前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的纳米化学论文主题范文,仅供参考,欢迎阅读并收藏。
1、各国竞相出台纳米科技发展战略和计划
由于纳米技术对国家未来经济、社会发展及国防安全具有重要意义,世界各国(地区)纷纷将纳米技术的研发作为21世纪技术创新的主要驱动器,相继制定了发展战略和计划,以指导和推进本国纳米科技的发展。目前,世界上已有50多个国家制定了国家级的纳米技术计划。一些国家虽然没有专项的纳米技术计划,但其他计划中也往往包含了纳米技术相关的研发。
(1)发达国家和地区雄心勃勃
为了抢占纳米科技的先机,美国早在2000年就率先制定了国家级的纳米技术计划(NNI),其宗旨是整合联邦各机构的力量,加强其在开展纳米尺度的科学、工程和技术开发工作方面的协调。2003年11月,美国国会又通过了《21世纪纳米技术研究开发法案》,这标志着纳米技术已成为联邦的重大研发计划,从基础研究、应用研究到研究中心、基础设施的建立以及人才的培养等全面展开。
日本政府将纳米技术视为“日本经济复兴”的关键。第二期科学技术基本计划将生命科学、信息通信、环境技术和纳米技术作为4大重点研发领域,并制定了多项措施确保这些领域所需战略资源(人才、资金、设备)的落实。之后,日本科技界较为彻底地贯彻了这一方针,积极推进从基础性到实用性的研发,同时跨省厅重点推进能有效促进经济发展和加强国际竞争力的研发。
欧盟在2002—2007年实施的第六个框架计划也对纳米技术给予了空前的重视。该计划将纳米技术作为一个最优先的领域,有13亿欧元专门用于纳米技术和纳米科学、以知识为基础的多功能材料、新生产工艺和设备等方面的研究。欧盟委员会还力图制定欧洲的纳米技术战略,目前,已确定了促进欧洲纳米技术发展的5个关键措施:增加研发投入,形成势头;加强研发基础设施;从质和量方面扩大人才资源;重视工业创新,将知识转化为产品和服务;考虑社会因素,趋利避险。另外,包括德国、法国、爱尔兰和英国在内的多数欧盟国家还制定了各自的纳米技术研发计划。
(2)新兴工业化经济体瞄准先机
意识到纳米技术将会给人类社会带来巨大的影响,韩国、中国台湾等新兴工业化经济体,为了保持竞争优势,也纷纷制定纳米科技发展战略。韩国政府2001年制定了《促进纳米技术10年计划》,2002年颁布了新的《促进纳米技术开发法》,随后的2003年又颁布了《纳米技术开发实施规则》。韩国政府的政策目标是融合信息技术、生物技术和纳米技术3个主要技术领域,以提升前沿技术和基础技术的水平;到2010年10年计划结束时,韩国纳米技术研发要达到与美国和日本等领先国家的水平,进入世界前5位的行列。
中国台湾自1999年开始,相继制定了《纳米材料尖端研究计划》、《纳米科技研究计划》,这些计划以人才和核心设施建设为基础,以追求“学术卓越”和“纳米科技产业化”为目标,意在引领台湾知识经济的发展,建立产业竞争优势。
(3)发展中大国奋力赶超
综合国力和科技实力较强的发展中国家为了迎头赶上发达国家纳米科技发展的势头,也制定了自己的纳米科技发展战略。中国政府在2001年7月就了《国家纳米科技发展纲要》,并先后建立了国家纳米科技指导协调委员会、国家纳米科学中心和纳米技术专门委员会。目前正在制定中的国家中长期科技发展纲要将明确中国纳米科技发展的路线图,确定中国在目前和中长期的研发任务,以便在国家层面上进行指导与协调,集中力量、发挥优势,争取在几个方面取得重要突破。鉴于未来最有可能的技术浪潮是纳米技术,南非科技部正在制定一项国家纳米技术战略,可望在2005年度执行。印度政府也通过加大对从事材料科学研究的科研机构和项目的支持力度,加强材料科学中具有广泛应用前景的纳米技术的研究和开发。
2、纳米科技研发投入一路攀升
纳米科技已在国际间形成研发热潮,现在无论是富裕的工业化大国还是渴望富裕的工业化中国家,都在对纳米科学、技术与工程投入巨额资金,而且投资迅速增加。据欧盟2004年5月的一份报告称,在过去10年里,世界公共投资从1997年的约4亿欧元增加到了目前的30亿欧元以上。私人的纳米技术研究资金估计为20亿欧元。这说明,全球对纳米技术研发的年投资已达50亿欧元。
美国的公共纳米技术投资最多。在过去4年内,联邦政府的纳米技术研发经费从2000年的2.2亿美元增加到2003年的7.5亿美元,2005年将增加到9.82亿美元。更重要的是,根据《21世纪纳米技术研究开发法》,在2005~2008财年联邦政府将对纳米技术计划投入37亿美元,而且这还不包括国防部及其他部门将用于纳米研发的经费。
日本目前是仅次于美国的第二大纳米技术投资国。日本早在20世纪80年代就开始支持纳米科学研究,近年来纳米科技投入迅速增长,从2001年的4亿美元激增至2003年的近8亿美元,而2004年还将增长20%。
在欧洲,根据第六个框架计划,欧盟对纳米技术的资助每年约达7.5亿美元,有些人估计可达9.15亿美元。另有一些人估计,欧盟各国和欧盟对纳米研究的总投资可能两倍于美国,甚至更高。
中国期望今后5年内中央政府的纳米技术研究支出达到2.4亿美元左右;另外,地方政府也将支出2.4亿~3.6亿美元。中国台湾计划从2002~2007年在纳米技术相关领域中投资6亿美元,每年稳中有增,平均每年达1亿美元。韩国每年的纳米技术投入预计约为1.45亿美元,而新加坡则达3.7亿美元左右。
就纳米科技人均公共支出而言,欧盟25国为2.4欧元,美国为3.7欧元,日本为6.2欧元。按照计划,美国2006年的纳米技术研发公共投资增加到人均5欧元,日本2004年增加到8欧元,因此欧盟与美日之间的差距有增大之势。公共纳米投资占GDP的比例是:欧盟为0.01%,美国为0.01%,日本为0.02%。
另外,据致力于纳米技术行业研究的美国鲁克斯资讯公司2004年的一份年度报告称,很多私营企业对纳米技术的投资也快速增加。美国的公司在这一领域的投入约为17亿美元,占全球私营机构38亿美元纳米技术投资的46%。亚洲的企业将投资14亿美元,占36%。欧洲的私营机构将投资6.5亿美元,占17%。由于投资的快速增长,纳米技术的创新时代必将到来。
3、世界各国纳米科技发展各有千秋
各纳米科技强国比较而言,美国虽具有一定的优势,但现在尚无确定的赢家和输家。
(1)在纳米科技论文方面日、德、中三国不相上下
根据中国科技信息研究所进行的纳米论文统计结果,2000—2002年,共有40370篇纳米研究论文被《2000—2002年科学引文索引(SCI)》收录。纳米研究论文数量逐年增长,且增长幅度较大,2001年和2002年的增长率分别达到了30.22%和18.26%。
2000—2002年纳米研究论文,美国以较大的优势领先于其他国家,3年累计论文数超过10000篇,几乎占全部论文产出的30%。日本(12.76%)、德国(11.28%)、中国(10.64%)和法国(7.89%)位居其后,它们各自的论文总数都超过了3000篇。而且以上5国2000—2002年每年的纳米论文产出大都超过了1000篇,是纳米研究最活跃的国家,也是纳米研究实力最强的国家。中国的增长幅度最为突出,2000年中国纳米论文比例还落后德国2个多百分点,到2002年已经超过德国,位居世界第三位,与日本接近。
