公务员期刊网 精选范文 期末考试答案范文

期末考试答案精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的期末考试答案主题范文,仅供参考,欢迎阅读并收藏。

期末考试答案

第1篇:期末考试答案范文

12、回答下面问题。①文中划线句子中所说的“不幸”,你如何理解?(2分)

②文中加点的“对于精神的虐杀的这一幕”具体指什么?(2分)

13、读了这段文字,你对作者有怎样的认识?(4分)

(三)阅读下面的文字,完成14——16题。(11分)草鞋人和皮鞋人一场雨下来,灰尘被冲得无影无踪,弯陡的山道间尽是些裸露的石子。雨后山间的空气格外清晰,偶尔几声鸟儿鸣叫,让人好不惬意。弯陡的羊肠道上,两双脚在丈量:草鞋在前,皮鞋在后。草鞋被磨得薄薄的,后足有些破损,皮鞋却是黑黑的,不时发出屡屡光亮。这条路上,这两双脚曾有无数次同行,先是草鞋送布鞋,后是草鞋送球鞋,再后来便是草鞋送皮鞋,能长年累月穿上发光的皮鞋,这意味着皮鞋已把这条道的源头变成了他遥远的故乡。皮鞋人间或回来一次,也是一两年才有的事。六十多度的斜山道上,草鞋迈得和皮鞋一样艰难。两只提包和两条蛇皮袋所构成的“吱嘎”担子,将背如蜗牛的草鞋人压得腰弯气喘。“爸爸,我来挑吧!”后面的皮鞋人喘着粗气说道。“我顶得住。”草鞋人汗流满面的说。一张蜗牛背,驮着一副“吱嘎”作响的担子往上爬。“叭”,担子变成了四个包,顺道滚到皮鞋边。草鞋人跌到了山间杂草中。“爸,怎么了?怎么了!”皮鞋飞奔过来,草鞋却很快立在山道上,只是鞋上染了一道血迹。看草鞋人似乎很乐观,话中带笑。“刚才是草鞋人挂了树根跌的,没事,我还能走一程。”草鞋人执意不让。“伟伟听话么?”草鞋人已是第三次这么问了。话刚出口,草鞋人便意识到自己在傻问。然而没办法,草鞋人知道:只有这样,才不觉得压力下的艰辛。“很听话,他常常念着你呢!”皮鞋人觉得前面的两次答话可能都不中老父之意,因此这次增添了后半句。在“吱嘎吱嘎”的重压声中,草鞋人问了很多城里的事,并在做人做官问题上千嘱万咐,皮鞋人回答得满头大汗。“爸,我来挑吧,你已挑了一个多钟头了。”皮鞋人双手抢担,请求说。“下了这道坡,再走三里路,就是马家溪的枫亭口,到那你再挑吧!”草鞋人移动着带血的草鞋,撂出一串话。到了枫亭口,草鞋人果然将担子交到皮鞋人肩上去了,自己在后面拼命擦汗,然后作悠闲状。皮鞋草鞋在马家溪镇上的街道移动着。马家溪的村民们给了草鞋人很高的评价,养了个好儿,城里能作官,乡里能挑担,是个孝子。草鞋人很快慰,从皮鞋人衣袋里掏出翻盖烟不停地丢给众人。走到不到一华里的马家溪路段,又是一段漫长的山间无人道,草鞋人从皮鞋人肩上夺过担,驼腰前进。望着前面草鞋人的背影皮鞋人在后面流泪。14、本文所说的“草鞋人”是指,“皮鞋人”是指。(2分)15、①第一段景物描写,在文中起了什么作用?(3分) ②第四段写了“鞋”的变化,目的是什么?(3分)

16、简要概括“草鞋人”这一形象。(3分) (四)阅读下面的文字,完成17—20题。(13分)冬日看山梁衡要不是有公务,谁会在天寒地冻的时节来香山呢?可话又说回来,要不是恰在这时来,香山性格的那一面,我又哪能知道呢?开三天会,就住在公园内的别墅里。偌大个公园为我们独享,也是一种满足。早晨一爬起来我便去逛山。这里我春天时来过,是花的世界;夏天时来过,是浓荫的世界;秋天来过,是红叶的世界。而这三季都游客满山,说到底是人的世界。形形的服装,南腔北调的话音,随处抛撒的果皮、罐头盒,手提录音机里的迪斯科音乐,这一切将山路林间都塞满了。现在可好,无花,无叶,无红,无绿,更没有多少人,好一座空落落的香山,好一个清静的世界。过去来时,路边是夹道的丁香,厚绿的圆形叶片,白的或紫色的小花;现在只剩下灰褐色的劲枝,枝头挑着些已弹去种籽的空壳。过去来时,山坡上是些层层片片的灌木,扑闪着自己霜红的叶片,如一团团的火苗,在秋风中翻腾;现在远望灰蒙蒙的一片,其身其形和石和土几乎溶在一起,很难觅到它的音容。过去来时,林间树下是丰厚的绿草,绒绒地由山脚铺到山顶;现在它们或枯萎在石缝间,或被风扫卷着聚缠在树根下。如果说秋是水落石出,冬则是草木去而山石显了。在山下一望山顶的鬼见愁,黑森森的石崖,蜿蜒的石路,历历在目。连路边的巨石也都像是突然奔来眼前,过去从未相见似的。可以想见,当秋气初收,冬雪欲降之时,这山感到三季的重负将去,便迎着寒风将阔肩一抖,抖掉那些攀附在身的柔枝软叶;又将山门一闭,推出那些没完没了的闲客;然后正襟危坐,巍巍然俯视大千,静静地享受安宁。我现在就正步入这个虚静世界。苏轼在夜深人静时去游承天寺,感觉到寺之明静如处积水之中,我今于冬日游香山,神清气朗如在真空。与春夏相比,这山上不变的是松柏。一出别墅的后门就有十几株两抱之粗的苍松直通天穹。树干粗粗壮壮,溜光挺直,直到树梢尽头才伸出几根虬劲的枝,枝上挂着束束松针,该怎样绿还是怎样绿。树皮在寒风中成紫红色,像壮汉的脸。这时太阳从东方冉冉升起,走到松枝间却寂然不动了。我徘徊于树下又斜倚在石上,看着这红日绿松,心中澄静安闲如在涅,觉得胸若虚谷,头悬明镜,人山一体。此时我只感到山的巍峨与松的伟岸,冬日香山就只剩下这两样东西了。苍松之外,还有一些新松,栽在路旁,冒出油绿的针叶,好像全然不知外面的季节。与松做伴的还有柏树与翠竹。柏树或矗立路旁,或伸出于石岩,森森然,与松呼应,翠竹则在房檐下山脚旁,挺着秀气的枝,伸出绿绿的叶,远远地作一些铺垫。你看它们身下那些形容萎缩的衰草败枝,你看它们头上的红日蓝天,你看那被山风打扫得干干净净的石板路,你就会明白松树的骄傲。它不因风寒而筒袖缩脖,不因人少而自卑自惭。我奇怪人们的好奇心那么强,可怎么没有想到在秋敛冬凝之后再来香山看看松柏的形象。当我登上山顶时回望远处烟霭茫茫,亭台隐隐,脚下山石奔突,松柏连理,无花无草,一色灰褐。好一幅天然焦墨山水图。焦墨笔法者舍色而用墨,不要掩饰只留本质。你看这山,它借着季节相助舍掉了丁香的香味,芳草的倩影,枫树的火红,还有游客的捧场,只留下这长青的松柏来作自己的山魂。山路寂寂,阒然无人。我边走边想,比较着几次来香山的收获。春天来时我看它的妩媚,夏天来时我看它的丰腴,秋天来时我看它的绰约,冬天来时却有幸窥见它的骨气。它在回顾与思考之后,毅然收起了那些过眼繁花,只留下这铮铮硬骨与浩浩正气。靠着这骨这气,它会争得来年更好的花,更好的叶,和永远的香气。17、开头两个问号有什么作用?(3分)

第2篇:期末考试答案范文

一、选择题(本题共24分,每小题3分)

下面各题均有四个选项,其中只有一个是符合题意的.

1.下列各组数中,以它们为边长的线段能构成直角三角形的是().

A.,,B.3,4,5C.2,3,4D.1,1,

2.下列图案中,是中心对称图形的是().

3.将一元二次方程x2-6x-5=0化成(x-3)2=b的形式,则b等于().

A.4B.-4C.14D.-14

4.一次函数的图象不经过().

A.第一象限B.第二象限C.第三象限D.第四象限

5.已知四边形ABCD是平行四边形,下列结论中不正确的是().

A.当AB=BC时,它是菱形B.当ACBD时,它是菱形

C.当∠ABC=90º时,它是矩形D.当AC=BD时,它是正方形

6.如图,矩形ABCD的对角线AC,BD交于点O,AC=4cm,

∠AOD=120º,则BC的长为().

