③

参考文献:

[1]杨晓丰,李云峰;路基路面检测技术[M]北京:人民交通出版社,2007.02

第3篇:雷达技术论文范文

西南交通大学 交通工程系 05交运2班 于鸿泽 周琳

【关键词】智能驾驶 智能汽车 发展现状 智能技术

【引 言】

随着更加先进的灵巧型传感器、快速响应的执行器、高性能ECU、先进的控制策略、计算机网络技术、雷达技术、第三代移动通讯技术在汽车上的广泛应用,现代汽车正朝着更加智能化、自动化和信息化的机电一体化产品方向发展,以达到“人—汽车—环境”的完美协调。

【正 文】

一、智能驾驶过程的实现

智能驾驶的实现需要大量的电子电路元件支持,主要有:传感器、电控单元(ECU)、执行器、控制策略、总线、电源、智能通信系统。

随着传感器技术、信息处理技术、测量技术与计算机技术的发展,智能驾驶系统也得到了飞速的发展。

现在的智能驾驶技术大多是通过多传感器实现的。多传感器信息融合实际上是人对人脑综合处理复杂问题的一种功能模拟。多传感器信息融合就像人脑综合处理信息的过程一样,它充分利用多个传感器资源,通过对各种传感器及其观测信息的合理支配与使用,将各种传感器在空间和时间上的互补与冗余信息依据某种优化准则结合起来,产生对观测环境的一致性解释或描述。信息融合的目标是基于各种传感器分离观测信息,通过对信息的优化组合导出更多的有效信息。这是最佳协同作用的效果,它的最终目的是利用多个传感器共同或联合操作的优势来提高整个系统的有效性。

目前经常使用一个雷达传感器探测前方的车辆或障碍。雷达虽然在直路上的性能良好,但当道路弯曲时,探测的信号将不完全可靠,有时还会有探测的盲点或产生错误报警。为了防止错误报警,常对雷达的输出进行标准卡尔曼滤波,但这并不能有效解决探测盲点问题。为了更可靠地解决这类问题,可以使用扫描雷达或多波束雷达,但其价格昂贵。这里选用低价的视觉传感器作为附加信息,视觉传感器经常能提供扫描雷达和多波束雷达所不能提供的信息。

雷达传感器和视觉传感器配合作用实现对复杂道路状况的探测、识别,然后将信息通过总线电路发送给ECU,ECU处理后将命令发送给执行器,执行器将作用于汽车的油门、动力、转向、刹车等系统,实现汽车的只能行驶。[本站论文由中国收集整理,转载请注明出处中国]

二、智能汽车发展现状

回想过去,汽车都是由驱动装置驱动几乎所有的机械和液压系统,现在则由电子元件和系统的组合来完成。电子感应器增强或甚至已经取代了各种机械系统。一些高档汽车具有多达70个ECU。一般汽车的感应器数量已经达到35个,而一个高档汽车的感应器数量达到了60个。通常汽车还附带6个左右的气囊。这意味着现在的汽车更复杂、更安全,并且驾驶起来更简单。和以前的汽车相比,它们也更具智能化,并将继续获得更高的智能。

1、 智能泊车的Lexus LS460

Toyota公司2006年推出(最近才进入中国市场)的Lexus LS460最大的卖点就是智能泊车系统,该车型的电视广告就是在展示智能泊车系统其精准的泊车路线。Lexus LS460的智能泊车辅助系统可对后座和前座摄像头的图像进行处理,利用该结果去控制电子动力方向盘和一个电子油门。只需轻触一个按钮和驾驶者的少许制动,系统就可以把车刹住。同样地,LS460的VDIM(Vehicle Dynamic Integrated Management)系统从各种感应器中搜寻数据以预知刹车。利用这一数据,加上驾驶者的输入信息来帮助驾驶者恢复对汽车的控制。它通过启动电控刹车、电子动力转向、防抱死制动、车辆稳定性控制、刹车辅助、电子刹车力分配和引擎扭矩等功能来恢复控制。

2、 雷达和摄像头加强了驾驶技术

在像Mercedes-Benz S-class这样的车上,24/77 GHz雷达导航系统在提高安全性方面起到很重要的作用。Brake Assist(刹车辅助)、Parking Assist(泊车辅助)、Pre-Safe(预警安全)、Distronic Plus(巡航控制)以及Adaptive Brake(自适应制动)功能采用七个雷达感应器(五个在前缓冲器、两个在后缓冲器)来加强安全水平。拥有这些功能,汽车就可以感应到即将发生的碰撞,使驾驶者可以采取躲避措施。雷达系统允许自动制动应用。另外,如果探测到潜在的碰撞,它就会关闭天窗和加固安全带。[本站论文由中国收集整理,转载请注明出处中国]

现在基于雷达和自适应巡航控制的系统正蓬勃发展,在很多Mercedes-Benz和Toyota模型中都可以发现他们的身影。Volkswagen Passat和BMW的3系列也同样具有这样的雷达。为了改善交通安全,NISSAN公司开发了车距控制辅助系统(Distance Control Assist System)以帮助驾驶者控制他们自身与面前车辆之间的距离。这个系统采用一个在前缓冲器的雷达感应器,来确定定驾驶者的尾随距离和双方车辆的相对速度。如果驾驶者松开加速踏板,或者没有踩住加速踏板,系统就会自动启动制动。如果系统确定需要制动,那么在仪表板和蜂鸣器上就会出现一个指示器,然后加速踏板会自动上移以帮助驾驶者转换到制动。[本站论文由中国收集整理,转载请注明出处中国]

另一个关键功能,即摄像头,给驾驶者返回狭窄停车位并执行能见度受限操作时提供了更佳的视野。研究表明,很多儿童是因为驾驶者在返回停车位的时候看不见他们而致死的。复杂的全轮驱动一度只是高档汽车的安全堡垒。而如今,它是很多车辆的标准配置。这些系统通过瞬间提供车轴最需要的动力,可在恶劣的驾驶条件下提供最佳动力。

3、 智能化车灯

对安全性的关注也延伸到前灯。由Gentex公司开发的Chrysler 300C具有Smart Beam系统。它根据公路情况自动开启和关闭前灯。在后视镜里装了一个前向CMOS图象感应器,它让车灯一直维持开启状态,直到在公路上探测到其它车的前灯或尾灯,它才转换到近光灯。为了避免分散相向行驶驾驶者的注意力,该系统可使远光灯渐开和渐关。

Mercedes-Benz S-class汽车有两个照射公路的红外线前灯。当汽车的近光灯打开,它们将驾驶者的视野范围扩展到150多米,使其能更快看见行人、停泊的汽车和其他障碍物。同时也减少了黑暗中驾驶发生碰撞的危险。

4、 智能驾驶环境——无线基础设施

到目前为止,汽车中的无线技术仍限制在车载蜂窝电话。但是当这些研究者针对路边站的安全架构而进一步调查Wi-Fi通信使用状况的时候,这可能会有所改变。

交通部(DOT)的VII计划试图使用无线连接来避免碰撞。有车辆接近十字路口或死角的时候,基站将通知和提醒其它基站和驾驶者。该系统也会提供交通速度和密度的数据,使路标可以通知驾驶者在进入高速公路前倒车。