在上述5国之后,英国、俄罗斯、意大利、韩国、西班牙发表的论文数也较多,各国3年累计论文总数都超过了1000篇,且每年的论文数排位都可以进入前10名。这5个国家可以列为纳米研究较活跃的国家。
另外,如果欧盟各国作为一个整体,其论文量则超过36%,高于美国的29.46%。(2)在申请纳米技术发明专利方面美国独占鳌头
据统计:美国专利商标局2000—2002年共受理2236项关于纳米技术的专利。其中最多的国家是美国(1454项),其次是日本(368项)和德国(118项)。由于专利数据来源美国专利商标局,所以美国的专利数量非常多,所占比例超过了60%。日本和德国分别以16.46%和5.28%的比例列在第二位和第三位。英国、韩国、加拿大、法国和中国台湾的专利数也较多,所占比例都超过了1%。
专利反映了研究成果实用化的能力。多数国家纳米论文数与专利数所占比例的反差较大,在论文数最多的20个国家和地区中,专利数所占比例超过论文数所占比例的国家和地区只有美国、日本和中国台湾。这说明,很多国家和地区在纳米技术研究上具备一定的实力,但比较侧重于基础研究,而实用化能力较弱。
(3)就整体而言纳米科技大国各有所长
美国纳米技术的应用研究在半导体芯片、癌症诊断、光学新材料和生物分子追踪等领域快速发展。随着纳米技术在癌症诊断和生物分子追踪中的应用,目前美国纳米研究热点已逐步转向医学领域。医学纳米技术已经被列为美国国家的优先科研计划。在纳米医学方面,纳米传感器可在实验室条件下对多种癌症进行早期诊断,而且,已能在实验室条件下对前列腺癌、直肠癌等多种癌症进行早期诊断。2004年,美国国立卫生研究院癌症研究所专门出台了一项《癌症纳米技术计划》,目的是将纳米技术、癌症研究与分子生物医学相结合,实现2015年消除癌症死亡和痛苦的目标;利用纳米颗粒追踪活性物质在生物体内的活动也是一个研究热门,这对于研究艾滋病病毒、癌细胞等在人体内的活动情况非常有用,还可以用来检测药物对病毒的作用效果。利用纳米颗粒追踪病毒的研究也已有成果,未来5~10年有望商业化。
虽然医学纳米技术正成为纳米科技的新热点,纳米技术在半导体芯片领域的应用仍然引人关注。美国科研人员正在加紧纳米级半导体材料晶体管的应用研究,期望突破传统的极限,让芯片体积更小、速度更快。纳米颗粒的自组装技术是这一领域中最受关注的地方。不少科学家试图利用化学反应来合成纳米颗粒,并按照一定规则排列这些颗粒,使其成为体积小而运算快的芯片。这种技术本来有望取代传统光刻法制造芯片的技术。在光学新材料方面,目前已有可控直径5纳米到几百纳米、可控长度达到几百微米的纳米导线。
日本纳米技术的研究开发实力强大,某些方面处于世界领先水平,但尚未脱离基础和应用研究阶段,距离实用化还有相当一段路要走。在纳米技术的研发上,日本最重视的是应用研究,尤其是纳米新材料研究。除了碳纳米管外,日本开发出多种不同结构的纳米材料,如纳米链、中空微粒、多层螺旋状结构、富勒结构套富勒结构、纳米管套富勒结构、酒杯叠酒杯状结构等。
在制造方法上,日本不断改进电弧放电法、化学气相合成法和激光烧蚀法等现有方法,同时积极开发新的制造技术,特别是批量生产技术。细川公司展出的低温连续烧结设备引起关注。它能以每小时数千克的速度制造粒径在数十纳米的单一和复合的超微粒材料。东丽和三菱化学公司应用大学开发的新技术能把制造碳纳米材料的成本减至原来的1/10,两三年内即可进入批量生产阶段。
日本高度重视开发检测和加工技术。目前广泛应用的扫描隧道显微镜、原子力显微镜、近场光学显微镜等的性能不断提高,并涌现了诸如数字式显微镜、内藏高级照相机显微镜、超高真空扫描型原子力显微镜等新产品。科学家村田和广成功开发出亚微米喷墨印刷装置,能应用于纳米领域,在硅、玻璃、金属和有机高分子等多种材料的基板上印制细微电路,是世界最高水平。
日本企业、大学和研究机构积极在信息技术、生物技术等领域内为纳米技术寻找用武之地,如制造单个电子晶体管、分子电子元件等更细微、更高性能的元器件和量子计算机,解析分子、蛋白质及基因的结构等。不过,这些研究大都处于探索阶段,成果为数不多。
欧盟在纳米科学方面颇具实力,特别是在光学和光电材料、有机电子学和光电学、磁性材料、仿生材料、纳米生物材料、超导体、复合材料、医学材料、智能材料等方面的研究能力较强。
中国在纳米材料及其应用、扫描隧道显微镜分析和单原子操纵等方面研究较多,主要以金属和无机非金属纳米材料为主,约占80%,高分子和化学合成材料也是一个重要方面,而在纳米电子学、纳米器件和纳米生物医学研究方面与发达国家有明显差距。
4、纳米技术产业化步伐加快
目前,纳米技术产业化尚处于初期阶段,但展示了巨大的商业前景。据统计:2004年全球纳米技术的年产值已经达到500亿美元,2010年将达到14400亿美元。为此,各纳米技术强国为了尽快实现纳米技术的产业化,都在加紧采取措施,促进产业化进程。
美国国家科研项目管理部门的管理者们认为,美国大公司自身的纳米技术基础研究不足,导致美国在该领域的开发应用缺乏动力,因此,尝试建立一个由多所大学与大企业组成的研究中心,希望借此使纳米技术的基础研究和应用开发紧密结合在一起。美国联邦政府与加利福尼亚州政府一起斥巨资在洛杉矾地区建立一个“纳米科技成果转化中心”,以便及时有效地将纳米科技领域的基础研究成果应用于产业界。该中心的主要工作有两项:一是进行纳米技术基础研究;二是与大企业合作,使最新基础研究成果尽快实现产业化。其研究领域涉及纳米计算、纳米通讯、纳米机械和纳米电路等许多方面,其中不少研究成果将被率先应用于美国国防工业。
美国的一些大公司也正在认真探索利用纳米技术改进其产品和工艺的潜力。IBM、惠普、英特尔等一些IT公司有可能在中期内取得突破,并生产出商业产品。一个由专业、商业和学术组织组成的网络在迅速扩大,其目的是共享信息,促进联系,加速纳米技术应用。
日本企业界也加强了对纳米技术的投入。关西地区已有近百家企业与16所大学及国立科研机构联合,不久前又建立了“关西纳米技术推进会议”,以大力促进本地区纳米技术的研发和产业化进程;东丽、三菱、富士通等大公司更是纷纷斥巨资建立纳米技术研究所,试图将纳米技术融合进各自从事的产业中。
欧盟于2003年建立纳米技术工业平台,推动纳米技术在欧盟成员国的应用。欧盟委员会指出:建立纳米技术工业平台的目的是使工程师、材料学家、医疗研究人员、生物学家、物理学家和化学家能够协同作战,把纳米技术应用到信息技术、化妆品、化学产品和运输领域,生产出更清洁、更安全、更持久和更“聪明”的产品,同时减少能源消耗和垃圾。欧盟希望通过建立纳米技术工业平台和增加纳米技术研究投资使其在纳米技术方面尽快赶上美国。
英文名称:Nanotechnology and Precision Engineering
主管单位:教育部
主办单位:天津大学
出版周期:双月刊
出版地址:天津市
语
种:中文
开
本:大16开
国际刊号:1672-6030
国内刊号:12-1351/O3
邮发代号:6-177
发行范围:国内外统一发行
创刊时间:2003
期刊收录:
CA 化学文摘(美)(2009)
Pж(AJ) 文摘杂志(俄)(2009)
EI 工程索引(美)(2009)
中国科学引文数据库(CSCD―2008)
核心期刊:
期刊荣誉:
联系方式
期刊简介
【论文关键词】:无机化学;研究前沿;研究进展