A.B.4C.D.2

7.中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表:

跳高成绩(m)1.501.551.601.651.701.75

人数132351

这些运动员跳高成绩的中位数和众数分别是().

A.1.65,1.70B.1.70,1.65C.1.70,1.70D.3,5

8.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为,点B的坐标为,点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m个单位,当点D落在EOF的内部时(不包括三角形的边),m的值可能是().

A.3B.4

C.5D.6

二、填空题(本题共25分,第9~15题每小题3分,第16题4分)

9.一元二次方程的根是.

10.如果直线向上平移3个单位后得到直线AB,那么直线AB的解析式是_________.

11.如果菱形的两条对角线长分别为6和8,那么该菱形的面积为_________.

12.如图,RtABC中,∠BAC=90°,D,E,F分别为AB,BC,

AC的中点,已知DF=3,则AE=.

13.若点和点都在一次函数的图象上,

则y1y2(选择“>”、“<”、“=”填空).

14.在平面直角坐标系xOy中,点A的坐标为(3,2),若将线段OA绕点O顺时针旋转90°得到线段,则点的坐标是.

15.如图,直线:与直线:相交于点P(,2),

则关于的不等式≥的解集为.

16.如图1,五边形ABCDE中,∠A=90°,AB∥DE,AE∥BC,点F,G分别是BC,AE的中点.动点P以每秒2cm的速度在五边形ABCDE的边上运动,运动路径为FCDEG,相应的ABP的面积y(cm2)关于运动时间t(s)的函数图象如图2所示.若AB=10cm,则(1)图1中BC的长为_______cm;(2)图2中a的值为_________.

三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分)

17.解一元二次方程:.

解:

18.已知:在平面直角坐标系xOy中,一次函数的图象与y轴交于点A,与x

轴的正半轴交于点B,.

(1)求点A、点B的坐标;(2)求一次函数的解析式.

解:

19.已知:如图,点A是直线l外一点,B,C两点在直线l上,,.

(1)按要求作图:(保留作图痕迹)

①以A为圆心,BC为半径作弧,再以C为圆心,AB为半径作弧,两弧交于点D;

②作出所有以A,B,C,D为顶点的四边形;

(2)比较在(1)中所作出的线段BD与AC的大小关系.

解:(1)

(2)BDAC.

20.已知:如图,ABCD中,E,F两点在对角线BD上,BE=DF.

(1)求证:AE=CF;

(2)当四边形AECF为矩形时,直接写出的值.

(1)证明:

(2)答:当四边形AECF为矩形时,=.

21.已知关于x的方程.

(1)求证:方程总有两个不相等的实数根;

(2)如果方程的一个根为,求k的值及方程的另一根.

(1)证明:

(2)解:

四、解答题(本题7分)

22.北京是水资源缺乏的城市,为落实水资源管理制度,促进市民节约水资源,北京市发

改委在对居民年用水量进行统计分析的基础上召开水价听证会后通知,从2014

年5月1日起北京市居民用水实行阶梯水价,将居民家庭全年用水量划分为三档,水

价分档递增,对于人口为5人(含)以下的家庭,水价标准如图1所示,图2是小明

家在未实行新水价方案时的一张水费单(注:水价由三部分组成).若执行新水价方

案后,一户3口之家应交水费为y(单位:元),年用水量为x(单位:),y与x

之间的函数图象如图3所示.

根据以上信息解答下列问题:

(1)由图2可知未调价时的水价为元/;

(2)图3中,a=,b=,

图1中,c=;

(3)当180<x≤260时,求y与x之间的函数关系式.

解:

五、解答题(本题共14分,每小题7分)

23.已知:正方形ABCD的边长为6,点E为BC的中点,点F在AB边上,.

画出,猜想的度数并写出计算过程.

解:的度数为.

计算过程如下:

24.已知:如图,在平面直角坐标系xOy中,,,点C在x轴的正半轴上,

点D为OC的中点.

(1)求证:BD∥AC;

(2)当BD与AC的距离等于1时,求点C的坐标;

(3)如果OEAC于点E,当四边形ABDE为平行四边形时,求直线AC的解析式.

解:(1)

答案

一、选择题(本题共24分,每小题3分)

题号12345678

答案BDCDDCAC

二、填空题(本题共25分,第9~15题每小题3分,第16题4分)

9..10..11.24.12.3.13.>.

14..15.≥1(阅卷说明:若填≥a只得1分)

16.(1)16;(2)17.(每空2分)

三、解答题(本题共30分,第17题5分,第18~20题每小题6分,第21题7分)

17.解:.

,,.…………………………………………………………1分

.……………………………………………2分

方程有两个不相等的实数根…………………………3分

所以原方程的根为,.(各1分)………………5分

18.解:(1)一次函数的图象与y轴的交点为A,

点A的坐标为.…………………………………………………1分

.…………………………………………………………………2分

.…………………………………………………………………3分

一次函数的图象与x轴正半轴的交点为B,

点B的坐标为.…………………………………………………4分

(2)将的坐标代入,得.

解得.…………………………5分

一次函数的解析式为.

…………………………………6分

19.解:(1)按要求作图如图1所示,四边形和

四边形分别是所求作的四边形;…………………………………4分

(2)BD≥AC.……………………………………………………………6分

阅卷说明:第(1)问正确作出一个四边形得3分;第(2)问只填BD>AC或BD=AC只得1分.

20.(1)证明:如图2.

四边形ABCD是平行四边形,

AB∥CD,AB=CD.……………1分

∠1=∠2.………………………2分

在ABE和CDF中,

………………………3分

ABE≌CDF.(SAS)…………………………………………4分

AE=CF.……………………………………………………………5分

(2)当四边形AECF为矩形时,=2.………………………………6分

21.(1)证明:是一元二次方程,

…………1分

,……………………………………………………2分

无论k取何实数,总有≥0,>0.………………3分

方程总有两个不相等的实数根.……………………………………4分

(2)解:把代入方程,有

.…………………………………………………5分

整理,得.

解得.…………………………………………………………………6分

此时方程可化为.

解此方程,得,.

方程的另一根为.…………………………………………………7分四、解答题(本题7分)

22.解:(1)4.……………………………………………………………………………1分

(2)a=900,b=1460,(各1分)……………………………………………3分

c=9.…………………………………………………………………………5分

(3)解法一:当180<x≤260时,.……7分

解法二:当180<x≤260时,设y与x之间的函数关系式为(k≠0).

由(2)可知:,.

得解得

.………………………………………………7分

五、解答题(本题共14分,每小题7分)

23.解:所画如图3所示.………………………………………………………1分

的度数为.……………………………2分

解法一:如图4,连接EF,作FGDE于点G.……3分

正方形ABCD的边长为6,

AB=BC=CD=AD=6,.

点E为BC的中点,

BE=EC=3.

点F在AB边上,,

AF=2,BF=4.

在RtADF中,,

在RtBEF,RtCDE中,同理有

在RtDFG和RtEFG中,有.

设,则.………………………………4分

整理,得.

解得,即.…………………………………………5分

.………………………………………………………………6分

.………………………………………7分

解法二:如图5,延长BC到点H,使CH=AF,连接DH,EF.…………………3分

正方形ABCD的边长为6,

AB=BC=CD=AD=6,.

,.

在ADF和CDH中,

ADF≌CDH.(SAS)……………4分

DF=DH,①

.………………5分

点E为BC的中点,

BE=EC=3.

点F在AB边上,,

CH=AF=2,BF=4.

在RtBEF中,,

.②

又DE=DE,③

由①②③得DEF≌DEH.(SSS)……………………………………6分

.…………………………………7分

24.解:(1),,

OA=4,OB=2,点B为线段OA的中点.……………………………1分

点D为OC的中点,

BD∥AC.………………………………………………………………2分

(2)如图6,作BFAC于点F,取AB的中点G,则.

BD∥AC,BD与AC的距离等于1,

在RtABF中,,AB=2,点G为AB的中点,

BFG是等边三角形,.

设,则,.

OA=4,

.………………………………………3分

点C在x轴的正半轴上,

点C的坐标为.………………………………………………4分

(3)如图7,当四边形ABDE为平行四边形时,AB∥DE.

DEOC.

点D为OC的中点,

OE=EC.

OEAC,

OC=OA=4.…………………………………5分

点C在x轴的正半轴上,

点C的坐标为.…………………………………………………6分

设直线AC的解析式为(k≠0).