该计划还将开发可以在不同情况下警告驾驶者的集成先进技术,这些情况包括:当驾驶者将要离开公路的时候,当驾驶者和另一企图改车道的车辆有碰撞危险时候,以及和前方车辆有碰撞危险的时候。

5、 动力传动电子控制系统

主要包括发动机电子控制(包括汽油机和柴油机)、自动变速器控制(ECT、CVT/ECVT等)以及动力传动总成的综合电子控制等。控制系统主要由各种传感器、执行机构和电控单元(ECU)组成。其主要是保证汽车在不同的工况下均能处在最佳状态下运行,并简化驾驶员的有关操作,从而降低油耗和排放,减少动力传动系统的冲击,减轻驾驶人员的劳动强度,提高汽车的动力性、经济性和舒适性。

6、底盘电子控制系统

包括制动防滑与动态车身控制系统(ABS/ASR、ESP/VDC),牵引力控制系统、悬架及车高控制系统、轮胎监测系统(TPMS)、巡航控制系统(CCS)、转向控制系统(如4WS)、驱动控制系统(如4WD)等。其主要用于提高汽车的安全性、舒适性和动力性等。近些年来,这类控制系统开始在普通轿车上广泛采用。

7、 车身电子控制系统

主要包括安全气囊(SRS)、自动座椅、自动空调控制、车内噪音控制、中央防盗门锁、视野照明控制、自动刮水器、自动门窗、自动防撞系统以及满足不同用电设备的电源管理系统。主要是用来增强汽车的安全性、舒适性和方便性。

8、 多媒体娱乐、通讯系统

主要包括车载多媒体系统、驾驶员信息系统、语音系统、智能交通系统(ITS)、车辆导航系统(GPS/DGPS等)、计算机网络系统、状态监侧与故障诊断系统等。用于联结“人—车—路—环境信息”,以及协调整车各部分的电子控制功能。

第4篇:雷达技术论文范文

关键词 水文缆道;现状;发展;测流设施;控制

中图分类号P64 文献标识码A 文章编号 1674-6708(2013)96-0126-02

0引言

在我国对于国内的水文缆道的研究以及实验制造、发展最终达到了稳定的实验过程整整花费了五十余年,而随着当代科技的不断进步,我国的水文缆道的建设也在不断的改进着,从1954年6月份我国从浙江修筑起国内的第一座使用人力来进行操作的水文缆道之后,我国的水文缆道建设技术的发展便一发不可收拾,1956年,重庆北碚水文站建立了;电动水文缆道,而在之后的几年中,相继在两会期间出台了大量的有关于水文缆道建设运行相关的多方面问题解决方案,让我国的水文缆道的发展逐渐向着规模化,现代化发展。

1我国水文缆道现状及出现的问题

1.1我国全自动化水文缆道测流系统的发展

所谓的水文缆道全自动化的控制系统,指的是使用包括交流变频缆道控制台进行控制,同时对于水文绞车,测流铅鱼以及流速传感器、测距定位仪、水系综合信号源和通讯模块、计算机系统以及相关的控制测算软件进行多方面的自动化控制的水文缆道系统,而这种系统到目前为止仍然具有极大的升级空间,可以说潜力巨大。我国最早的全自动水文缆道测流系统问世时间在2000年,这种系统主要采用交流变频器的工作模式,可以将传统德尔技术难点进行解决,同时可以做到对于测流铅鱼进行无级变速控制,保证测流铅鱼无论在告诉还是低俗都可以保证平滑稳定,保证性能良好,可以对于测流铅鱼的定位精度进行极大程度的提高,也实现了较为精细,定位更加准确的信号传输性能,其工作原理主要是将水下的综合信号源的工作,让三种信号(水面、流速仪、河底)在不同和频率的情况下发射交流脉冲信号,最后通过接收器的放大和整形过程,最终让三者的信号相互分离,让系统的抗干扰能力和灵敏程度进一步的提高,更是让传统的系统传输方式存在的信号之间互相干扰而产生的问题得到有效的解决和缓解。

1.2水文缆道技术监督进行标准化实施

想要让水文缆道实现全自动、半自动以及手动三者进行兼容操作的目的,就需要对于水文缆道的技术进行标准化的实施,让水文缆道融合高新技术应用,为水文缆道标准化技术的大规模普及和大规模的应用奠定良好的基础。近几年来,我国水文缆道的测流技术发展十分迅速,近几年来更是受到了国家水文仪器以及岩土工程一其生产的许可审查部的稳妥,在我国数百家大大小小的水文站缆道现场进行监督检查测试,同时在全国的大小水文站例如武汉、樟树坑、杜锋坑、仙桃、古城以及黄龙潭、峡山等地实施全自动水文缆道测流系统以及水文缆道测流自动控制仪等数百种水文缆道的系统仪器进行进一步的实践操作和实际测试抽样,现场对于水文缆道仪器进行有效的检测,检测包括外观质量、流速指标、水深技术范围以及起点距技术范围、参数记忆存贮、全自动、半自动化以及手动测量功能、测速精度、侧身精度以及信号通道、抗干扰能力以及计算机处理数据等仪器设备功能方面的测试,力图保证水文缆道的标准化进程,随着我国的标准化进程的推进,我国当前的水文缆道测流技术的科技含量也在逐渐的提高,让全自动、半自动以及手动兼容操作的切换兼容得到实现,同时根据笔者的调查,我国的检查结果中发现,大多数仪器已经可以实现三种制动共同发展,并且具有防雷功能,可以说较为先进。

2 我国水文缆道发展前景

随着我国科学技术水平的不断发展,我国的抗洪抗涝技术也在逐渐的提高着,而水文资源的开发也是应大众的要求而进行开发,随着群众的呼声 越来越高,全国各地的水文站经费的投入 也将会不断的提高,让国内外的一流科技可以引进到我国的内部,和我国的水文技术进行融合和发展,让我国的水温揽到的发展水平进一步提高,因此可以说,到目前为止,我国的水文缆道具有极大的发展潜力,提高空间巨大。

2.1水文缆道发展将会发展迅速

在我国加入世界贸易组织之后,随着世界市场的打开,我国的科学技术也在不断的和外国科学家进行着交流,这也让我过的水文系统的科学技术不断的增加,同时为了对于国际的技术的最新动态进行交流,保证不断的对于国外的一些先进的水文监测技术和仪器进行引进,同时让我国的技术和他不断的融合,最终获得更加先进的技术,促进我国水文缆道技术的发展和普及。另外,我国要不断的对于国际上的最新的技术动向进行追踪,对于大多数的适合我国当前的海洋局势情况的技术和理论进行学习,同时引进一些先进的环境检测仪器和检测系统,进最大可能促进我国水文缆道的现代化建设。