【论文摘要】:无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。
当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。
根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述:
一、无机合成与制备化学研究进展
无机合成与制备在固体化学和材料化学研究中占有重要的地位,是化学和材料科学的基础学科。发展现代无机合成与制备化学,不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法,不断地创造与开发新的物种,将为研究材料结构、性能(或功能)与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面:
(一)极端条件合成
在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成,并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。
(二)软化学合成
与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化,即温和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性,减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”,正是具有对实验设备要求简单和化学上的易控性和可操作性特点,因而在无机材料合成化学的研究领域中占有一席之地。
(三)缺陷与价态控制
缺陷与特定价态的控制是固体化学和固体物理重要的研究对象,也是决定和优化材料性能的主要因素。材料的许多性质如发光、导电、催化等都和缺陷与价态有关。晶体生长行为和材料的反应性与缺陷关系密切,因此,缺陷与价态在合成中的控制显然成为重要的科学题。缺陷与特定价态的生成和变化与材料最初生成条件有关,因此,可通过控制材料生成条件来控制材料中的缺陷和元素的价态。
(四)计算机辅助合成
计算机辅助合成是在对反应机理有了了解的基础上进行的理论模拟过程。国际上一般为建立与完善合成反应与结构的原始数据库,再在系统研究其合成反应与机理的基础上,应用神经网络系统并结合基因算法、退火、Monte2Carlo优化计算等建立有关的合成反应数学模型与能量分布模型,并进一步建立定向合成的专家决策系统。
(五)组合化学
组合化学是利用组合论的思想和理论,将构建单元通过有机/无机合成或化学法修饰,产生分子多样性的群体(库),并进行优化选择的科学。组合化学用于合成肽组合库,也称组合合成、组合库和自动合成法。组合方法同时用n个单元与另外一组n′个单元反应,得到所有组合的混合物,即n+n′个构建单元产生n×n′批产物。
(六)理想合成
理想合成是从易得的起始物开始,经过一步简单、安全、环境友好、反应快速、100%产率获得目标产物。趋近理想合成策略之一是开发一步合成反应,如富勒烯及相关高级结构的合成,从易得的石墨出发,只需一步反应即得到目标产物,产率44%。趋近理想合成策略之二为单元操作。相对复杂的分子,如药物、天然产物的合成,需要多步反应完成。在自然界里,生物采取多级合成的策略,在众多酶的作用下,用前一步催化反应的产物作为后续反应的起始物,直至目的产物的生成。
(七)仿生合成
仿生合成无论从理论还是从应用上都将具有非常诱人的前景。无机合成与制备化学在生物矿化、有机/无机纳米复合、无机分子向生物分子转化等研究领域发挥重要作用。用一般常规方法难于进行的非常复杂的合成如何利用生物合成将其变为高效、有序、自动进行的合成。例如生物体对血红素的合成可以从最简单的酪氨酸经过一系列酶的作用很容易地合成出结构极为复杂的血红素。因此,仿生合成将成为21世纪合成化学中的前沿领域。
二、我国无机化学研究最新进展
近几年我国无机化学基础研究取得突出进展,成果累累,主要在以下几个方面取得了令人瞩目的成绩:
(1)中科大钱逸泰、谢毅研究小组在水热合成工作的基础上,在有机体系中设计和实现了新的无机化学反应,在相对低的温度下制备了一序列非氧化物纳米材料。溶剂热合成原理与水热合成类似,以有机溶剂代替水,在密封体系中实现化学反应。他们在苯中280度下将GaCl3和Li3N反应制得纳米GaN的工作发表在Science上。
(2)吉林大学冯守华、徐如人研究组应用水热合成技术,从简单的反应原料出发成功地合成出具有螺旋结构的无机-有机纳米复合材料,M(4,4''''-bipy)2(VO2)2(HPO4)4(M=Co;Ni)。在这两个化合物中,PO4四面体和VO4三角双锥通过共用氧原子交替排列形成新颖的V/P/O无机螺旋链。
(3)南京大学熊仁根、游效曾等在光学活性类沸石的组装及其手性拆分功能研究方面设计和合成具有手性与催化功能的无机有机杂化多维结构,他们改性了光学活性的天然有机药物(奎宁),以它作为配体同金属离子自组装构成了一个能进行光学拆分消旋2-丁醇和3-甲基-2-丁醇,拆分率达98﹪以上的三维多孔类沸石。
(4)中国科学院福建物质结构研究所洪茂椿,吴新涛等在纳米材料和无机聚合物方面的工作引起国内外同行的广泛重视。他们成功地合成纳米金属分子笼(nanometer-sizedmetallomolecularcage),还成功的构筑了一个新型的具有纳米级孔洞的类分子筛[{Zn4(OH)2(bdc)3}.4(dmso)2H2O]n,其中孔洞的大小近一纳米。在金属纳米线和金属-有机纳米板的合成和结构的研究成果斐然。设计合成了一些金属纳米线,金属-非金属纳米线和金属有机纳米板。
(5)北京大学高松研究小组在磁分子材料的研究方面取得了突出成果。在水溶液中以1:1:1的摩尔比缓慢扩散K3[M(CN)6](M=Fe3+,Co3+),bpym(2,2''''-bipyrimidine)和Nd(NO3)3,合成了第一例氰根桥联的4f-3d二维配位高分子[NdM(bpym)(H2O)4(CN)6]。3H2O,24个原子形成的二维拓扑结构。
(6)清华大学李亚栋研究组在新型一维纳米结构的制备、组装方面取得了突出的进展。李亚栋课题组首次发现了由具有准层状结构特性的金属铋形成的一种新型的单晶多壁金属纳米管,有关研究成果在美国化学会志上(J.Am.Chem.Soc.123(40),9904-9905,2001)报道。这是国际上首例由金属形成的单晶纳米管,铋纳米管的发现为无机纳米管的形成机理和应用研究提供了新的对象和课题。
面对生命科学、材料科学、信息科学等其他学科迅速发展的挑战和人类对认识和改造自然提出的新要求,化学在不断地创造出新的物质和品种来满足人民的物质文化生活,造福国家,造福人类。当前,资源的有效开发利用、环境保护与治理、社会和经济的可持续发展、人口与健康和人类安全、高新材料的开发和应用等向我国的科学工作者提出一系列重大的挑战性难题,迫切需要化学家在更高层次上进行化学的基础研究和应用研究,发现和创造出新的理论、方法和手段,并从学科自身发展和为国家目标服务两个方面不断提出新的思路和战略设想,以适应21世纪科学发展的需求。
参考文献
[1]徐如人,庞文琴.无机合成与制备化学[M].北京:高等教育出版社.2001.