第3篇:期末考试答案范文

一.填空(9分)

1.67读作( ),九十二写作( )。

2.由7个十和8个一组成的数是( )。

3.10,20,( ),40,( ),( ),70。

4.25比9多( ),30比46少( )。

5.一年级数学下学期期末考试题答案2014:读数时都要从最( )位读起。

二、比一比,算一算。(22分)

73-3= 47-7= 26-6=

30+4= 6+50= 28-8=

60+8= 46+7= 41+3=

95-30= 80-30= 90-20-40=

87-3= 62+7= 8+16-7=

20+20+20=

3元4角=( )角 6角+8角=( )元( )角

46角=( )元( )角 7元+5元=( )元

三、在( )里填上合适的数。(6分)

12-( )=7 13-( )=4 11-( )=6

第4篇:期末考试答案范文

一、选择(本题每小题2分,共20分)

1.如图,下列图案是我国几家银行的标志,其中轴对称图形有()

A.1个B.2个C.3个D.4个

考点:轴对称图形.

分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.

解答:解:根据轴对称图形的定义:

第一个图形和第二个图形有2条对称轴,是轴对称图形,符合题意;

第三个图形找不到对称轴,则不是轴对称图形,不符合题意.

第四个图形有1条对称轴,是轴对称图形,符合题意;

轴对称图形共有3个.

故选:C.

点评:本题考查了轴对称与轴对称图形的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.

2.下列说法中不正确的是()

A.全等三角形的对应高相等B.全等三角形的面积相等

C.全等三角形的周长相等D.周长相等的两个三角形全等

考点:全等三角形的判定.

分析:根据能够完全重合的两个三角形是全等三角形,然后对各选项分析判断后利用排除法求解.

解答:解:全等三角形能够完全重合,

A、全等三角形的对应高相等,正确;

B、全等三角形的面积相等,正确;

C、全等三角形的周长相等,正确;

D、周长相等的两个三角形不一定能够完全重合,所以不一定全等,故本选项错误.

故选D.

点评:本题主要是对全等三角形的定义的考查,熟练掌握概念并灵活运用是解题的关键.

3.下列计算中,正确的是()

A.x3+x3=x6B.a6÷a2=a3C.3a+5b=8abD.(﹣ab)3=﹣a3b3

考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.

分析:根据合并同类项,只把系数相加减,字母与字母的次数不变;同底数幂相除,底数不变指数相减;积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.

解答:解:A、应为X3+X3=2X3,故本选项错误;

B、应为a6÷a2=a6﹣2=a4,故本选项错误;

C、3a与5b不是同类项,不能合并,故本选项错误;

D、(﹣ab)3=﹣a3b3,正确.

故选D.

点评:本题考查合并同类项,同底数幂的除法,积的乘方的性质,熟练掌握运算性质并灵活运用是解题的关键,不是同类项的一定不能合并.

4.下列各式可以分解因式的是()

A.x2﹣(﹣y2)B.4x2+2xy+y2C.﹣x2+4y2D.x2﹣2xy﹣y2

考点:因式分解-运用公式法.

分析:熟悉平方差公式的特点:两个平方项,且两项异号.完全平方公式的特点:两个数的平方项,且同号,再加上或减去两个数的积的2倍.根据公式的特点,就可判断.

解答:解:A、原式=x2+y2,不符合平方差公式的特点;

B、第一个数是2x,第二个数是y,积的项应是4xy,不符合完全平方公式的特点;

C、正确;

D、两个平方项应同号.

故选C.

点评:本题考查了公式法分解因式,掌握平方差公式,完全平方公式的结构特征是解决本题的关键.

5.在有理式,(x+y),,,中,分式有()

A.1个B.2个C.3个D.4个

考点:分式的定义.

分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.

解答:解:在有理式,(x+y),,,中,分式有,,共2个.

故选:B.

点评:本题主要考查分式的定义,注意π不是字母,是常数,所以不是分式,是整式.

6.若使分式有意义,则x的取值范围是()

A.x≠2B.x≠﹣2C.x>﹣2D.x11,所以能构成三角形.

故答案为:7.5cm或11cm.

点评:此题主要考查等腰三角形的性质及三角形三边关系的综合运用,关键是利用三角形三边关系进行检验.

三、解答

21.计算题:

(1)÷;

(2)3a3b2÷a2﹣b(a2b﹣3ab﹣5a2b)

考点:分式的混合运算.

专题:计算题.

分析:(1)原式利用除法法则变形,约分即可得到结果;

(2)原式第一项利用单项式除以单项式法则计算,第二项利用单项式乘以多项式法则计算,去括号合并即可得到结果.

解答:解:(1)原式=•

=;

(2)原式=3ab2﹣a2b2+3ab2+5a2b2

=6ab2+4a2b2.

点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.

22.求下列方程的解.

(1)=;

(2)+3=.

考点:解分式方程.

专题:计算题.

分析:两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.

解答:解:(1)去分母得:3x=5x﹣10,

移项合并得:2x=10,

解得:x=5,

经检验x=5是分式方程的解;

(2)去分母得:1+3(x﹣2)=x﹣1,

去括号得:1+3x﹣6=x﹣1,

移项合并得:2x=4,

解得:x=2,

经检验x=2是增根,分式方程无解.

点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.

23.因式分解:

(1)(2x+y)2﹣(x+2y)2;

(2)m2﹣14m+49.

考点:因式分解-运用公式法.

分析:(1)直接利用平方差公式分解因式得出即可;

(2)直接利用完全平方公式分解因式得出即可.

解答:解:(1)(2x+y)2﹣(x+2y)2

=(2x+y+x+2y)(2x+y﹣x﹣2y)

=(3x+3y)(x﹣y)

=3(x+y)(x﹣y);

(2)m2﹣14m+49=(m﹣7)2.

点评:此题主要考查了公式法分解因式,熟练利用完全平方公式是解题关键.

24.先化简,再求值:y(x+y)+(x+y)(x﹣y)﹣x2,其中x=﹣2,y=.

考点:整式的混合运算—化简求值.

分析:先根据单项式乘多项式的法则,平方差公式化简,再代入数据求值.

解答:解:y(x+y)+(x+y)(x﹣y)﹣x2,

=xy+y2+x2﹣y2﹣x2,

=xy,

当x=﹣2,y=时,原式=﹣2×=﹣1.

点评:本题考查了单项式乘多项式,平方差公式,关键是先把代数式化简,再把题目给定的值代入求值,熟练掌握运算法则和公式是解题的关键.

25.如图,A,B,C是新建的三个居民小区,要在到三个小区距离相等的地方修建一所学校D,请在图中做出学校的位置,不写作法.

考点:作图—应用与设计作图.

分析:根据线段垂直平分线上的点到线段两端点的距离相等,连接AB、BC、AC,ABC三边垂直平分线的交点就是修建学校的地方.

解答:解:①连接AB、BC、AC,

②作AB、BC、AC的垂直平分线相交于点D,

点D就是学校的位置.

点评:本题主要利用线段垂直平分线上的点到线段两端点的距离相等的性质作图.

26.如图,已知:ABC中,∠B、∠C的角平分线相交于点D,过D作EF∥BC交AB于点E,交AC于点F,AB=8cm,AC=6cm.

(1)求证:BE+CF=EF.

(2)求ADE的周长.

考点:等腰三角形的判定与性质;平行线的性质.

分析:(1)根据角平分线定义和平行线性质求出∠EDB=∠EBD,推出DE=BE,同理得出CF=DF,即可求出答案;

(2)要求周长,就要先求出三角形的边长,这就要借助平行线及角平分线的性质把通过未知的转化成已知的来计算.

解答:(1)证明:BD平分∠ABC,

∠EBD=∠DBC,

EF∥BC,

∠EDB=∠DBC,

∠EDB=∠EBD,

DE=BE,

同理CF=DF,

EF=DE+DF=BE+CF,

即BE+CF=EF.

(2)解:BE=ED,DF=DC,

AEF的周长=AE+AF+EF=AB+AC=8+6=14(厘米).

点评:本题考查了角平分线定义,平行线性质,等腰三角形的判定的应用,有效的进行线段的等量代换是正确解答本题的关键.

27.某化肥厂计划在规定时间内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与计划生产120吨所用的时间相同,求计划每天生产多少吨?

考点:分式方程的应用.

分析:设原计划每天生产x吨,则实际每天生产(x+3)吨,根据实际生产180吨与计划生产120吨所用的时间相同,列方程求解.

解答:解:设原计划每天生产x吨,则实际每天生产(x+3)吨,

由题意得,=,

解得:x=6,

经检验:x=6是原方程的解.

第5篇:期末考试答案范文

7.下列语句正确的是 ()  A. 画直线AB=10厘米 B. 延长射线OA  C. 画射线OB=3厘米 D. 延长线段AB到点C,使得BC=AB8. 泰兴市新区对曾涛路进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.则原有树苗 棵. ()A.100 B.105 C.106 D.111二、填空题:(本大题共10小题,每小题2分,共20分)9. 单项式-2xy的次数为________.10.已知一个一元一次方程的解是2,则这个一元一次方程是 _________ .(只写一个即可)11.若3xm+5y与x3y是同类项,则m= _________ .12.若∠α的余角是38°52′,则∠α的补角为 .13.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于 _________ 14. 在数轴上与-3的距离等于4的点表示的数是_________15.如图所给的三视图表示的几何体是 _________ .