2.2我国的水文缆道向着三化方向进行发展

所谓三化,指的是在我国的水文缆道技术应用过程中,采用多元化的高新技术应用,同时保证定位移动监测一体化,另外保证无人值守的智能化,向着着三个方向发展。

在应用高新科技应用的多元化发展方向的过程中,存在几种十分先进的技术,例如雷达技术、激光技术、声学多普勒技术等先进的技术,这些先进的技术会对于我国的水文缆道的建筑过程中进行自动实时监控方面产生巨大的推动作用。同时,由于我国的土地面积广阔,幅员辽阔,同时水资源的分布空间分布极不均衡,其许多复杂的环境都无法支持通信线路的安装,艰难的地形会让我国的资料传输过程变得十分艰难,更是会让大量的资料无法传送完整而导致传输过程的失败和资料的消失。更是会导致自动化的智能操作模式无法成为现实。

3 结论

作为一个大国十分重要的管理技术,我国的水文缆道需要更进一步的发展和普及,这样才能保证我国水土资源的平稳发展,让我国的人民更加安全、稳定的生活。

参考文献

第5篇:雷达技术论文范文

Abstract: highway is the economy of the blood vessels. A region's economic development, cannot leave the convenient transportation, and roads are the most widely, the most convenient transportation channel. Along with the rapid development of highway construction, mountainous and hilly terrain of such complex section of tunnel engineering more and more, highway tunnel construction of a modern traffic construction in a key projects. This paper analyzes the common quality of highway tunnel, and the various tunnel detection technology research.

中图分类号:U45文献标识码:A 文章编号:

1.前言

丘陵、山地及高原的面积大约占我国土地总面积的70%。之前在山区或丘陵地带修建公路时,主要以盘山绕行为设计方向,极少涉及隧道的修建。近年来,国民经济快速发展的同时带动了我国交通建设的迅猛发展,修建的公路里程日益加长,公路等级也越来越高。随着公路交通的逐年发展,技术水平的不断进步,公路隧道也快速发展起来。公路修建过程中,如果遇到山岭、丘陵、甚至江河的阻碍,都可以通过修建隧道的方法继续施工,这样,不仅可以缩短公路里程,节约土地,还能够保障车辆行驶安全,有时还可以减少施工工作量。

但是,修建公路隧道与修建一般公路或桥梁相比,它的建设管理更为复杂,建设难度更大。因此,随着我国隧道规模越来越大,建设过程中也出现了越来越多的病害或质量问题,为我国的公路隧道建设带来很大的挑战。工程师和建设者要正确面对隧道建设中出现的质量问题,认真研究隧道质量检测技术及解决方案,保证公路交通的安全运营。

2.公路隧道的常见质量问题

公路隧道在它与众不同的功能性及结构性要求下,往往比其他建设工程的施工难度要大。而且,会出现很多质量问题,比如:洞内渗漏水、衬砌裂缝、拱墙背后脱空、限界受侵、喷射混凝土支护不平整等等,只有正确认识到这些问题的成因及现象,才能找出解决办法。

2.1洞内渗漏水

公路隧道在建设的过程中以及建成之后,多少都会受到地下水的影响。如果支护技术不成熟、衬砌密度不够、混凝土中间存在空隙、振捣不到位,隧道的墙、拱就会出现滴水、渗水、漏水现象,隧道路面也会出现冒水现象。这种情况会对行车安全带来隐患,甚至威胁到衬砌结构稳定。

2.2衬砌裂缝

衬砌开裂通常都是因为多种原因综合作用导致的,主要因素有两方面:一是设计局部不符合实际地形,隧道的结构设计受力不均。二是施工方法不规范,管理不当。其中,施工方面的问题主要因为拆除模型时间过早、基底清理得不够干净、混凝土灌注速度不对、衬砌厚度不均匀等原因。

2.3拱墙背后脱空

拱墙背后脱空是拱墙与初期支护之间存在空洞,导致隧道表层结构不稳定。其原因是由于预留的防水卷材不足、混凝土水灰比调整不及时、没有有效堵塞初期支护与堵头模型间的空隙。

2.4限界受侵

建设公路隧道的过程中,可能会遇到比较松软的地层,围岩在较大的地压时会产生很大的变形,不当的施工方法或不及时正确支护都可能造成塌方。通常施工人员会为了保证施工安全而急于修筑,从而忽视了断面界限,使界限受侵。也有可能因为在混凝土浇筑衬砌过程中模板刚度、强度不足而走模,导致限界受侵。

2.5喷射混凝土支护不平整

用混凝土喷射支护表面时,经常会出现波浪状、葡萄状或丘陵状等凹凸不平的现象。支护表面不平整,严重影响到防水板等防水材料的铺设。这种现象可能是由于超挖过度,又没有使用光面爆破的原因引起的。也有可能是因为混凝土本身质量不合格或钢筋网、钢拱架和格栅拱不平的原因。

3.公路隧道质量的检测技术

随着科技的不断发展,公路隧道的检测技术也越来越发达。各种各样的检测技术层出不穷,不但可以精确地检验出隧道存在的质量或环境问题,而且,对完工隧道的损坏也越来越小。我国在发展公路隧道修建水平的同时,对隧道的检测技术也颇有研究,特别是无损检测技术,在公路隧道质量检测中得到广泛运用。隧道检测技术为公路隧道的安全运营做出了巨大贡献。

3.1地质雷达检测技术

地质雷达检测技术是一种通过光谱电磁确定地下介质分布的检测技术。地质雷达主要由主机、两根天线以及配套软件三部分组成,其中,发射天线发射出的高频脉冲电磁波向地下传播,它的电磁场强度、途径及波形都会因所通过的介质介电常数不同而变化,并反射一部分电磁波由接收天线接收。雷达主机则对这部分反射波进行处理,从而推断出介质结构。地质雷达检测技术在检测隧道初期支护、混凝土不连续面、二次衬砌的厚度和背后空洞上有很好的效果。

3.2激光断面仪检测技术

隧道激光断面仪检测法是以某个物理方向为起算方向,间隔一定的角度或距离连续测定断面仪旋转中心与开挖的实际轮廓线交点之间的矢径,以及该轮廓线矢径与水平方向的夹角,实际开挖的轮廓线即所有矢径端点通过依次相连形成的曲线。若对隧道轴向间隔一定距离的数个断面进行测量,还能够计算出欠挖方量、超挖方量等数据。隧道建设在完成临时支护和初次衬砌后,以及隧道二次衬砌完工后的现场检测中,都要用到激光断面仪检测技术在同一里程处进行检测,以得到断面轮廓的数据资料,掌握隧道施工情况。

3.3回弹法检测技术

隧道工程在完成二次衬砌的修建后,通常采用回弹法对隧道质量进行检测。检测过程中,检测点应均匀分布在测区范围内,每两个测点之间至少相距30mm,一个测区中设置16个回弹值,分别去掉3个最大值和最小值,再以其余10个值得平均值为该测区最终回弹值,最后,换算并推定测区二次衬砌的混凝土强度。由于回弹法操作的可能性限制,一般是在隧道拱墙上端布置测区,将回弹仪安置成水平状态,正常情况下不必调整角度或修正浇筑面。