[2]冯守华,徐如人.无机合成与制备化学研究进展[J].化学进展,2000(12).
【论文摘要】: 无机化学是化学学科里其它各分支学科的基础学科,在近年来取得较突出的进展,主要表现在固体材料化学、配位化学等方面。未来无机化学的发展特点是各学科交叉纵横相互渗透,用以解决工业生产与人民生活的实际问题。文章就当代无机化学研究的前沿与未来发展趋势做了简要阐述。
当前无机化学的发展趋向主要是新型的无机化合物的合成和应用,以及新的研究领域的开辟和建立。因此21世纪理论与计算方法的运用将大大加强理论和实验更加紧密的结合。同时各学科间的深入发展和学科间的相互渗透,形成许多学科的新的研究领域。例如,生物无机化学就是无机化学与生物学结合的边缘学科;固体无机化学是十分活跃的新兴学科;作为边沿学科的配位化学日益与其它相关学科相互渗透与交叉。
根据国际上最新进展和我国的具体情况,文章就“无机合成与制备化学研究进展”和“我国无机化学最新研究进展”两个方面进行阐述:
一、无机合成与制备化学研究进展
无机合成与制备在固体化学和材料化学研究中占有重要的地位, 是化学和材料科学的基础学科。发展现代无机合成与制备化学, 不断地推出新的合成反应和路线或改进和绿化现有的陈旧合成方法, 不断地创造与开发新的物种, 将为研究材料结构、性能(或功能) 与反应间的关系、揭示新规律与原理提供基础。近年来无机合成与制备化学研究的新进展主要表现为以下几个方面:
(一) 极端条件合成
在现代合成中愈来愈广泛地应用极端条件下的合成方法与技术来实现通常条件下无法进行的合成, 并在这些极端条件下开拓多种多样的一般条件下无法得到的新化合物、新物相与物态。超临界流体反应之一的超临界水热合成就是无机合成化学的一个重要分支。
(二) 软化学合成
与极端条件下的合成化学相对应的是在温和条件下功能无机材料的合成与晶化, 即温和条件下的合成或软化学合成。由于苛刻条件对实验设备的依赖与技术上的不易控制性, 减弱了材料合成的定向程度。而温和条件下的合成化学——即“软化学合成”, 正是具有对实验设备要求简单和化学上的易控性和可操作性特点, 因而在无机材料合成化学的研究领域中占有一席之地。
(三) 缺陷与价态控制
缺陷与特定价态的控制是固体化学和固体物理重要的研究对象, 也是决定和优化材料性能的主要因素。材料的许多性质如发光、导电、催化等都和缺陷与价态有关。晶体生长行为和材料的反应性与缺陷关系密切, 因此, 缺陷与价态在合成中的控制显然成为重要的科学题。缺陷与特定价态的生成和变化与材料最初生成条件有关, 因此,可通过控制材料生成条件来控制材料中的缺陷和元素的价态。
(四) 计算机辅助合成
计算机辅助合成是在对反应机理有了了解的基础上进行的理论模拟过程。 国际上一般为建立与完善合成反应与结构的原始数据库, 再在系统研究其合成反应与机理的基础上, 应用神经网络系统并结合基因算法、退火、Mon te2Carlo 优化计算等建立有关的合成反应数学模型与能量分布模型, 并进一步建立定向合成的专家决策系统。
(五) 组合化学
组合化学是利用组合论的思想和理论, 将构建单元通过有机/无机合成或化学法修饰, 产生分子多样性的群体(库) , 并进行优化选择的科学。组合化学用于合成肽组合库, 也称组合合成、组合库和自动合成法。组合方法同时用n 个单元与另外一组n′个单元反应, 得到所有组合的混合物, 即n+ n′个构建单元产生n×n′批产物。
(六) 理想合成
理想合成是从易得的起始物开始, 经过一步简单、安全、环境友好、反应快速、100% 产率获得目标产物。趋近理想合成策略之一是开发一步合成反应,如富勒烯及相关高级结构的合成, 从易得的石墨出发, 只需一步反应即得到目标产物, 产率44%。趋近理想合成策略之二为单元操作。相对复杂的分子, 如药物、天然产物的合成, 需要多步反应完成。在自然界里, 生物采取多级合成的策略, 在众多酶的作用下, 用前一步催化反应的产物作为后续反应的起始物, 直至目的产物的生成。
(七) 仿生合成
仿生合成无论从理论还是从应用上都将具有非常诱人的前景。无机合成与制备化学在生物矿化、有机/无机纳米复合、无机分子向生物分子转化等研究领域发挥重要作用。用一般常规方法难于进行的非常复杂的合成如何利用生物合成将其变为高效、有序、自动进行的合成。例如生物体对血红素的合成可以从最简单的酪氨酸经过一系列酶的作用很容易地合成出结构极为复杂的血红素。因此,仿生合成将成为21 世纪合成化学中的前沿领域。
二、我国无机化学研究最新进展
近几年我国无机化学基础研究取得突出进展,成果累累,主要在以下几个方面取得了令人瞩目的成绩:
(1) 中科大钱逸泰、谢毅研究小组在水热合成工作的基础上,在有机体系中设计和实现了新的无机化学反应,在相对低的温度下制备了一序列非氧化物纳米材料。溶剂热合成原理与水热合成类似,以有机溶剂代替水,在密封体系中实现化学反应。他们在苯中280度下将GaCl3和Li3N反应制得纳米GaN的工作发表在Science上。
(2) 吉林大学冯守华、徐如人研究组应用水热合成技术,从简单的反应原料出发成功地合成出具有螺旋结构的无机-有机纳米复合材料,M(4,4'-bipy)2(VO2)2(HPO4)4(M=Co;Ni)。在这两个化合物中,PO4四面体和VO4三角双锥通过共用氧原子交替排列形成新颖的V/P/O无机螺旋链。
(3) 南京大学熊仁根、游效曾等在光学活性类沸石的组装及其手性拆分功能研究方面设计和合成具有手性与催化功能的无机有机杂化多维结构,他们改性了光学活性的天然有机药物(奎宁),以它作为配体同金属离子自组装构成了一个能进行光学拆分消旋 2-丁醇和3-甲基-2-丁醇,拆分率达 98?以上的三维多孔类沸石。
(4) 中国科学院福建物质结构研究所洪茂椿,吴新涛等在纳米材料和无机聚合物方面的工作引起国内外同行的广泛重视。他们成功地合成纳米金属分子笼(nanometer-sized metallomolecular cage),还成功的构筑了一个新型的具有纳米级孔洞的类分子筛[{Zn4(OH)2(bdc)3}.4(dmso)2H2O]n,其中孔洞的大小近一纳米。在金属纳米线和金属-有机纳米板的合成和结构的研究成果斐然。设计合成了一些金属纳米线,金属-非金属纳米线和金属有机纳米板。
(5) 北京大学高松研究小组在磁分子材料的研究方面取得了突出成果。在水溶液中以1:1:1的摩尔比缓慢扩散K3[M(CN)6](M=Fe3+,Co3+),bpym(2,2'-bipyrimidine)和Nd(NO3)3,合成了第一例氰根桥联的4f-3d二维配位高分子[NdM(bpym)(H2O)4(CN)6]。3H2O,24个原子形成的二维拓扑结构。
(6) 清华大学李亚栋研究组在新型一维纳米结构的制备、组装方面取得了突出的进展。李亚栋课题组首次发现了由具有准层状结构特性的金属铋形成的一种新型的单晶多壁金属纳米管,有关研究成果在美国化学会志上(J.Am.Chem.Soc.123(40),9904-9905,2001)报道。这是国际上首例由金属形成的单晶纳米管,铋纳米管的发现为无机纳米管的形成机理和应用研究提供了新的对象和课题。
面对生命科学、材料科学、信息科学等其他学科迅速发展的挑战和人类对认识和改造自然提出的新要求,化学在不断地创造出新的物质和品种来满足人民的物质文化生活,造福国家,造福人类。当前,资源的有效开发利用、环境保护与治理、社会和经济的可持续发展、人口与健康和人类安全、高新材料的开发和应用等向我国的科学工作者提出一系列重大的挑战性难题,迫切需要化学家在更高层次上进行化学的基础研究和应用研究,发现和创造出新的理论、方法和手段,并从学科自身发展和为国家目标服务两个方面不断提出新的思路和战略设想,以适应21世纪科学发展的需求。
参考文献