16.在3,-4,5,-6这四个数中,任取两个数相乘,所得的积是 .17. 若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是 .18.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第7幅图中有 _________ 个正方形.

三、解答题(本大题共10小题,共64分,把解答过程写在答题卷相应的位置上,解答时应 写出必要的计算过程、推演步骤或文字说明.)19. (1) (本题4分)计算:(-1)3×(-5)÷[(-3)2+2×(-5)]. (2) (本题4分)解方程: 20.(本题6分)先化简,再求值: 2x2+(-x2-2xy+2y2)-3(x2-xy+2y2),其中x=2,y=-12.

21.(本题 6分)我们定义一种新运算:a*b=2a-b+ab(等号右边为通常意义的运算): (1) 计算:2*(-3)的值; (2) 解方程:3*x= *x. 22.(本题6分)如图,是由若干个完全相同的小正方体组成的一个几何体。⑴ 请画出这个几何体的左视图和俯视图;(用阴影表示) ⑵ 如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?23.(本题6分)如图,线段AB=8cm,C是线段AB上一点,AC=3cm,M是AB的中点,N是AC的中点. (1) 求线段CM的长;(2) 求线段MN的长.

24.(本题6分)(1)小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子. 注意:添加四个符合要求的正方形,并用阴影表示.(2)先用三角板画∠AOB=60°,∠BOC=45°,然后计算∠AOC的度数.

25. (本题6分)小丽和爸爸一起玩投篮球游戏。两人商定规则为:小丽投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,得分刚好相等。小丽投中了几个?

第6篇:期末考试答案范文

一、精心选一选,你一定能行!(每题只有一个正确答案;每题3分,共27分)1. 已知等式3a=2b+5,则下列等式中不一定成立的是()  A. 3a﹣5=2b B. 3a+1=2b+6 C. 3ac=2bc+5 D. a= 2. 要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是()  A. 两点之间,线段最短  B. 两点确定一条直线  C. 线段只有一个中点  D. 两条直线相交,只有一个交点 3. 有一个工程,甲单独做需5天完成,乙单独做需8天完成,两人合做x天完成的工作量()  A. (5+8)x B. x÷(5+8) C. x÷(+) D. (+)x 4. 下列说法正确的是()  A. 射线OA与OB是同一条射线 B. 射线OB与AB是同一条射线  C. 射线OA与AO是同一条射线 D. 射线AO与BA是同一条射线 5. 下列说法错误的是()  A. 点P为直线AB外一点  B. 直线AB不经过点P  C. 直线AB与直线BA是同一条直线  D. 点P在直线AB上 6. 如图是小明用八块小正方体搭的积木,该几何体的俯视图是()  A. B. C. D.  7. 的值与3(1﹣x)的值互为相反数,那么x等于()  A. 9 B. 8 C. ﹣9 D. ﹣8 8. 海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的()  A. 南偏西50° B. 南偏西40° C. 北偏东50° D. 北偏东40° 9. 把10.26°用度、分、秒表示为()  A. 10°15′36″ B. 10°20′6″ C. 10°14′6″ D. 10°26″二、耐心填一填,你一定很棒!(每题3分,共21分)10. 一个角的余角为68°,那么这个角的补角是度. 11. 如图,AB+BC>AC,其理由是. 12. 已知,则2m﹣n的值是. 13. 请你写出一个方程,使它的解也是方程11x﹣2=8x﹣8的解. 14. 已知单项式3amb2与﹣a4bn﹣1的和是单项式,那么m=,n=. 15. 如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的.(把下图中正确的立体图形的序号都填在横线上) 16. “横看成岭侧成峰,远近高低各不同”是从正面、侧面、高处往低处俯视,这三种角度看风景,若一个实物正面看是三角形,侧面看也是三角形,上面看是圆,这个实物是体.三.挑战你的技能17.  18. 已知是方程的根,求代数式的值. 19. 如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线. 20. 某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元? 21. 如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由. 22. 若一个角的补角等于这个角的余角5倍,求这个角;(用度分秒的形式表示)(2)记(1)中的角为∠AOB,OC平分∠AOB,D在射线OA的反向延长线上,画图并求∠COD的度数. 23. 如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小. 24. 某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.(1)请完成下表:第1排座位数 第2排座位数 第3排座位数 第4排座位数 … 第n排座位数12 12+a … (2)若第十五排座位数是第五排座位数的2倍,那么第十五排共有多少个座位?2014-2015学年陕西省安康市白河县七年级(上)期末数学试卷参考答案与试题解析 一、精心选一选,你一定能行!(每题只有一个正确答案;每题3分,共27分)1. 已知等式3a=2b+5,则下列等式中不一定成立的是()  A. 3a﹣5=2b B. 3a+1=2b+6 C. 3ac=2bc+5 D. a=考点: 等式的性质.分析: 利用等式的性质:①等式的两边同时加上或减去同一个数或同一个整式,所得的结果仍是等式;②:等式的两边同时乘以或除以同一个数(除数不为0),所得的结果仍是等式,对每个式子进行变形即可找出答案.解答: 解:A、根据等式的性质1可知:等式的两边同时减去5,得3a﹣5=2b;B、根据等式性质1,等式的两边同时加上1,得3a+1=2b+6;D、根据等式的性质2:等式的两边同时除以3,得a=;C、当c=0时,3ac=2bc+5不成立,故C错.故选:C.点评: 本题主要考查了等式的基本性质,难度不大,关键是基础知识的掌握. 2. 要在墙上固定一根木条,小明说只需要两根钉子,这其中用到的数学道理是()  A. 两点之间,线段最短  B. 两点确定一条直线  C. 线段只有一个中点  D. 两条直线相交,只有一个交点考点: 直线的性质:两点确定一条直线.分析: 根据概念利用排除法求解.解答: 解:经过两个不同的点只能确定一条直线.故选B.点评: 本题是两点确定一条直线在生活中的应用,数学与生活实际与数学相结合是数学的一大特点. 3. 有一个工程,甲单独做需5天完成,乙单独做需8天完成,两人合做x天完成的工作量()  A. (5+8)x B. x÷(5+8) C. x÷(+) D. (+)x考点: 列代数式.分析: 根据工作效率×工作时间=工作总量等量关系求出结果.解答: 解:甲的工作效率是,乙的工作效率是,工作总量是1,两人合做x天完成的工作量是(+)x.故选D.点评: 列代数式的关键是正确理解文字语言中的关键词,找到其中的数量关系,注意工作总量是1. 4. 下列说法正确的是()  A. 射线OA与OB是同一条射线 B. 射线OB与AB是同一条射线  C. 射线OA与AO是同一条射线 D. 射线AO与BA是同一条射线考点: 直线、射线、线段.分析: 根据射线的概念,对选项一一分析,排除错误答案.解答: 解:A、射线OA与OB是同一条射线,选项正确;B、AB是直线上两个点和它们之间的部分,是线段不是射线,选项错误;C、射线OA与AO是不同的两条射线,选项错误;D、BA是直线上两个点和它们之间的部分,是线段不是射线,选项错误.故选A.点评: 考查射线的概念.解题的关键是熟练运用概念. 5. 下列说法错误的是()  A. 点P为直线AB外一点  B. 直线AB不经过点P  C. 直线AB与直线BA是同一条直线  D. 点P在直线AB上考点: 直线、射线、线段.分析: 结合图形,对选项一一分析,选出正确答案.解答: 解:A、点P为直线AB外一点,符合图形描述,选项正确;B、直线AB不经过点P,符合图形描述,选项正确;C、直线AB与直线BA是同一条直线,符合图形描述,选项正确;D、点P在直线AB上应改为点P在直线AB外一点,选项错误.故选D.点评: 考查直线、射线和线段的意义.注意图形结合的解题思想. 6. 如图是小明用八块小正方体搭的积木,该几何体的俯视图是()  A. B. C. D.考点: 简单组合体的三视图.分析: 找到从上面看所得到的图形即可.解答: 解:从上面看可得到从上往下2行的个数依次为3,2.故选D.点评: 本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 7. 的值与3(1﹣x)的值互为相反数,那么x等于()  A. 9 B. 8 C. ﹣9 D. ﹣8考点: 一元一次方程的应用.专题: 数字问题.分析: 互为相反数的两个数的和等于0,根据题意可列出方程.解答: 解:根据题意得:2(x+3)+3(1﹣x)=0,解得,x=9.那么x等于9.故选A.点评: 解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解. 8. 海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的()  A. 南偏西50° B. 南偏西40° C. 北偏东50° D. 北偏东40°考点: 方向角.分析: 根据方向角的定义即可判断.解答: 解:海面上灯塔位于一艘船的北偏东40°的方向上,那么这艘船位于灯塔的南偏西40°.故选B.点评: 本题主要考查了方向角的定义,正确理解定义是关键. 9. 把10.26°用度、分、秒表示为()  A. 10°15′36″ B. 10°20′6″ C. 10°14′6″ D. 10°26″考点: 度分秒的换算.专题: 计算题.分析: 两个度数相加,度与度,分与分对应相加,分的结果若满60,则转化为度.度、分、秒的转化是60进位制.解答: 解:0.26°×60=15.6′,0.6′×60=36″,10.26°用度、分、秒表示为10°15′36″.故选A.点评: 此类题是进行度、分、秒的加法、减法计算,相对比较简单,注意以60为进制即可. 二、耐心填一填,你一定很棒!(每题3分,共21分)10. 一个角的余角为68°,那么这个角的补角是 158 度.考点: 余角和补角.专题: 计算题.分析: 先根据余角的定义求出这个角的度数,进而可求出这个角的补角.解答: 解:由题意,得:180°﹣(90°﹣68°)=90°+68°=158°;故这个角的补角为158°.故答案为158°.点评: 此题属于基础题,主要考查余角和补角的定义. 11. 如图,AB+BC>AC,其理由是 两点之间线段最短 .