3.4声波反射法检测技术

由锚杆、围岩和混凝土砂浆组成的结构中,若从锚杆端点处发射弹性波,波会沿着锚杆传播并向四周辐射能量,并在锚杆和砂浆、围岩和砂浆之间的界面进行反射或透射。变截面杆是对锚固体系的简化,通过对其研究可以发现:当变截面杆的截面材料或面积不一样时,在之上传播的弹性波会在这个截面上发生反射及透射,并且反射波纹与透射波纹因材料类型或截面面积不同而不同。锚杆、围岩和砂浆的波阻抗差异很小,所以,当它们之间接触密实的时候,由锚杆发出弹性波几乎完全透射进入围岩,少数反射回来的能量信号也非常有规律。但当这三者之间没有均匀密实地浇灌时,砂浆中就会出现空腔等不密实段,弹性波就会在这些空腔与砂浆、锚杆与空腔的界面上产生变化较大、能量较强的反射。根据这个原理,用仪器接收锚杆上反射回来的信息,分析各个界面反射波的强度及反射时间的长短,即可测定锚杆长度和锚固的整体质量。锚杆质量检测仪就是进行声波反射检测的常用仪器,一般具有设置参数、采集数据和存储的功能。但对数据的精细处理还需借助相应的软件。

3.5火焰检测技术

隧道火焰检测技术从检测距离上分类可以分为接触式检测和非接触式检测两种方式。前者主要以温度和烟雾浓度为参数,后者则是利用红外线或紫外线测温技术和视频技术进行检测。隧道火焰检测技术是火灾检测的重要手段。

4.结语

公路隧道质量问题是事关公共安全、经济稳定的重要问题。受人为、自然、技术等因素影响,它的表现形式多种多样,具有不同程度的危害性。为了尽可能减少甚至消除公路隧道质量问题,必须在公路隧道从设计到施工保养的各个环节严格把关,积累经验,因地制宜,探索出新技术、新工艺,不断提高隧道施工水平,以确保施工安全及隧道质量,造福社会。

参考文献:

第6篇:雷达技术论文范文

[关键词] RFID 物资流动 设备管理

一、绪论

高校是教学和科学研究的重要基地,无论是教学还是科学研究都需要完整的实验及试验设备。在高校,教学可分为基础课、专业基础课及专业课,因此配合教学的实验设备及仪表是非常完整并系统的。在高校,设备经费投入很有限,各学校在长期的教学积累过程,使设备及仪表得到完整及系统。当学校资源包括图书及查阅相关资料内容时,高校具备非常好的科学研究条件。高校设备按用途可分为教学使用设备和科学研究用设备,它们之间是相互依赖又相互促进发展,完备的教学实验设备是实现科学研究的前提,高水平科学试验又研究推动教学水平的提升。而高水平的科学过程研究需要高精的设备,许多高精的设备它具备在不同学科的通用性。

提出将射频识别技术应用于高校自动化物资管理,解决自动化立体仓库信息管理与控制调度的自动化、智能化、信息化。提出了以计算机控制为核心,以射频识别为信息采集手段、以AGV和堆垛机为执行单元的集成系统。基于射频识别的立体仓库信息管理系统设计的目的是实现物品出入库控制、物品存放位置及数量统计、信息查询过程的自动化,方便管理人员进行统计、查询和掌握物资流动情况,以达到方便、快捷、安全、高效等要求。

而这类设备购置要花费大量的资金,在高校多学科并存的环境下,当把高精的设备统一购置及管理后,可避免高校多学科这类设备重复购置,又使这类设备达不到到较高性能的现象。这就是提出对高精设备统一购置及管理的目的,使有限的资金发挥更大的作用。本论文提出的设想其前提是把这类高精的设备在无线射频识别技术管理条件下,有效解决制约学校物资管理的资金利用率和管理手段的瓶颈问题。利用校园资源共享,建立起集中式高性能公共服务设备平台,搭建环境,它会大大提高这类高精设备的利用率及管理的科学性。

二、无线射频识别技术研究

1.自动识别技术的应用背景

在现实生活中,各种各样的活动或者事件都会产生这样或者那样的数据,这些数据包括人的、物质的、财务的,也包括采购的、生产的和销售的,这些数据的采集与分析对于我们的生产或者生活决策来讲是十分重要的。如果没有这些实际工况的数据支援,生产和决策就将成为一句空话,将缺乏现实基础。在计算机信息处理系统中,数据的采集是信息系统的基础,这些数据通过数据系统的分析和过滤,最终成为影响我们决策的信息。在信息系统早期,相当部分数据处理都是通过人工手工录入,这样,不仅数据量十分庞大,劳动强度大,而且数据误码率较高,也失去了实时的意义。为了解决这些问题,人们就研究和发展了各种各样的自动识别技术,将人们从繁沉的重复的但又十分不精确的手工劳动中解放出来,提高了系统信息的实时性和准确性,从而为生产的实时调整,财务的及时总结,以及决策的正确制定提供正确的参考依据。

例如,在当前比较流行的物流研究中,基础数据的自动识别与实时采集更是物流信息系统的存在基础,因为,物流过程比其他任何环节更接近于现实的“物”,物流产生的实时数据比其他任何工况都要密集,数据量都要大。

无线射频识别技术(简称RFDI),融合了无线定位、产品电子编码(EPC)和互联网技术,近年得到快速发展,被广泛用于社会、经济、国防等领域,成为新一轮技术变革的催化剂,得到发达国家的普遍关注,RFID产业与应用正加速发展。

随着芯片技术和无线通信技术的快速发展,电子标签芯片日趋微型化,天线多样化,并能以多种介质作为载体,封装成各种形式以适应不同的应用。电子标签具有防水、防磁、使用寿命长、可以在一定距离内读取数据等优点,标签上存储的数据安全、可靠、具有可重复改写等特点。

2.国内研究现状

(1)物流管理领域:生产线自动化、仓储管理、铁路运输监控、民航行李或速递包裹管理、图书或文档管理、强制检验的产品(如压力容器)管理。

(2)防伪领域:商品防伪、证件防伪。

(3)金融收费领域:公路(不停车)自动收费、电子票证及小额支付门票等。

(4)其他领域:汽车防盗、物品跟踪等。

3.射频识别技术原理及系统组成

射频识别技术(RFID)是从20世纪80年代走向成熟的一项自动识别技术。自动识别技术主要功能是能提供关于个人、动物、货物和商品的区别于它物的信息。在当今的服务领域,商品销售、后勤分配、材料流通等领域已得到了快速的普及和应用。RFDI系统是C1卡技术的延伸和发展,它具有非接触、无污染、识别率高、保密性强等优点。射频识别系统的数据存储在电子数据载体之中。应答器的能量供应,以及应答器与阅读器之间的数据交换不是通过电流的触点接通而是通过磁场或电磁场,并采用了无线电和雷达技术。射频识别是无线电频率识别的简称,通过无线电波进行识别。同其他识别系统相比,射频识别系统具有许多优点。射频识别系统组成图如下:

4.功能

(1)存储设备标识信息。

(2)借还信息(包括开启密码)。

(3)状态记录。

(4)与读头之间的通信(合法性验证、信息交换)。

5.举例

全世界的许多大型图书馆都已经使用了射频识别技术,以加快资料的检入、检出、书架库存,以及安全应用。低成本的弹性智能标签可以插入书籍内部,让顾客无法看到。柜台人员可在几秒钟内检入或检出十几本书,无需对每件物品进行人工拿取和对准方向的操作。这种签条还可以用于防盗,与当前零售商使用的防店内行窃技术很相似。图书馆人员可以使用带有射频识别读取器的便携计算机来查看库存,只要沿着书架通廊走过即可发现归档错误的资料,读取器可以自动探测丢失的材料并警告操作员。图书馆的无线射频识别应用属于库存管理应用,这种方式同样适用于其他许多行业。