[1] 徐如人, 庞文琴. 无机合成与制备化学 [M]. 北京:高等教育出版社. 2001.
[2] 冯守华, 徐如人. 无机合成与制备化学研究进展[J]. 化学进展 ,2000(12).
[KH*3/4D][HTH]关键词 [HTSS]纳米功能化金电极; 微生物; 快速检测; 脂质过氧化; 计时电流法
[HT][HK]
[FQ(32,X,DY-W][CD15] 20110826收稿;20111219接受
本文系苏州市科技局项目(No. YJC0910) 及常熟理工学院毕业设计(论文) 团队课题项目资助
* Email: tuyf@suda.省略;wxy62@cslg.省略[HT]
1 引 言
牛奶为人类生活中价值最高的营养物质之一,但易酸败变质\[1\]。我国90%以上的奶牛由农民饲养,规模小、生产水平低、卫生设备不足,因而很多牛奶原料达不到一级标准。在牛奶的生产、运输、销售过程中,还可能受到多种细菌的污染,其中含有很多潜在的有害微生物,这些微生物不仅破坏牛奶质量,而且可能危害饮用者身体健康\[2~4\]。传统的微生物检测技术非常繁琐,需要耗费大量的人力物力,而且检测周期长。按国标GB/T 4789.2进行菌落总数检测需要48 h才能得出结果,难以满足食品安全检测的要求。聚合酶链反应(PCR)\[5\]、酶联免疫吸附实验(ELISA)\[6,7\]等几种快速检测技术通过富集、分离、形态学检测、生物化学测试来鉴别食品中致病菌,缩短了检测时间,但检测费用高、仪器昂贵。电化学阻抗技术亦可应用于细菌的检测,但在分析含菌量较少样品时,检测时间较长,且只有当微生物数目达到106~107个/mL时,这种电阻的变化才能被记录到\[8,9\]。因此,开发快速、简易的适合于牛奶样品中细菌检测的方法具有十分重要的意义。电化学分析方法在这方面具备独特优势\[10~12\],所需设备简单、操作简便易行、测定速度快、检测成本低,可望开发出实用的检测技术。
纳米材料因具有高比表面积、高催化活性等独特性质而备受关注,对许多物质有很高的电催化效应。纳米修饰技术在电化学分析方面亦得到了广泛的应用\[13~15\]。通过表面修饰或功能化获得的化学修饰电极在分析性能上较传统电极取得了长足的进步,从而为开发适合于特定目标的检测技术奠定了良好的基础。
纳米功能化电极表现出巨大的潜在应用前景,特定的纳米修饰电极可催化H2O转化成羟基自由基(・OH),・OH具有极高的反应活性,可以使微生物细胞膜发生脂质过氧化\[16\],在电极上产生氧化电流,且电流的大小与微生物的量成线性关系,通过电流检测实现对微生物的定量检验。文献\[11\]应用此原理成功地进行了水体中大肠杆菌(E. coli)的检测。本研究采用控制电位电解法,以中性的磷酸盐缓冲溶液(PBS)为电解质,一步操作实现对金电极表面的纳米功能化修饰,使其表面形成一层蓬松的纳米级粗糙层,并应用于牛奶中微生物的检测。制备方法简便,线性范围为1.1×103~2.5×107 cfu/mL,检测时间缩短至1 h以内。本方法重复性好、灵敏度高、不需要预处理,有望在牛奶及其它食品的微生物检测中得到应用。
2 实验部分
2.1 仪器、材料与试剂
CHI660C 电化学工作站(上海辰华仪器公司);金电极(Φ2 mm)为工作电极,铂电极(Φ2 mm)为对电极,饱和甘汞电极(SCE)为参比电极;Dimension Icon原子力显微镜 (美国Bruker 公司);UV3600紫外可见分光光度计(日本岛津公司);YX400Z型电热蒸汽压力消毒器(上海三申医疗器械有限公司);S・SWCJ・2F型超净工作台(上海博泰实验设备有限公司);303A3S型电热恒温干燥培养箱(上海浦东荣丰科学仪器有限公司)。
0.1 mol/L PBS溶液,pH分别为7.0和7.4。LB 培养基:牛肉膏3 g,蛋白胨10 g,NaCl 5 g,琼脂20 g,蒸馏水1000 mL。大肠杆菌、嗜热链球菌、金黄色葡萄球菌由常熟理工学院生物与食品工程学院发酵工程技术研究中心提供。牛奶样品由常熟市圣力乳业有限公司提供。实验用水均为二次蒸馏水。
2.2 纳米功能化金电极的制备及表征
金电极用0.3 和0.05
SymbolmA@ m的A12O3粉抛光,依次在HNO3(1∶1, V/V)、无水乙醇及二次蒸馏水中超声清洗5 min,红外灯下烘干。上述电极置于0.1 mol/L PBS溶液(pH 7.0)中,于2.0 V恒电位电解600 s; 在0~1.5 V范围内循环伏安扫描至电流稳定; 用水反复冲洗,并储存在水中备用。采用原子力显微镜表征纳米功能化修饰膜的表面形貌。采用亚甲基蓝检验法验证纳米功能化金电极的性能:用PBS溶液将8 mL 0.15 mmol/L亚甲基蓝溶液释至100 mL,分别以裸金电极和纳米功能化金电极为工作电极,在1.0 V恒电位电解30 min,分别测定原溶液和电解后溶液的吸收光谱曲线。
分 析 化 学第40卷
第5期汪学英等: 原位制备纳米功能化金电极快速检测牛奶中的微生物
2.3 细菌总数的测定方法
大肠杆菌(E. coli)是生物肠道内和环境中最普遍存在,且最大量的细菌,通常作为细菌研究的模式生物。牛奶中的细菌总数在很大程度上决定于环境卫生、挤奶机、牛奶贮存和运输设备的清洁程度和牛奶的冷藏温度等因素,因此大肠杆菌是最可能存在的细菌。健康奶牛的内也总存在一些细菌,但仅限于少数几种细菌,如小球菌、链球菌等,细菌数量约为102个/mL;如奶牛发生炎,则在奶中会检出大量的金黄色葡萄球菌、链球菌和化脓杆菌等致病菌。因此,本研究主要以大肠杆菌作为研究对象,并分别考察大肠杆菌、嗜热链球菌、金黄色葡萄球菌的响应,以进行比较,评估本方法对检测不同种类细菌的适用性。
2.3.1 平板计数法 参照GB 4789.22010 《食品安全国家标准 食品微生物学检验 菌落总数测定》进行。
2.3.2 计时电流法 于37 ℃恒温水浴中,用无菌移液管准确移取10 mL经高压灭菌的0.1 mol/L PBS溶液(pH 7.4)于电解池内,以纳米功能化金电极为工作电极、铂电极为对电极、饱和甘汞电极为参比电极,恒电位1.0 V进行计时电流测定,记录加入一定量样品后产生的电流响应值。
2.3.3 校正曲线与定量测定 对同一样品用标准平板计数法和计时电流法同时进行测定,得到电流响应和牛奶中细菌数量的对应关系,建立校正曲线。根据仪器测定的相应样品的电流响应,计算每毫升样品细菌数量。
2.4 电极的活化再生
由于电极表面是纳米尺度粗糙结构,具有较强的吸附性,测定中细菌氧化产物会吸附在电极上,所以测定中电流响应会逐步减小。因此,每次测定后需对电极进行活化再生处理。处理方法是用PBS液冲洗后,再在其中于2.0 V电解产生氧气,利用氧气带走细菌被氧化的中间产物,从而使电极重新活化。3 结果与讨论3.1 纳米功能化金电极的性能和作用机理
采用AFM技术对纳米功能化金电极表面形貌进行表征。从图1可见,经阳极氧化活化处理后,电极表面形成了蓬松的结构。这是由于金电极表面吸附的・OH或O与Au原子发生交换,进入电极表层所致,电极表面的吸附的・OH或O和Au原子具有较强的活性\[17\]。
[TS(][HT5”SS] 图1 金电极纳米功能化表面的原子力显微镜图(A)三维形貌,(B)2
SymbolmA@ m尺度,(C)500 nm尺度
Fig.1 Surface morphology of nanofunctionalized gold electrode (A) 3D AFM image, (B) at scale of 2
SymbolmA@ m and (C) at scale of 500 nm[HT][TS)]