考点: 线段的性质:两点之间线段最短.分析: 由图A到C有两条路径,知最短距离为AC.解答: 解:从A到C的路程,因为AC同在一条直线上,两点间线段最短.点评: 本题主要考查两点之间线段最短. 12. 已知,则2m﹣n的值是 13 .考点: 非负数的性质:偶次方;非负数的性质:绝对值.分析: 本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”列出方程求出m、n的值,代入所求代数式计算即可.解答: 解:;3m﹣12=0,+1=0;解得:m=4,n=﹣5;则2m﹣n=2×4﹣(﹣5)=13.点评: 本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0. 13. 请你写出一个方程,使它的解也是方程11x﹣2=8x﹣8的解 x+2=0(答案不) .考点: 同解方程.专题: 开放型.分析: 根据题意首先求出方程11x﹣2=8x﹣8的解x=﹣2,然后再写出一个解为x=﹣2的方程即可.解答: 解:11x﹣2=8x﹣8移项得:11x﹣8x=﹣8+2合并同类项得:3x=﹣6系数化为1得:x=﹣2,解为x=﹣2的一个方程为x+2=0.点评: 本题是一道开放性的题目,写一个和已知方程的解相同的方程,答案不. 14. 已知单项式3amb2与﹣a4bn﹣1的和是单项式,那么m= 4 ,n= 3 .考点: 合并同类项.专题: 应用题.分析: 本题是对同类项定义的考查,同类项的定义是所含有的字母相同,并且相同字母的指数也相同的项叫同类项,只有同类项才可以合并的.由同类项的定义可求得m和n的值.解答: 解:由同类项定义可知:m=4,n﹣1=2,解得m=4,n=3,故答案为:4;3.点评: 本题考查了同类项的定义,只有同类项才可以进行相加减,而判断同类项要一看所含有的字母是否相同,二看相同字母的指数是否相同,难度适中. 15. 如图,一个立体图形由四个相同的小立方体组成.图1是分别从正面看和从左面看这个立体图形得到的平面图形,那么原立体图形可能是图2中的 ①②④ .(把下图中正确的立体图形的序号都填在横线上)

考点: 由三视图判断几何体.专题: 压轴题.分析: 根据图1的正视图和左视图,可以判断出③是不符合这些条件的.因此原立体图形可能是图2中的①②④.解答: 解:如图,主视图以及左视图都相同,故可排除③,因为③与①②④的方向不一样,故选①②④.点评: 本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置. 16. “横看成岭侧成峰,远近高低各不同”是从正面、侧面、高处往低处俯视,这三种角度看风景,若一个实物正面看是三角形,侧面看也是三角形,上面看是圆,这个实物是 圆锥 体.考点: 由三视图判断几何体.分析: 主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.解答: 解:俯视图是圆的有球,圆锥,圆柱,从正面看是三角形的只有圆锥.点评: 考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 三.挑战你的技能17.考点: 解一元一次方程.专题: 计算题.分析: 将方程去分母,去括号,然后将方程移项,合并同类项,系数化为1,即可求解.解答: 解:去分母,得3(x+4)+15=15x﹣5(x﹣5)去括号,得3x+12+15=15x﹣5x+25移项,合并同类项,得﹣7x=﹣2系数化为1,得x=.点评: 此题主要考查学生对解一元一次方程的理解和掌握,此题难度不大,属于基础题. 18. 已知是方程的根,求代数式的值.考点: 一元一次方程的解;整式的加减—化简求值.专题: 计算题.分析: 此题分两步:(1)把代入方程,转化为关于未知系数m的一元一次方程,求出m的值;(2)将代数式化简,然后代入m求值.解答: 解:把代入方程,得:﹣=,解得:m=5,原式=﹣m2﹣1=﹣26.点评: 本题计算量较大,求代数式值的时候要先将原式化简. 19. 如图,货轮O在航行过程中,发现灯塔A在它南偏东60°的方向上,同时,在它北偏东40°,南偏西10°,西北(即北偏西45°)方向上又分别发现了客轮B,货轮C和海岛D,仿照表示灯塔方位的方法画出表示客轮B,货轮C和海岛D方向的射线.

考点: 方向角.分析: 根据方位角的概念,画图正确表示出方位角,即可求解.解答: 解:根据题意作图即可.点评: 解答此类题需要从运动的角度,正确画出方位. 20. 某商品的售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获利10%,此商品的进价是多少元?考点: 一元一次方程的应用.专题: 销售问题.分析: 设进价为x元,依商店按售价的9折再让利40元销售,此时仍可获利10%,可得方程式,求解即可得答案.解答: 解:设进价为x元,依题意得:900×90%﹣40﹣x=10%x,整理,得770﹣x=0.1x解之得:x=700答:商品的进价是700元.点评: 应识记有关利润的公式:利润=销售价﹣成本价. 21. 如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点.(1)求线段MN的长;(2)若C为线段AB上任一点,满足AC+CB=acm,其它条件不变,你能猜想MN的长度吗?并说明理由.考点: 比较线段的长短.专题: 计算题.分析: (1)根据“点M、N分别是AC、BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度;(2)与(1)同理,先用AC、BC表示出MC、CN,MN的长度就等于AC与BC长度和的一半.解答: 解:(1)点M、N分别是AC、BC的中点,CM=AC=4cm,CN=BC=3cm,MN=CM+CN=4+3=7cm;(2)同(1)可得CM=AC,CN=BC,MN=CM+CN=AC+BC=(AC+BC)=a.点评: 本题主要利用线段的中点定义,线段的中点把线段分成两条相等的线段. 22. 若一个角的补角等于这个角的余角5倍,求这个角;(用度分秒的形式表示)(2)记(1)中的角为∠AOB,OC平分∠AOB,D在射线OA的反向延长线上,画图并求∠COD的度数.考点: 余角和补角;角平分线的定义;角的计算.专题: 作图题.分析: 首先根据余角与补角的定义,设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x),再根据题中给出的等量关系列方程即可求解.解答: 解:(1)设这个角为x,则它的余角为(90°﹣x),补角为(180°﹣x);根据题意可得:(180°﹣x)=5(90°﹣x)解得x=67.5°,即x=67°30′.故这个角等于67°30′;(2)如图:∠AOB=67.5°,OC平分∠AOB,则∠AOC=×67.5°=33.75°;∠COD与∠AOC互补,故∠COD=180°﹣33.75°=146.25°,即146°15′.点评: 此题综合考查余角与补角,属于基础题中较难的题,解答此类题一般先用未知数表示所求角的度数,再根据一个角的余角和补角列出代数式和方程求解. 23. 如图,∠AOB=110°,∠COD=70°,OA平分∠EOC,OB平分∠DOF,求∠EOF的大小.