无线射频识别(RFID)是当今自动识别数据收集行业发展最快的板块之一,在实际应用中,采用无线射频识别技术极大地改善了信息管理的能力。射频识别技术实际上克服了条形码应用当中所发现的某些限制,因为它不属于条形码之类的光学技术,在读取器与贴有标签的射频识别目标之间无需直视线。此外,射频识别以无线方式发送数据,属可读写技术,因此它可以在跟踪周期内更新或改变编制在标签内的数据。

三、总结及展望

1.总结

学校高精设备管理需要应用大量的先进技术和加强信息化管理手段,射频识别技术的使用可以提高信息采集效率和准确性有效加强了高精设备管理及使用者、设备之间相互联系,降低了信息交换成本,可大大提高了采购设备要求的高精度,为节省资金提高设备利用率得到保障。

2.展望

无线射频识别技术(RFID)利用无线射频方式进行非接触式双向通信交换数据以达到自动识别目的,具有防水、防磁、耐高温、使用寿命长、读取距离大、标签上数据可以加密、存储数据容量更大、存储信息更改自如、可识别高速同时识别多个标签等优点,操作快捷方便,因此更适合于实现全校物资系统的自动化管理。解决数据融合的各种瓶颈问题。

本论文讨论的内容是RFID系统与各学校物资管理系统进行集成时的关键技术。随着各校物资管理的加强,可以实现资源即时掌握、设备状态实时可控等目标。在这个过程中,不断完善RFID技术的应用研究,应用RFID技术实现各学校物资管理的思路和想法,将使各校在物资管理领域实现节约、设备高效利用、科学物资管理、资产共享的创新。

参考文献:

[1]周之等:SQLServer参考大全.北京:清华大学出版社,2002年5月第一版,P227~282

[2]康立忠 杨 江 李锋华:浅谈军事仓储高新技术发展的对策.仓储管理与技术2001年,第五期P13~15

[3]郎为民:射频识别(RFID)技术原理与应用[M].北京:机械工业出版社,2006

[4]游战清 李苏剑等:无线射频识别技术(RFID)理论与应用[M].北京:电子工业出版社,2004

[5]杨 君 刘 云:无线射频识别技术及应用[J].现代通信,2003(6)

第7篇:雷达技术论文范文

我国地处世界上两个最大地震集中发生地带——环太平洋地震带与欧亚地震带之间,地震较多,大多是发生在大陆的浅源地震,震源深度在20km以内。位于青藏高原南缘的川滇地区,主要发育有北西向的鲜水河-安宁河-小江断裂、金沙江-红河断裂、怒江-澜沧江断裂和北东向的龙门山-锦屏山-玉龙雪山断裂等大型断裂带[1].该区新构造活动剧烈,绝大多数属构造地震,地震活动频度高、强度大,是中国大陆最显著的强震活动区域[2].

而西南地区蕴藏了我国68%的水力资源,水利工程较多,且主要集中在川滇地区。据2005年数据,四川省有大中小型水库约6000余座[3].2008年5月12日的四川省汶川大地震,初步统计,已导致803座水库出险,受损的大型水库有紫坪铺电站和鲁班水库,中型水库36座,小一型水库154座,小二型水库611座[3].此外,地震还致使湖北和重庆地区各79座水库出现险情[4,5].为保证水利工程的安全运行,地震之后及时对水利工程进行检测,并对受损工程进行监测和修复是必要的。有关震灾受损水利工程修复方面的文献不多,散见于各种期刊或研究报告,为便于应用参考,本文搜集、筛选了一些震灾受损水利工程的案例,并对一些实用技术进行了介绍。

2.地震对水利工程的危害

由于地震烈度、地震形态以及水库本身工程质量的不同,地震对于水利工程的危害也有所区别。高建国[6]对我国因地震受损水利工程进行分类整理,认为水库坝体险情主要可分为3级:1级,一般性破坏,不产生渗漏;2级,严重性破坏,坝体开裂渗漏;3级,垮坝(崩塌),水库水全部流走。

我国因地震引起的水库垮坝并不多见,总结国内外地震对水利工程的危害,主要有以下几种形式:

2.1坝体裂缝

地震作为外力荷载将会导致大坝尤其是土石坝整体性降低,防渗结构破坏,引起大量裂缝。地震会产生水平和垂直两个方向的运动,并使周期性荷载增大,坝体和坝基中可能会形成过高的孔隙水压力,从而导致抗剪强度与变形模量的降低,引起永久性(塑性)变形的累积,进而导致坝体沉降与坝顶裂开。

2003年10月甘肃民乐—山丹6.1级地震引起双树寺水库大坝、翟寨子水库大坝,坝顶均出现一条纵向裂缝,长约401~560m,最大宽度2cm左右,并有多处不同长度断续裂缝,

防浪墙局部错动约0.5cm.大坝右侧出现山体滑坡,形成长条带及凹陷,滑坡长37m左右,凹陷坑深2.5~3m、宽7m左右,凹陷处上部山体有多条斜向裂缝,缝宽20cm左右。李桥水库坝顶有纵向裂缝,多处缝宽在2~5mm,其中一条长约100m左右,出现横向贯通裂缝,防浪墙出现多处竖向裂缝。这些裂缝在坝体漏水、自然降水和温度作用下,又将产生新的冻融、冻胀破坏,影响大坝的整体性和稳定[7].

托洪台水库位于新疆布尔津县境内,1995年被列为险库,1996年新疆阿勒泰地震(6.1级),使拦水坝出现10处横向裂缝,3处纵向裂缝,最宽处达16cm,长17m,防浪墙垂直裂缝27处。经评估,水库震后只能在低水位运行,致使发电系统瘫痪,同时对于下游构成潜在威胁[6].

岷江上的紫坪铺水利工程位于都江堰市与汶川县交界处,2006年投产,是中国实施西部大开发首批开工建设的十大标志性工程之一。2008年5月12日的汶川地震造成紫坪铺大坝面板发生裂缝,厂房等其他建筑物墙体发生垮塌,局部沉陷,整个电站机组全部停机。[3].此外,地震对泄水输水建筑物也将造成巨大危害。2003年8月16日赤峰发生里氏5.9级地震,使沙那水库混凝土泄洪灌溉洞产生纵向裂缝,长15m,最大裂缝15mm;环向裂缝22m,最大裂缝宽度1.8mm;洞出口消力池两侧边墙产生竖向裂缝,总长15m,最大裂缝宽度25mm.大冷山水库溢洪道两侧导流墙产生裂缝,以纵向裂缝为主,最大缝宽12mm[8].