图2A为所制备纳米功能化金电极在0.1 mol/L PBS溶液(pH 7.4)中的循环伏安图。在修饰电极上,除了在电位约为1.5 V处因产生氧气而使电流增大外,还出现一对很强的氧化还原峰(a),而普通金电极几乎不出峰(b)。据文献报道,电流的增加主要是因为在纳米功能层的催化下生成了・OH,且・OH被吸附于电极表面,占据着电极表面的活性位点\[17,18\],其反应如下:
Au*+H2OAu*OH(1
Symbolm@@ n)
Symbolm@@ ads+H++e
Au*+OH-Au*OH(1
Symbolm@@ m)
Symbolm@@ ads+e
[TS(][HT5”SS]图2 (A) 纳米功能化金电极(a)及裸金电极(b)在0.1 mol/L PBS溶液(pH 7.4)中的循环伏安曲线(扫速:100 mV/s),(B) 1.2×10
Symbolm@@ 5 mol/L亚甲基蓝溶液(a)及经裸金电极(b)或纳米功能化金电极(c)电解30 min后的吸收光谱
Fig.2 (A) Cyclic voltammograms of (a) nanofunctionalized gold electrode and (b) bare Au electrode in phosphate buffer (pH 7.0, scan rate:100 mV/s); (B) Absorption spectra of 1.2×10
Symbolm@@ 5 mol/L methylene blue (MB ) (a) and electrolyzed for 30 min with bare Au electrode (b) or nanofunctionalized gold electrode (c) as working electrode[HT][TS)]
图2B采用亚甲基蓝检验法进行了验证。呈蓝色的亚甲蓝溶液遇到强氧化剂时失电子形成无色的3,7双二甲氨基吩噻嗪离子,通过亚甲蓝溶液吸光度的变化可确定・OH的含量\[19\]。以裸金电极电解30 min后亚甲基蓝溶液,吸光度(b)较原溶液(a)下降并不明显; 以纳米功能化金电极电解后,亚甲基蓝溶液吸光度值较电解前明显减小(c),说明在此条件下,修饰电极上产生了・OH,使亚甲基蓝失电子形成无色的3,7双二甲氨基吩噻嗪离子。
细菌细胞膜主要由脂类和蛋白质组成的双层膜结构,其脂质分子相当稳定,但当有活泼自由基存在时,就可以导致脂质过氧化\[16\],从而在电极上产生电流。当将修饰电极置于含菌的PBS溶液中,电极表面活性位点的羟基自由基将会引起细菌细胞膜的脂质过氧化,细菌数量越多,产生的氧化电流越大。因此,可以根据氧化电流的变化与细菌数量变化的关系对牛奶中细菌总数进行快速检测。
3.2 测定条件的优化
考察了计时电流检测工作电位及pH值对测定结果的影响。结果(图3)表明,随着电压的增大,响应电流随之变大。但当电位超过1.0 V时,电流不稳定,故选择测定电位为1.0 V。在所研[TS(][HT5”SS]图3 (A)检测电位及(B)pH值对测定响应的影响
Fig.3 Effect of (A) applied potential and (B) pH value of buffer solution on detection response
25
SymbolpB@ C,在0.1 mol/L PBS溶液,含菌量约1.1×106 cfu/mL。
Temperature: 25
SymbolpB@ C, substrate solution: 0.1 mol/L phosphate buffer containing 1.1×106 cfu/mL of bacteria.[HT][TS)]究范围内,随pH值增大,氧化电流变化值增加,至pH=8时达到一个平台。但此时稳定性变差,故最佳pH值选取为7.4。
3.3 电极对细菌的响应特性
在选定的最佳工作条件下,向10 mL 0.1 mol/L PBS溶液(pH 7.4)中依次加入10
SymbolmA@ L含1.1×106 cfu/mL细菌悬浊液,修饰电极上的计时电流曲线见图4,表明修饰电极催化细菌脂质过氧化速度很快,可用于细菌的快速检测。
培养基中的共存组分的干扰情况如图5所示: NaCl、琼脂对测定无影响;10 mL PBS溶液中加入100
SymbolmA@ L的蛋白胨、牛肉膏、牛奶时,电流响应略有波动,但并不产生明显的电流响应,故亦不影响测定。分别考察了加入含550和1100 cfu/mL混合菌的牛奶,及分别加入同浓度的大肠杆菌、嗜热链球菌和金黄色葡萄球菌的牛奶悬液后的电流响应, 从图5可见,等量不同种类的细菌产生的响应值基本相同,表明本方法对各种不同的细菌产生基本相同的响应,而牛奶等基质不产生响应,因而可作为牛奶中细菌总浓度的测定方法。
[TS(][HT5”SS] 图4 修饰电极对细菌响应的计时电流曲线,插图A为电极响应对细菌总数的校正曲线
Fig.4 Chronoamperometric curve of response upon the adition of bacteria. Inset is calibration curve of current response versus concentration of bacteria[HT][TS)]
[TS(][HT5”SS] 图5 培养基成分及等浓度不同细菌的电流响应
Fig.5 Current response of culture medium constitution and different bacteria
a, b为550、1100 cfu/mL的混合菌;c, d, e 分别为1100 cfu/mL的大肠杆菌,嗜热链球菌,金黄色葡萄球菌。
a, b mixed bacteria at concentrations of 550, 1100 cfu/mL respectively; c, d, e Escherichia coli, Streptococcus thermophilus and Staphylococcus aureus respectively, at concentration of 1100 cfu/mL[HT][TS)]
3.4 电极分析性能及对实际样品中细菌总数的测定
以计时电流法进行牛奶样品中细菌总数的测定,同时用平板计数法进行对照,建立校正曲线 (图4A),其回归方程为:Δi (nA)=1.43 logC
Symbolm@@ 4.58 (C为样品中细菌的浓度,单位:cfu/mL),电流响应与细菌浓度在1.1×103~2.5×107 cfu/mL范围内呈良好的线性
[FQ(9*2。19*2,Y-WZ][HT5”SS][*4]表1 本方法与平板计数法检测大肠杆菌样品结果比较
Table 1 Comparison of analytical results obtainedfrom present method and GB (national standard) method
[HT6SS][BG(][BHDFG3,WK5,WK7。2,WK6W]样品
Sample本方法Present method国家标准方法GB Method相对误差RE(%)152060482008.0
25576859500
Symbolm@@ 6.3361180570007.341536001470004.551367501300005.2[BG)F][HT][]
关系,r=0.9959。制备5份牛奶样品,用本方法进行测定,对每个样品平行测定5次,并与GB4789平板菌落计数法相对照,结果见表1。从表1可见,用2种方法测定5个样品, 其最大相对误差为8.0%;同时采用t检验法判断 2种方法所得结果之间并无显著性差异(t=1.375<t0.05=2.776);电极经活化再生处理后重复使用所得相对标准偏差(RSD)为2.9%。