考点: 角平分线的定义.专题: 计算题.分析: 由∠AOB=110°,∠COD=70°,易得∠AOC+∠BOD=40°,由角平分线定义可得∠AOE+∠BOF=40°,那么∠EOF=∠AOB+∠AOE+BOF.解答: 解:∠AOB=110°,∠COD=70°∠AOC+∠BOD=∠AOB﹣∠COD=40°OA平分∠EOC,OB平分∠DOF∠AOE=∠AOC,∠BOF=∠BOD∠AOE+∠BOF=40°∠EOF=∠AOB+∠AOE+∠BOF=150°.故答案为:150°.点评: 解决本题的关键利用角平分线定义得到所求角的两边的角的度数. 24. 某校的一间阶梯教室,第1排的座位数为12,从第2排开始,每一排都比前一排增加a个座位.(1)请完成下表:第1排座位数 第2排座位数 第3排座位数 第4排座位数 … 第n排座位数12 12+a  12+2a   12+3a  …  12+(n﹣1)a (2)若第十五排座位数是第五排座位数的2倍,那么第十五排共有多少个座位?考点: 规律型:图形的变化类.分析: (1)根据已知即可表示出各排的座位数;(2)根据第15排座位数是第5排座位数的2倍列等式,从而可求得a的值,再根据公式即可求得第15排的座位数.解答: 解:(1)如表所示:第1排座位数 第2排座位数 第3排座位数 第4排座位数 … 第n排座位数12 12+a 12+2a 12+3a … 12+(n﹣1)a(2)依题意得:12+(15﹣1)a=2[12+(5﹣1)a],解得:a=2,12+(15﹣1)a=12+(15﹣1)×2=40(个)答:第十五排共有40个座位.点评: 此题主要考查学生对规律型题的掌握情况,注意找出规律,进一步利用规律解决问题.

第7篇:期末考试答案范文

7.下列语句正确的是 ()  A. 画直线AB=10厘米 B. 延长射线OA  C. 画射线OB=3厘米 D. 延长线段AB到点C,使得BC=AB8. 泰兴市新区对曾涛路进行绿化,计划把某一段公路的一侧全部栽上桂花树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.则原有树苗 棵. ()A.100 B.105 C.106 D.111二、填空题:(本大题共10小题,每小题2分,共20分)9. 单项式-2xy的次数为________.10.已知一个一元一次方程的解是2,则这个一元一次方程是 _________ .(只写一个即可)11.若3xm+5y与x3y是同类项,则m= _________ .12.若∠α的余角是38°52′,则∠α的补角为 .13.若x=2是关于x的方程2x+3m﹣1=0的解,则m的值等于 _________ 14. 在数轴上与-3的距离等于4的点表示的数是_________15.如图所给的三视图表示的几何体是 _________ .

16.在3,-4,5,-6这四个数中,任取两个数相乘,所得的积是 .17. 若∠1+∠2=90°,∠2+∠3=90°,则∠1=∠3.理由是 .18.如图,每一幅图中均含有若干个正方形,第1幅图中有1个正方形;第2幅图中有5个正方形;…按这样的规律下去,第7幅图中有 _________ 个正方形.

三、解答题(本大题共10小题,共64分,把解答过程写在答题卷相应的位置上,解答时应 写出必要的计算过程、推演步骤或文字说明.)19. (1) (本题4分)计算:(-1)3×(-5)÷[(-3)2+2×(-5)]. (2) (本题4分)解方程: 20.(本题6分)先化简,再求值: 2x2+(-x2-2xy+2y2)-3(x2-xy+2y2),其中x=2,y=-12.

21.(本题 6分)我们定义一种新运算:a*b=2a-b+ab(等号右边为通常意义的运算): (1) 计算:2*(-3)的值; (2) 解方程:3*x= *x. 22.(本题6分)如图,是由若干个完全相同的小正方体组成的一个几何体。⑴ 请画出这个几何体的左视图和俯视图;(用阴影表示) ⑵ 如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的俯视图和左视图不变,那么最多可以再添加几个小正方体?23.(本题6分)如图,线段AB=8cm,C是线段AB上一点,AC=3cm,M是AB的中点,N是AC的中点. (1) 求线段CM的长;(2) 求线段MN的长.

24.(本题6分)(1)小强用5个大小一样的正方形制成如图所示的拼接图形(阴影部分),请你在图中的拼接图形上再接一个正方形,使新拼接成的图形经过折叠后能成为一个封闭的正方体盒子. 注意:添加四个符合要求的正方形,并用阴影表示.(2)先用三角板画∠AOB=60°,∠BOC=45°,然后计算∠AOC的度数.

25. (本题6分)小丽和爸爸一起玩投篮球游戏。两人商定规则为:小丽投中1个得3分,爸爸投中1个得1分,结果两人一共投中了20个,得分刚好相等。小丽投中了几个?

第8篇:期末考试答案范文

一、选择题:(本大题共10题,每小题3分,满分30分.)

1.下列计算中,正确的是 ………………………………………………………… ( )

A.3+2=5 B.3×2=6 C. 8÷2=4 D.12-3=3

2.三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,则这个三角形的周长是…………………………………………………………………………( )

A. 9 B. 11 C. 13 D.11或13

3.下列说法中,正确的是……………………………………………………………( )

A.一个游戏中奖的概率是110,则做10次这样的游戏一定会中奖

B.为了了解一批炮弹的杀伤半径,应采用全面调查的方式

C.一组数据8,8,7,10,6,8,9的众数和中位数都是8

D.若甲组数据的方差是0.1,乙组数据的方差是0.2,则乙组数据比甲组数据波动小

4.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x米,则可列方程为………………………………………………………… ( )

A.x(x-10)=200 B.2x+2(x-10)=200

C.x(x+10)=200 D.2x+2(x+10)=200

5.一个圆锥的母线长是底面半径的2倍,则侧面展开图扇形的圆心角是…… ( )

A.60° B.90° C.120° D.180°

6.如图,已知直角梯形的一条对角线把梯形分为一个直角三角形和一个边长为8cm的等边三角形,则梯形的中位线长为 ……………………( )

A.4cm B.6cm C.8cm D.10cm

7.顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是………………………………………………………………………………… ( )

A.菱形 B.对角线互相垂直的四边形

C.矩形 D.对角线相等的四边形

8.如图,抛物线y=ax2+bx+c交x轴于(-1,0)、(3,0)两点,则下列判断中,错误的是 ……………………………………………… ( )

A.图象的对称轴是直线x=1

B.当x>1时,y随x的增大而减小

C.一元二次方程ax2+bx+c=0的两个根是-1和3

D.当-1

9.如图,正方形ABCD的边长为4cm,动点P、Q同时从点A出发,以1cm/s的速度分别沿ABC和ADC的路径向点C运动,设运动时间为x(单位:s),四边形PBDQ的面积为y(单位:cm2),则y与x(0≤x≤8)之间的函数关系可用图象表示为…… ( )

A. B. C. D.

10.如图,直线y=33x+3与x轴、y轴分别相交于A、B两点,圆心P的坐标为(1,0),P与y轴相切于点O.若将P沿x轴向左移动,当P与该直线相交时,满足横坐标为整数的点P的个数是………………………………………( )

A.3 B.4 C.5 D.6二、填空题(本大题共8小题,共11空,每空2分,共22分.)

11.若二次根式2-x在实数范围内有意义,则实数x的取值范围是 .

12.若关于x的方程x2-5x+k=0的一个根是0,则另一个根是 .

13.已知一个矩形的对角线的长为4,它们的夹角是60°,则这个矩形的较短的边长为 ,面积为 .

14.一组数据1,1,x,3,4的平均数为3,则x表示的数为 ________,

这组数据的极差为_______.

15.已知扇形的圆心角为150°,它所对应的弧长20πcm,

则此扇形的半径是_________cm,面积是_________cm2.

16.一个宽为2 cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是

“2”和“1(单位:cm),那么该光盘的直径为_________cm.

17.如图,四边形OABC为菱形,点B、C在以点O为圆心的 ⌒EF上,若OA=1cm,∠1=∠2,则 ⌒EF的长为____________cm.

18.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=x23(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEAB= .

三、解答题(本大题共有9小题,共78分)

19.计算(每小题4分,共8分)

(1)(27-12+45)×13; (2)(2-3)2+18÷3.

20.解方程(每小题4分,共8分)

(1) x2-4x+2=0; (2)2(x-3)=3x(x-3).

21.(本题满分6分)将背面完全相同,正面上分别写有数字1、2、3、4的四张卡片混合后,小明从中随机地抽取一张,把卡片上的数字作为被减数,将形状、大小完全相同,分别标有数字1、2、3的三个小球混合后,小华从中随机地抽取一个,把小球上的数字作为减数,然后计算出这两个数的差.

(1)请你用画树状图或列表的方法,求这两数差为0的概率;

(2)小明与小华做游戏,规则是:若这两数的差为非负数,则小明赢;否则,小华赢.你认为该游戏公平吗?请说明理由.如果不公平,请你修改游戏规则,使游戏公平.

22.(本题6分)已知O1经过A(-4,2)、B(-3,3)、C(-1,-1)、O(0,0)四点,一次函数y=-x-2的图象是直线l,直线l与y轴交于点D.

(1)在右边的平面直角坐标系中画出直线l,则直线l与O1的交点坐标为 ;

(2)若O1上存在点P,使得APD为等腰三角形,则这样的点P有 个,试写出其中一个点P坐标为 .

23.(本题8分)如图,四边形ABCD中,AB∥CD,AC平分∠BAD,过C作CE∥AD交AB于E.