2.2坝体失稳

地震可能引起坝基液化,从而导致大坝失稳。地震时,受到周期性或波动性荷载作用,土石坝内土体将产生递增的孔隙水压力和递增的变形。粘性土体构成的土石坝在地震中相对安全。但相对密度低于75%的粉砂土和砂土,在几个循环之后孔隙水压力就会显著上升,当达到危险应力水平时,土体在周期性荷载作用下显示出极大的变形位移,坝内土体就会呈现出液化的流态,导致坝体失稳[9].

喀什一级大坝1982年施工时,其坝体及防渗墙都未进行碾压,致使密实度降低,1985年地震时,由于液化和沉陷,导致该坝整体失稳破坏。

美国加州的Sheffield坝,1917年建成,坝高7.63m,坝顶宽6.1m,长219.6m,水库库容17万立方米.1925年6月距坝11.2km处发生里氏6.3级地震,长约128m的坝中段突然整体滑向下游。事后,经调查研究发现,坝体溃决的主要原因是地震使饱和土内的孔隙水压力增大,造成坝下部和坝基内的细颗料无凝聚性土发生液化。

地震还会造成土石坝体脱落或堆石体沉陷,从而引起坝体失稳。在库水位较高的情况下,堆石体沉陷会造成坝体受力不均,更严重的会引起库水漫顶,引发坝体垮塌。1961年4月

13日在距西克尔水库库区约30km处发生里氏6.5级地震,该水库位于VIII度区[10],坝体出现了严重的堆石体沉陷现象,一段220m长的坝体沉陷值达到2~2.5m,崩塌范围在从坝轴线上游3~10m到下游的35~50m[11].

前面述及的沙那水库土坝和朝阳水库因地震致使土坝排水体砌石脱落,经抗震复核下游坝坡不稳定[8].

2.3岸坡坍塌

若水库两岸有高边坡和危岩、松散的风化物质存在,地震发生后,造成的岩体松动,可诱发产生崩塌、滑坡和泥石流,甚至形成堰塞湖等现象。

乌江渡水库处于地震多发区,1982年6月地震中,化觉乡东部厚层灰岩和白云岩地层中发生大面积崩塌。同年8月,化觉、柏坪一带又发生较大规模的地层滑动,影响面积约18k平方米[12].

5.12汶川大地震造成四川多处山体滑坡,堵塞河道,形成34处堰塞湖。其中唐家山堰塞湖蓄水过1亿立方米,另外水量在300万立方米以上的大型堰塞湖有8处[13],对下游地区造成严重威胁。

另外,地震还可能对水利工程一些其它部分造成损坏。如1995年1月日本阪神淡路7.2级地震[14,15]中,使堤防基础液化发生侧向流动,造成堤防破坏以及护岸受损。我国历次地震中,出现较严重险情的多为土石坝,且多为年代较久远的土石坝,如果发生强地震就更容易造成损坏[16].

3.震灾受损水利工程的修复技术

地震后受损水利工程修复措施主要包括以下几个方面:

3.1坝体监测

地震后,对于受损水利工程,应及时降低水库运行水位,并进行充分的坝体探测。对土石坝,可开挖土坑检测,对混凝土坝,则可用无损探伤检测[17].包括使用地震波法、地质雷达、水下声纳法检测侵蚀程度,必要时还需要采取槽探、钻孔、孔内地球物理方法进行检测。根据地震前后大坝监测结果的对比分析,判明是否存在普遍的结构损伤迹象。尤其需要加强对坝体变形和渗透的观测,防止裂缝前后贯通,内部发育,产生渗漏通道。同时,加强对输水洞漏水、溢洪道裂缝的监测,以防渗漏进一步扩大[18].

震后坝体探测中,作为一种非破坏性的探测技术,地质雷达具有探测效率高、分辨率高、抗干扰能力强等特点,可以快捷、安全地运用于坝体现状检测和隐患探查[19].

2003年甘肃山丹地震后,利用地质雷达对双树寺、瞿寨子、瓦房城等水库的震后坝体裂缝、坝基渗透、溢洪道、高边坡开裂和库岸道路滑坡等进行了探测[20],效果很好。

3.2裂缝修复

对于已经出现的裂缝,要对其分布、走向、长度和开度等进行定时观测和检测。在大坝主裂缝部位设置标志,缝口要覆盖塑料布,防止雨水流入加速其恶化。对受洪水威胁的建筑物,要采取临时措施(如围堰)进行保护。

裂缝的修补应从实际出发,在安全可靠的基础上,同时考虑技术和施工条件的可行性,力求施工及时、简单易行、经济合理。常用的有以下几种处理方法:

3.2.1表面处理法

表面处理法[21]主要适用于对结构承载能力没有影响或者影响很小的表面裂缝及深层裂缝,同时还可以处理大面积细裂缝的防渗防漏。常用的有表面涂抹水泥砂浆、表面涂抹环氧胶泥以及表面涂刷油漆、沥青等防腐材料等,从而达到封闭裂缝和防水的作用。在防护的同时应当采取在裂缝的表面粘贴玻璃纤维布等措施,这样可以防止混凝土在各种作用下继续开裂。

3.2.2灌浆法

灌浆法主要应用于对结构整体有影响或有防水防渗要求的混凝土裂缝的修补。经修补后,能恢复结构的整体性和使用功能,提高结构的耐久性。

灌浆法[22]分水泥灌浆和化学灌浆。水泥灌浆适用于裂缝宽度达到1mm以上时的情况;裂缝较窄的情况下宜采用化学灌浆。此外,工程经验表明水泥浆适于稳定裂缝的灌浆处理,不适用于活缝或伸缩缝的处理。化学灌浆也存在类似问题,应用最广的环氧树脂浆固结体是脆性材料,因此对活缝应选用弹性材料。部分化学灌浆还有毒性,应加强施工人员的保护措施。大量实践证明,灌浆法是目前最有效的裂缝修补处理方法。

3.2.3结构加固法

危及结构安全的混凝土裂缝都需作结构补强。结构加固法适用于对整体性、承载能力有较大影响的较深裂缝及贯穿性裂缝的加固处理。混凝土结构的加固,应在结构评定的基础上进行,以达到结构强度加固、稳定性加固、刚度加固或抗裂性加固的目的。结构加固中常用的主要有以下几种方法:加大混凝土结构的截面面积,在构件的角部外包型钢、采用预应力法加固、粘贴钢板加固、增设支点加固以及喷射混凝土补强加固。结构加固法还适用于处理对结构的承载能力、整体性、耐久性有较大影响的不均匀沉陷裂缝和较为严重的张拉裂缝[23].

3.3滑坡处理

土坝滑坡有剪切破坏、塑流破坏、液化破坏三种形式[24].可采用“上部减载”与“下部压重”法来处理。“上部减载”就是在滑坡体上部的裂缝上侧削坡,以保持稳定:“下部压重”就是放缓下部坝坡,在滑坡体下部做压坡体等。当滑坡稳定后,应当及时进行滑坡处理[17].主要处理方法介绍如下:

3.3.1放缓坝坡

若滑坡由于剪切破坏造成,则放缓坝坡为最好的处理方法。可填入土体将坝坡放缓,或是先削掉滑动面上坝顶的土体,使滑动面坝坡变缓,然后再加大未滑动面的断面[24].