结果表明,本研究制备的纳米功能化修饰金电极的方法简便,性能稳定,电极可更新,使用寿命长。本修饰电极用于牛奶中细菌总数的测定是可行的。将此电极用于牛奶中细菌的测定相比于传统生物学方法更简单、快速和准确,大大缩短了分析时间,且检出限低,具有一定的推广应用价值。
References
1 Abdullah D A, Saby A H. Food Control, 2009, 20(10): 913~917
2 Johnson E A, Nelson J H, Johnson M. J. Food Prot., 1990, 53(5): 441~452
3 Beran G W, Shoeman H P, Anderson K F. Dairy Food Environ. Sanit.,1991, 11(4): 189~194
4 LI DongYang, RU ShiPing, WU Jian, YING YiBin. Chinese J. Anal. Chem., 2010, 38(4): 573~576
李冬阳, 茹柿平, 吴 坚, 应义斌. 分析化学, 2010, 38(4): 573~576
5 Andrea G, Annalisa M, Paola C, Rosangela M. Food Control, 2009, 20(8): 733~738
6 Rose M T,Deaker R, Potard S, Cuc K T T, Vu N T, Kennedy I R. World J. Microb. Biot., 2011, 27(7): 1649~1659
7 Reidt U, Geisberger B, Heller C, Friedberger A. JALA, 2011, 16(2): 157~164
8 Yang L J, Ruan C M, Li Y B . Biosens. Bioelectron., 2003, 19(5): 495~502
9 Tun T N, Cameron P J, Jenkins A T A. Biosens. Bioelectron., 2011, 28(1): 227~231
10 Han S B, Li X, Guo G M, Sun Y S, Yuan Z B. Anal. Chim. Acta, 2000, 405(12): 115~121
11 Tang H, Zhang W, Geng P, Wang Q J, Jin L T, Wu Z R, Lou M. Anal. Chim. Acta, 2006, 562(2): 190~196
12 Berrettoni M, Tonelli D, Conti P, Marassi R, Trevisani M. Sensors and Actuators B, 2004, 102(2): 331~335
13 Huang K J, Niu D J, Liu X, Wu Z W, Fan Y, Chang Y F, Wu Y Y. Electrochim. Acta, 2011, 56(7): 2947~2953
14 Zhang L, Zhang J, Zhang C H. Biosens. Bioelectron., 2009, 24(7): 2085~2090
15 Rong G, Zhao G H, Liu M C, Li M F. Biomaterials, 2008, 29(18): 2794~2801
16 SUN ChunPu, ZHANG JianZhong, DUAN ShaoJin. Introduction to Free Radical Biology. Hefei: Press of University of Science and Technology of China, 1999: 48~50
孙存普, 张建中, 段绍瑾. 自由基生物学导论. 合肥: 中国科技大学出版社, 1999: 48~50
17 Conway O B E. Prog. Surf. Sci., 1995, 49(4): 331~452
18 Zhao W, Xu J J, Shi C G, Chen H Y. Electrochem. Commun., 2006, 8 (5): 773~778
19 WANG JinGang, WANG XiKui, GUO WeiLin, GUO PeiQuan, GU ZhongMao. Physical Testing and Chemical Analysis Part B, 2007, 43(6): 495~497
王金刚, 王西奎, 国伟林, 郭培全, 顾忠茂. 理化检验化学分册, 2007, 43(6): 495~497
Rapid Detection of Microorganisms in Milk Using an Insitu
Prepared Nanofunctionalized Gold Electrode
WANG XueYing*1, GU Feng1, YIN Fan1, TU YiFeng*2
1(Department of Chemistry, Changshu Institute of Technology, Changshu 215500, China)
2(Institute of Analytical Chemistry, Soochow University, Suzhou 215123, China)
Abstract An insitu, facile and rapid method was developed to prepare a nanofunctionalized gold electrode. By the electrolysis under applied potential of +2 V in PBS of pH 7.0 for 10 min, a rough nanoporous film formed on the surface of a polished gold plate electrode. This novel nanofunctionalized gold electrode could be applied for rapid detection of bacteria quantity in milk. The detection was based on the catalysis of lipid peroxidation on cell membrane of bacteria by the nanoporous Au film. The response of the current in chronoamperometry would linearly respond the bacterial content in milk which was calibrated by the national standard method (Standard plate count method). Therefore the accurate quantity of bacteria was attained from the current response on prepared electrode. The results showed that the target bacteria could be detected at a content range from 1.1×103 cfu/mL to 2.5×107 cfu/mL. The whole process of the detection could be completed within 1 h.