(1)求证:四边形AECD是菱形;

(2)若点E是AB的中点,试判断ABC的形状,并说明理由.

24.(本题10分)如图,AB是O的直径,C、D在O上,连结BC,过D作PF∥AC交AB于E,交O于F,交BC于点G,且∠BPF=∠ADC.

(1)判断直线BP与O的位置关系,并说明理由;

(2)若O的半径为5,AC=2,BE=1,求BP的长.25.(本题10分)某商场购进一批单价为16元的日用品.若按每件23元的价格销售,每月能卖出270件;若按每件28元的价格销售,每月能卖出120件;若规定售价不得低于23元,假定每月销售件数y(件)与价格x(元/件)之间满足一次函数.

(1)试求y与x之间的函数关系式.

(2)在商品不积压且不考虑其他因素的条件下,销售价格定为多少时,才能使每月的毛利润w?每月的毛利润为多少?

(3)若要使某月的毛利润为1800元,售价应定为多少元?

26.(本题10分) 如图,在矩形OABC中,OA=8,OC=4,OA、OC分别在x轴与y轴上,D为OA上一点,且CD=AD.

(1)求点D的坐标;

(2)若经过B、C、D三点的抛物线与x轴的另一个交点为E,请直接写出点E的坐标;

(3)在(2)中的抛物线上位于x轴上方的部分,是否存在一点P,使PBC的面积等于梯形DCBE的面积?若存在,求出点P的坐标,若不存在,请说明理由.

27.(本题12分)如图,抛物线y=49x2-83x-12与x轴交于A、C两点,与y轴交于B点.

(1)求AOB的外接圆的面积;

(2)若动点P从点A出发,以每秒2个单位沿射线AC方向运动;同时,点Q从点B出发,以每秒1个单位沿射线BA方向运动,当点P到达点C处时,两点同时停止运动。问当t为何值时,以A、P、Q为顶点的三角形与OAB相似?

(3)若M为线段AB上一个动点,过点M作MN平行于y轴交抛物线于点N.

①是否存在这样的点M,使得四边形OMNB恰为平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.

②当点M运动到何处时,四边形CBNA的面积?求出此时点M的坐标及四边形CBAN面积的值.初三数学参考答案与评分标准

一、选择题

1.D 2.C 3.C 4.C 5.D 6.B 7.B 8.D 9.B 10.A

二、填空题

11.x≤2 12.5 13.2,43 14.6 5 15.24,240π 16.10 17.2π3 18.3-3

三、解答题

19.(1)原式=9-4+15 ……3分 (2)原式=2-26+3+6 ………2分

=3-2+15 =5-6. ………………4分

=1+15 …………4分

20.方法不作要求,只要计算正确,都给分。

(1)(x-2)2=2 ………………2分 (2)(x-3)(2-3x)=0 ……………2分

x-2=±2 ……………3分 x-3=0或2-3x=0…………3分

x=2±2

x1=2+2,x2=2-2.……4分 x1=3,x2=23.………………4分

21.(1)树状图或表格略 …………………………………………………………………2分

P(两数差为0)= 14 ……………………………………………………………………… 3分

(2)P(小明赢)=34,P(小华赢)=14 ,P(小明赢)>P(小华赢),不公平. ……………………5分

修改游戏规则只要合理就得分 …………………………………………………………6分

22.(1)正确画出直线l………………………………………………………………………2分

(-4,2),(-1,1) …………………………………………………………4分

(2)3;(-3,-1)或(0,2)(写出一个即可;讲评时,三个点都找出) ……6分

23.(1)AB∥CD, CE∥AD,四边形AECD是平行四边形.………………………2分

CE∥AD,∠ACE=∠CAD. …………………………………………………3分

AC平分∠BAD,∠CAE=∠CAD.∠ACE=∠CAE,AE=CE.

四边形AECD是菱形. …………………………………………………………4分

(2)(判断)ABC是直角三角形. …………………………………………………5分

证法一:AE=CE,AE=BE,BE=CE,∠B=∠BCE, ……………………6分

∠B+∠BCA+∠BAC=180º,

2∠BCE+2∠ACE=180º,∠BCE+∠ACE=90º,即∠ACB=90º. ……………7分

ABC是直角三角形. …………………………………………………………………8分

证法二:连DE,则DEAC,且DE平分AC.…………………………………………6分

设DE交AC于F.又E是AB的中点,EF∥BC, …………………………………7分

BCAC,ABC是直角三角形. …………………………………………………8分

24.(1)BP与O相切. ……………………………………………………………………1分理由如下:

AB是O的直径

∠ACB=90即ACBC.…………………………………………………………………2分

PF∥AC, ∠CAB=∠PEB. ………………………………………………………3分

∠ADC=∠ABC, ∠BPF=∠ADC,∠ABC=∠BPF.……………………………4分

ABC∽EPB……………………………………………………………………………5分

∠PBE=∠ACB=90°, PBOB.…………………………………………………6分

BP与O相切. …………………………………………………………………………7分

(2)RtABC中,AC=2,AB=25,BC=4.…………………………………………8分

ABC∽EPB,BCAC=BPBE.…………………………………………………………9分

42=BP1,BP=2. ……………………………………………………………………10分

25.(1)设y=kx+b,把(23,270)、(28,120)代入… …………………………………………1分

解得y=-30x+960 ……… ………… …………………………………………………2分

(2)w=(x-16)(-30x+960) ………………………………………………………………4分

w=-30(x-24)2+1920 ,当x=24时,w有值1920 …………………………………6分

销售价格定为24元时,才能使每月的毛利润,毛利润为1920元. … 7分

第9篇:期末考试答案范文

下列选项中对物理量的估测较接近事实的是( )A.初中物理课本的长约为10cmB.初中生跑完50米所用时间为9秒C.一个鸡蛋的质量约为50gD.初中生对地面的压力约为50N2.水是一种资源,也是一种能源.古代劳动人民巧妙地利用水来开山采石;冬季,在白天给石头打一个洞,再往洞里灌满水并封实,待晚上降温,水结冰后石头就裂开了(冰的密度比水的小).下列有关说法正确的是( )A.石头裂开后密度减小B.石头裂开后密度增大C.该方法利用水结冰后质量变大,体积增大而使石头裂开D.该方法利用水结冰后质量不变,体积增大而使石头裂开3.关于粒子和宇宙,下列说法正确的是( )A.水和酒精混合后总体积变小,直接证明了分子间存在引力B.摩擦起电是通过摩擦的方法创造 了电荷C.卢瑟福根据实验建 立了原子的核式结构模型D.宇宙是一个有层次的天体结构,恒星是绝对不动的4.下列事例中,不可以用静电知识解释的是( )A.干燥的季节,夜晚脱毛衣时会冒“火花”B.电工用的钢丝钳柄上套有橡胶套C.电视机屏幕上经常吸附有很多灰尘D.油罐车尾部有一条拖到地面上的铁链5.用大小不变的水平力,拉木块在水平桌面上做匀速直线运动,如图所示.木块在运动过程中,下列说法正确的是( ) A.木块对桌面的压力和木块受到的重力是一对平衡力B.绳对木块的拉力大于桌面对木块的摩擦力C.绳对木块的拉力和木块对绳的拉力是一对平衡力D.木块受到的滑动摩擦力大小保持不变6.下列说法中正确的是( )A.踢出去的足球,能继续向前滚动,是因为足球受到的惯性的作用B.物体不受力的作用时,一定保持静止状态C.静止在书桌上的书所受重力与它对书桌的压力是一对平衡力D.用桨向后划水,船就会向前运动,利用了力的作用是相互的7.对下列四幅图情景描述错误的是( ) A.图甲中用电吹风向下吹漏斗中的乒兵球,球不掉落,表明气体压强与气体流速有关B.图乙中纸片不掉落、杯中的水不流出,证明了大气压的存在C.图丙中手提袋手柄宽大是为了减小对手的压强D.图丁中鱼吐出的气泡在上升未露出水面前,水对气泡的压强变小,浮力不变8.踢毽子是人们喜爱的一项体育活动。脚将毽子踢出后,下列说法正确的是( )A.毽子飞行过程中受到重力和脚对它的踢力;B.毽子向上运动过程中,受到平衡力C.毽子能继续向上运动是由于毽子具有惯性;D.由于惯性,毽子下落过程中会越来越快。9. 分别由甲、乙两种物质组成的不同物体,其质量与体积的关系如图所示.分析图象可知错误的是( )A.质量是30g的甲的体积为7.5cm3B.两种物质的密度大小关系为ρ甲﹥ρ乙C.两种物质的密度之比ρ甲:ρ乙为4:1D.体积为40 cm3的乙的质量为20g10.在自制简易密度的活动中,小明在一支平底试管内装入适量铁砂,然后先后放入装有甲、乙两种不同液体的烧杯里,如图所示,下列说法正确的是:( ) A.试管在甲液体中受到的浮力较大B.试管在乙液体里排开的液体质量较小C.乙烧杯中的液体密度比甲烧杯中的液体密度大D.在甲液体中试管底部所受液体压力较大11.有一未装满酸奶的瓶子如图,先正立在桌面上,然后在倒立在桌面上,则酸奶对容器底的作用情况是( ) A.压强增大,压力 减小 B.压强减小,压力减小C.压强增大,压力增大 D.压强减小,压力增大12.甲、乙两种物质的质量和体积关系如图所示,如分别用甲、乙两种物质制成体积相等的两实心物体a和b,放在水中静止后,则( ) A.a漂浮,a受浮力大于b B.b漂浮,b受浮力大于aC.a 沉底,a受浮力大于b D.b沉底,b受浮力大于a填空与作图题(共计29分)13.在抗洪抢险中,解放军战士穿的救生背心,夹层里面填充的是泡沫塑料块,这是利用它的 ____小;汽车轮胎用橡胶做成,这是利用了橡胶的____ 好。14.各种原子都有相似的结构,如图所示为原子结构模型,原子中心的原子核由____和中子构成,其周围有带__电荷的____绕核运动.15.我国名酒五粮液素有“三杯下肚浑身爽,一滴沾唇满口香”的赞誉,曾经获得世博会两届金奖.有一种精品五粮液,它的包装盒上标明容量500mL,(ρ酒=0.9×103 kg/m3),则它所装酒的质量为____kg,将酒倒出一半以后,剩余酒的密度为___g/cm3;如果用此瓶装满水,则总质量比装满酒时多___kg.16.如图A所示,在一端开口的玻璃管中倒入一半水然后再注入一半的酒精,将管口密封后翻转让水和酒精充分混合,可以观察到混合液的体积___(选填“大于”、“小于”或“等于”)水和酒精的总体积,这一现象说明了____________。如图B所示,分别在热水和冷水中滴入相同的红墨水,可以看到_____水瓶中墨水扩散的快,这说明___ __跟温度有关。 用胶头滴管吸取化学药液时,先用手捏胶头排出里面的空气,松手后药液在____的作用下进入滴管;有些饮料瓶,其塑料盖的外缘有竖条纹,制作这些条纹的目的是____。18.如图所示,用F=50N的力将质量为1kg、边长为10cm的物体紧压在竖直的墙壁上,若该物体匀速下滑,则该物体受到竖直墙壁的摩擦力是____N,该物体对竖直墙壁的压强是 ____Pa.(g取10 N/kg) 19.用酒精灯给烧瓶里的水加热,水沸腾后移去酒精灯,水立即停止沸腾.接着就将烧瓶倒立安放到如图所示的铁架台上,再用冷水浇,会观察到烧瓶内的水____,这个现象说明____________.20.在玻璃瓶里装一些红色的水,取一根两端开口的细玻璃管,让玻璃管穿过橡皮塞插入水中,并从管子上端吹入部分气体,这样小明就制成了一个简易的多功能物理实验演示器.当把此装置从山脚带到山顶时,发现玻璃管内液面 ____(升高/降低/不变),原因是大气压随高度的增大而 ____(升高/降低);取一吸管,靠近玻璃管口,通过吸管向右吹气,如图所示,发现玻璃管内液面上升,原因是____________。21.羽毛球撞击球拍被弹回去,使羽毛球弹回去的力是由于球拍发生了_________而产生的,羽毛球撞击后方向改变,这说明________________________________。22.我国的航母正按计划进行各项科研试验和训练,如 图所示,是中国航母训练时的图片。当停在航母上的飞机起飞离开航母后 ,航母受到的浮力将 ____(选填“增大”、“ 减小”或“不变”),航母在海面上将 ____(选填“上浮”、“ 下沉”或“不变”)。.23.(1)一物体静止在斜面上,请在图中作出物体受到的重力和对斜面的压力的示意图。(2)图为小球静止在水中,请在图中画出小球受到的浮力.

三.实验题 (每空1分,共计21分) 24.根据图片完成填空

图a中,用鼻子嗅气味来鉴别酱油和醋说明分子在_____________________图b中,验电器的原理是同种电荷相互_____________________图c中,铁钉在石蜡上留下了深深的划痕,利用这种方法可以比较物质的_________图d中,小华用力推小明,小华自己也将运动,说明_____________________25.用以下器材:足够的待测液体,带砝码的托盘天平,一个空玻璃杯,足够的水,测量某液体的密度。请将以下实验步骤补充完整: (1)用天平称出空玻璃杯的质量为150g;往玻璃杯中倒满水,用天平测出玻璃杯和水的总质量为200g,求出玻璃杯的容积为 cm3;(2)将水全部倒出,再注满待测液体,待天平平衡后,右盘中的砝码和标尺上的游码如图所示,则待测液体的质量为 g;(3)用密度公式计算出待测液体的密度为 kg/m3;(4)在实验的 过程中,下列做法可能会引起实验误差的是 A.天平应该水平放置B.天平使用前要调节平衡螺母使横梁平衡C.先测盛满水的杯子总质量,倒出水后,再测空玻璃杯的质量26.某同学为了参加中考体育考试,想测试一下橡胶底和牛筋底的运动鞋哪双摩擦力更大。(1)如图甲所示,他首先用弹簧测力计水平拉动橡胶底运动鞋在水平桌面上做________运动,此时弹簧测力计的示数为______¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬__N,再利用____________知识得出拉力等于摩擦力。从而测出鞋底所受摩擦力的大小。(2)他发现牛筋底的运动鞋较轻些,于是便向鞋中添加了适量的砝码,目的是__________________________________________________________。 (3)另一同学采用如图乙的方法测试两双运动鞋鞋底的摩擦力,她将鞋放在水平放置的木板上,将弹簧测力计固定,改为拉动木板,实验时___________(“需要”或“不需要”)匀速拉动木板,鞋所受到的摩擦力的方向为______________。 27.如图为小明“探究液体内部压强的特点”的实验过程图:(1)小明首先用手指按了按探头的橡皮膜,发现U型管内液柱几乎无变化,其原因是__,然后小 明重新调整好器材,继续实验;(2)比较图A、图B、图C,得出结论: _;(3)将图A中的探头逐渐下移,可观观察到U型管内液柱的高度差逐渐变大,得出结论:同种液体, ;(4)向图B中的容器内加入一定量的浓盐水,为使探头在液体中的深度与加盐水前的深度相同,应将探头位置(选填“上移”、“下移”或“不变”),并且观察到U型管内液柱的高度差变大,可得出结论:同一深度, ;(5)小明又想探究一下浮力大小与液体密度的关系,于是他找来了一个木块,分别放入了装有水和装有盐水的容器中,发现两次木块都漂浮在液面上,浮力都等于木块的重力,浮力相等,所以他得出结论:浮力大小与液体密度无关,他得出的结论是否正确?,原因是___. 四.综合计算题(共计14分)28.一辆10t的汽车在水平路面匀速直线运动,已知汽车所受的阻力是汽车本身重力的0.02倍,g取10N/kg,求:(1)汽车受的重力G;(2)汽车的牵引力

29.如图所示,水平地面上放置有甲乙两个完全相同的质量均为200g的圆柱形容器,容器的底面积均为50cm2,甲中装有深为10cm的水,乙中装有深为12cm的酒精,(已知ρ水=1.0×103kg/m3;ρ酒精=0.8×103kg/m3,g取10N/kg) 求:(1)水对容器底的压强(2)容器乙对地面的压强

30.如图所示,是小鹰同学测量某种液体密度的过程,请你裉据实验数据,求:(1)小石块的质量;(2)小石块的体积;液体的密度.(g取10N/kg) 选择题序号 1 2 3 4 5 6 7 8 9 10 11 12答案 C D C B D D D C C C A C填空与作图题13. 密度 弹性14. 质子 负 电子15. 0.45 0.9 0.05小于 分子间有空隙 热 分子 热运动快慢大气压 增大摩擦10 5000重新沸腾 液体沸点随着气压的降低而降低降低 降低 流体流速大的地方压强小弹性形变 力可以改变物体的运动状态减小 上浮23. 图略实验题(1)永不停息做无规则运动 (2)排斥硬度 (4)力的作用是相互的(1)50 (2)41 (3)0.82*103 (4) C (1)匀速直线 4.0 二力平衡 (2)控制两双鞋对地面的压力相同不需要 水平向左(1)漏气 (2)同种液体同一深度向各个方向的压强相等深度越深,压强越大 (4) 上移 液体密度越大,压强越大不正确 没有控制排开液体体积相同综合计算105N,2*103N1000Pa,1360Pa0.3kg,10-4m3,0.8*103kg/m3

相关热门标签