对存在失稳危险的土石坝也可采用水上抛石法放缓上游坝坡,施工方法简单,且不受季节和水位的变化。加固工程不破坏原坝体结构,减去拆除原有的坝体护坡石和反滤料工序,对保护原坝体非常有利。石料渗透系数大,在库水位降落时,新筑部分的自由水面线,几乎与库水位重合,这样就造成新增断面和原有断面共同承担原有坝壳中库水位降落时产生的渗透水压力及地震产生的超隙孔压力,起到压重的作用,从而有利于大坝的稳定[25].

3.3.2压重固脚

若滑坡体底部滑出坝趾以外,则需要在滑坡段下部采取压重固脚的措施,以增加抗滑力。压重固脚的材料最好用砂石料。在砂石料缺乏的地区,也可用土工织物,代替反滤,以达到排水的要求[17].

通过在坝体上加压盖重,或对坝体培厚加固处理,可以进一步提高防渗流土、坝体抗裂和抗渗性能,同时增加坝体稳定性。

实例:1999年山西大同堡村发生5.6级地震,对位于震中附近的册田水库造成VII度影响,坝体产生结构变形[26].震后对主坝和北副坝下游坝坡采用石渣进行培厚加固处理。主坝所在956m高程以下石渣培厚体,坝坡分别为1:2.75,在956m高程设12m宽的平台,在949m高程、940m高程设3.0m宽的马道,并在石渣体与原坝体设置反滤层。培厚坝体后,即使再次遭遇地震,由于坝体在正常水位下(956m高程)宽度增加,也可避免大坝整体失稳,从而保证大坝的安全[27].

3.3.3库岸岩体加固

对于地震中松动的库岸岩体,应采取工程措施进行加固。地震后,首先需要对库岸岩石情况进行重新评估,选择加固方式。库岸加固通常采取锚固、支挡、排水相结合的方式。锚固措施是利用预应力锚索和锚杆固定不稳定岩层,适用于震后加固岩体滑坡和不稳定的局部岩体。通过一端与建筑物结构相连,一端打入岩体内部,在增强岩体抗拉强度的同时,

改善库岸岩体的完整性[28].该方法在高切坡中被广泛应用。支挡方法是通过支挡体来平衡滑坡体的下滑力,确保滑坡体的稳定安全。支挡结构能有效地改善滑坡体的力学平衡条件,阻止滑坡、泥石流等。常用的方法有重力式挡墙、拉钉挡墙、加筋土挡墙、抗滑桩等[29].

此外,由于地震过后经常伴随暴雨,更易在松动岩石处产生滑坡、泥石流等灾害,因此需及时排水,包括地表水和地下水。可设置截水沟排除地表水;排除地下水可用廊道、竖井和水泵等。在美国、加拿大和日本等国家较多采用专用钻机打水平孔的办法排地下水[28].

3.4渗漏修复

应根据具体情况降低库水位或放空水库,彻底修复防渗体,对由于浸润线过高而逸出坡面或者由于大面积散浸引起的滑坡,除结合下游导渗设施外,还应考虑加强防渗。

3.4.1劈裂灌浆

对于土石坝较严重的渗漏破坏,可以采取劈裂灌浆或加强防渗斜墙等方式解决。劈裂灌浆是指在垂直渗流的方向沿坝轴线劈开坝体,灌入稠泥或水泥砂浆,截断渗流通道,可以在短时间内坝体内的渗流,使大坝转危为安。

采用劈裂灌浆技术的岭澳水库具体做法如下:根据坝长选用适量的灌浆机,多台灌浆机同时开灌,为使浆液尽快硬化固结,所用浆料为掺入速凝剂的水泥加粘土。在灌浆工艺上,连续的多次复浆,使混凝土或泥浆墙尽快加厚,并使贯通的漏水通道通过灌浆压力和多次灌浆挤压膨胀与原坝土体紧密结合,最终形成垂直连续的防渗混凝土砂浆墙,防止再次出现漏水通道的可能[30].

3.4.2开挖置换

置换技术是土石坝震后修复中的一种重要手段,尤其对于心墙开裂的土石坝具有重要意义。首先需要通过探测技术检测到侵蚀的区域,然后在心墙的下游侧补填塑性混凝土,并用颗粒反滤层加以支持。最后使用水泥膨润土混合物进行灌浆。置换技术可以有效阻止土石坝心墙的进一步破坏,达到防渗漏的目的[18].

实例:新西兰的马拉希纳坝,在经历埃奇克姆地震后,初期表现稳定,在1987年12月后出现水位明显下降的现象。通过详细的监测发现,虽然大坝没有遭受严重的渗漏,但左坝肩心墙和下游副心墙出现明显的开裂和侵蚀,且侵蚀依然在继续发展。持续不断的侵蚀导致库水位不断下降,因而采取心墙置换的方式,即对左右岸坝肩进行开挖,喷上混凝土,置换开挖出来的材料。水库再次蓄水时没有出现新的事故[18].

3.4.3排水设施

在阻止渗流发生的同时,需要做好排水工作,通过设置宽敞的排水带,使渗流能顺利排走,降低坝体内的浸润线,减小孔隙水压力。

4.典型水利工程抗震抢险及修复实例

4.1美国Hebgen坝

Hebgen土石坝[31]位于美国Montana州,1915年建成,1959年8月遭受里氏7.1级的强烈地震,坝和水库所在地变形并整体下沉约3.1m,右岸溢洪道严重损坏,坝体沉陷开裂,水库岸坡坍塌,库水震荡并漫溢坝坝。当时此坝并无抗震设计,承受地震对其的各种危害而未垮坝,其破坏模式和耐震经验极有借鉴意义。

当时业主Montana电力公

司采取的紧急抢救措施包括:

(1)立即将泄水底孔进水口原用迭梁封闭的二个孔口开启,以80立方米/s的流量泄水降低库水位。

(2)对半角沉陷区和被流冲蚀的坝下游面填土修复。检查表明,心墙与溢洪道连接处的漏水并非通过心墙上的裂缝而是从破坏的溢洪道流出。

(3)在心墙的大裂缝处下游,打竖井检查和修补。同时对下游河岸坍方区进行了修整。此后于1960年4月开始对溢洪道、坝体心墙和上游面进行了全面的修复和加固工作。至今运行完好。

4.2美国LowerSanFernando坝

LowerSanFernando坝[31]位于美国加州洛杉矶市北,1912年动工,最大坝高43.2m,坝顶宽6m,长634m.1971年2月在坝东北12.9km处发生里氏6.6级地震,致使主坝发生巨大滑坡,坝的上游部分带动坝上部9.2m高的坝体和坝顶一起坍落滑向水库20多米远。

事故发生后,救援人员立即采取了如下措施:一方面立即运来砂袋加固筑高坝的低陷部位;另一方面紧急撤离坝下游地区8万居民;此外,通过2条泄水道和3条引水管排放水库中的水。

经初步调查和后期进一步挖槽、钻孔取样研究得出,坝内有大范围土区在地震后液化,但液化区被外围强度较高的非液化土约束住,因而直到液化区内有足够扩张力,促使外围土向外和向下移动时,才出现大规模滑动。

4.3新疆西克尔水利工程

西克尔水库[10,11]位于新疆伽师县东北西克尔镇,1959年建成使用,为均质土坝,设计库容10053万立方米,属大型拦河式平原水库。该工程自建成以来共经历了15次地震,其中较严重的有3次:1961年4月13日发生6.5级地震,震中距水库约30km,致使220m长的坝出现沉陷崩塌,余坝产生165条裂缝;1996年3月19日发生6.4级地震,坝段出现涌沙,裂缝,局部产生沉陷;2002年3月3日,阿富汗发生里氏7.1级地震,造成水库副坝段出现决口,并迅速扩大到50m左右,决口流量约120立方米/s,损失惨重。

由于西克尔水库运行年限长,且早年建设时没有进行地质勘探,因此极易糟受地震破坏。多次地震后,主要采取的措施有:

(1)加高坝顶,坝后设置压重,并铺设无纺布反滤。

(2)大坝决口后,进行抢险封堵,修复缺口。

(3)按库区基本烈度八度进行设计校核,对西克尔水库主坝、副坝和其它建筑物进行加固修复。针对部分坝段坝基地震液化问题,主坝采用压盖重措施,以进一步提高防渗流土、坝体抗裂和抗渗性能。副坝部分改线,采用粘料含量高的土进行填筑,加固填筑总方量为

58.59万立方米,其中粘土39.29万立方米,占60%.

4.4北京密云水库

密云水库位于北京密云县城北13km处,库容43.8亿立方米,是北京市民用、工业用水的主要来源。水库始建于1958年9月,分白河、潮河、内湖三个库区,主要建筑有白河主坝(高66m,长1100m)、潮河主坝(高56m,长960m)和5道副坝等。

1976年7月28日,河北唐山发生里氏7.8级强烈地震,白河主坝发生强烈扭动,主坝水面以下6万平方米的块石坡和砂砾保护层滑落,受损严重。地震后,采取的主要措施[6]有:

(1)及时探测大坝裂缝,并派潜水员进行水下探测。

(2)通过筑堰建闸,把密云水库分隔成两个库区,放空库水后,进行全面检查加固。清除白河主坝上的砂砾保护层,加厚铺盖粘土斜墙,改用碴石保护层,往水下填粘土及砂石达20万m2.随后,打通白河廊道、削坡清基,进行坝体加固。

(3)加固了3座副坝,并增建了3条泄水隧洞、1座溢洪道等。白河主坝加固工程于1977年11月21日完成,达到了国家一级工程标准,至今完好。

5.小结

地震后受损水利工程修复是项复杂的工作,要因地制宜尽快采取最合适的方法进行修复。几条主要结论如下:

(1)地震发生后,各级水行政主管部门应该对境内的水利工程,尤其是堤防、水库大坝、水闸等工程进行排查,及时掌握工程破坏的情况及其隐患,有针对性地制定抢修方案。对地位重要、关系重大、危险性高的受损水利工程,要抓紧修复,确保度汛安全。

(2)坝和地基土料的液化,是导致垮坝或严重破坏的主要原因,此外,较普遍的震害有滑坡、开裂、沉陷和位移。

(3)尽可能保证水坝顺利泄水,降低蓄水位,避免出现垮坝事故。

(4)目前对于水利工程一般都有相应的突发事故(如地震、洪水等)预警机制,但对于如何应对出现的险情,采取必要的工程措施,尚是一个薄弱环节,宜提高认识,加强要应的工作。

(5)对山区河流因沿岸崩山、泥石流等形成的堰塞湖,要当机力断主动尽早清除,以避免水位升高,堰塞湖溃决形成洪灾。

参考文献

[1]苏有锦,秦嘉政。川滇地区强地震活动与区域新构造运动的关系[J].中国地震,2001,17(1):24~34.

[2]龙小霞,延军平,孙虎,等。基于可公度方法的川滇地区地震趋势研究。灾害学,2006,21(3):81~84

[3]任波,徐凯。四川已发现803座水库受损[OL].[2008.5.14].

[4]孙又欣。汶川地震造成我省水利工程新隐患[OL].[2008.5.14].

[5]中评社。汶川地震灾后余波!重庆79座水库出现险情[OL].[2008.5.17].=0517123254

[6]高建国。中国因地震造成的水库险情及其防治对策[J].防灾减灾工程学报。2003,9:80~91

[7]王东明,丁世文,等。对甘肃民乐—山丹6.1级地震震害的几点认识[J].自然灾害学报,2004,13(3):122~126

[8]王艳梅,李俊,等。赤峰市“8?16”地震对震区水利工程的危害及应急措施[J].内蒙古水利,2003,(4):66~68

[9]K.维克塔乔姆,R.K.基特里亚。与土石坝有关的地震问题[J].水利水电快报,1999,11:5~7

[10]库尔班阿西木。地震对西克尔水库大坝工程的影响和抗震加固[J].大坝与安全,2006,6:64~68

[11]库尔班阿西木。地震对平原水库大坝的影响和抗震加固[J].地下水,2006,8:82~85

[12]覃子建。乌江渡电站水库地震灾害[J].地震学刊,1994,3:42~49

[13]吴胜芳。唐家山堰塞湖库容逼近1亿立方米,3万人转移。[OL].[2008.5.23].

[14]张敬楼。日本兵库地震及水利工程震害综述[J].水利水电科技发展,1995,10:17~19

[15]史鉴,汤宝澍;从日本阪神淡路大地震——谈我省水利工程抗震加固问题,陕西水利,1999,(Z1):50~51

刘真道。浅谈灾后小型水库工程安危状况与对策[J].浙江水利科技,2001,(sup):118

水利部国际合作与科技司编。抗震救灾与灾后重建水利实用技术手册。2008.5.15

M.D.吉隆,C.J.牛顿。地震对新西兰马塔希纳坝的影响[J].水利水电快报,1995,4:1~8

杨金山,卢建旗。地质雷达技术在水利工程中的应用[J].地质装备,2001,12:7~9

马国印。地质雷达在水库震后病害检测中的应用[J].甘肃水利水电技术,2007,3:47~48

喻文莉。浅议混凝土裂缝的预防与处理措施[J].重庆建筑,2007,(4):36~38

鞠丽艳。混凝土裂缝抑制措施的研究进展[J].混凝土,2002,(5):11~14

陈璐,李风云。混凝土裂缝的预防与处理[J].中国水利,2003,(7):53~54

肖振荣。水利水电工程事故处理及问题研究[M].北京:中国水利水电出版社:2004

杜智勇,李贵智,等。柴河水库除险加固综述[A].全国病险水库与水闸除险加固专业技术论文集[C].北京:中国水利水电出版社,2001.212

[26]贾文。册田水库大坝工程场地地震地质灾害评价[J].山西水力,2004,6:67~68

[27]朱宏官,陈连瑜。中强地震对册田水库大坝造成的危害及安全预防处理[J].山西水利科技,2001,(1):71~73

[28]吴凤英。浅谈水库库岸滑坡[J].广州水利水电,2007,4:17~18

[29]王连新。水库滑坡治理[N].长江咨询周刊,2007,6:B01

[30]白永年。劈裂灌浆技术在岭澳水库大坝防渗加固中的应用[A].全国病险水库与水闸除险加

精选范文推荐