Keywords Nanofunctionalized gold electrode; Bacteria; Rapid detection; Lipid peroxidation; Chronoamperometry
(Received 26 August 2011; accepted 19 December 2011)
中国化学会第十一届全国分析化学年会
(第二轮通知)
由中国化学会、青岛科技大学承办的第十一届全国分析化学年会,定于2012年10月26~29日在青岛召开,10月26日报到。会议将就我国自上届学术会议以来分析化学学科的新成就、新进展进行学术交流和讨论,会议邀请国内外从事分析化学研究的著名科学家、中青年学者、技术人员和仪器生产厂商参加,热忱欢迎踊跃投稿并到会交流。
一、征文要求
征文范围详见第一轮通知(可访问会议网站ac.qust.省略/)。投稿论文要求主题明确、数据可靠、逻辑严密、文字精炼。文稿必须包括题名、作者姓名和单位、中文摘要和关键词 (3~6个)、中图分类号、正文、参考文献、英文题名和作者姓名及单位。请严格按照论文模板投稿。模板见会议网站(ac.qust.省略/)。
在首页页脚处写明第一作者简介(出生年、性别、职称、学位)以及基金资助情况(标出项目批准号)。请同时提供稿件联系人的电话、传真、详细通讯地址和 Email。论文用Word文件,通过会议网站网上投稿系统提交会议论文。
本次会议将增设青年论坛及仪器专场报告会。
二、会议注册和回执
1、注册费标准、要求和汇款方式可登录本会议网站ac.qust.省略/查询。中国化学会会员和学生注册后需提交有效证件以享受注册费优惠。
2、2012年6月在会议网站上公布宾馆住宿标准及预订事项。请拟参加会议的代表请在线填写会议回执。
三、其它事项
会议相关事宜请与青岛科技大学化学与分子工程学院张书圣教授、丁彩凤教授联系。筹备组联系电话:0532-84022750 (张书圣),053284022946 (丁彩凤),传真:0532-84022750。
论文相关事宜请与接桂芬老师联系,电话: 15166038289
(一)力学性质
高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳迷材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。
(二)磁学性质
当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。
(三)电学性质
由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。
(四)热学性质
纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。
二、纳米材料在化工行业中的应用
(一)在催化方面的应用
催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。
纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生电子——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。
(二)在涂料方面的应用
纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米TiO2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米SiO2是一种抗紫外线辐射材料。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。
(三)在精细化工方面的应用
精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米Al2O3,和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。
纳米科学是一门将基础科学和应用科学集于一体的新兴科学,主要包括纳米电子学、纳米材料学和纳米生物学等。21世纪将是纳米技术的时代,为此,国家科委、中科院将纳米技术定位为“21世纪最重要、最前沿的科学”。纳米材料的应用涉及到各个领域,在机械、电子、光学、磁学、化学和生物学领域有着广泛的应用前景。纳米科学技术的诞生,将对人类社会产生深远的影响,并有可能从根本上解决人类面临的许多问题,特别是能源、人类健康和环境保护等重大问题。
论文关键词:纳米材料;化工领域;应用
论文摘要:充满生机的二十一世纪,以知识经济为主旋律和推动力正引发一场新的工业革命,节省资源、合理利用能源、净化生存环境是这场工业革命的核心,纳米技术在生产方式和工作方式的变革中正发挥重要作用,它对化工行业产生的影响是无法估量的。这里主要介绍纳米材料在化工领域中的几种应用。
从贫民中走来
1947年1月一个春寒料峭的日子,李述汤出生在湖南宝庆东乡两市塘履安里(今邵东县大禾塘街道办事处里安村)一栋矮小的土坯房里。父亲李秉纲是一名军人,1928年4月考取黄埔军校第六期步兵第三大队,官至军湘西纵队少将司令。解放前夕,李秉纲率妻儿举家迁至香港,先是在荔枝角落脚,后又搬迁到青山、屏山、元朗等地。
幼年李述汤在香港的生活,可谓是辗转流离。李述汤回忆说:“父亲是堂堂黄埔军校六期毕业的知识分子,但一句广东话都不会说,落得养鸡养猪谋生,母亲又长年重病不起……”饶是如此,他们家也无法在一处久居。在李述汤的记忆里,小时候印象最深的就是搬家,而每搬一次家,他就得换一所学校。限于条件,小时候李述汤就读的学校都不是殖民地政府资助的学校,而是由社会、宗教、慈善机构设立的学校。这类学校大多条件简陋,而且相对偏远。李述汤清楚地记得:“小学四年级那年,我每天都要从元朗走很远的山路到屏山上课,不知怎么,那条荒凉的小路总好像永无尽头,愈走愈远,而脚后踢起的沙砾又嘎嘎作响,让我老觉得有鬼在后面追我,好害怕。结果我就每天逃学,逃了好几个月……”
之后,父亲李秉纲在调景岭学校谋得一个职位,李述汤就此进入这所有教会背景的学校,开始有了相对稳定的求学环境。但到了中学三年级时,由于母亲病逝,积蓄耗尽,家道衰落不堪,连一日三餐都难以为继,李述汤三兄弟无奈只好入住专为收容无家可归儿童所设的“调景岭学生辅助社”(“香港学生辅助会”前身)。
调景岭位于香港九龙东鲤鱼门湾外,曾经是一个三面环水的荒山,除通往筲箕湾的水路和山上一条崎岖狭窄的小路通往观塘外,几乎与世隔绝,是香港一个非常特殊的地方,鱼龙混杂,贫困与荒织。1950年,香港政府将调景岭辟为难民徙置区,区内聚集了一大批战败后逃离大陆的军人。他们在这里开山建房,无限期居留,实行自我管理。后来,港府在山顶建警署,仅只监视区内居民不杀人放火,其他活动都不予管束。据李述汤回忆:“岭上公共设施匮乏,初入住时,连自来水都没有。我与百多名来自困难家庭或父母双亡的孩童,挤住在辅助社四处透风漏雨的破木板屋里。”为了活命,李述汤偷过甘蔗、偷过鱼,甚至与蛇共眠。就在这样一个环境中,李述汤没有放弃一切读书的机会,坚持艰难求学。在回忆这段求学生涯时,李述汤不无感慨地说:“当时,辅助社没有医生,传教士看我还能读书,便想培养我读医科,将来可以为辅助社服务。可惜我念的都是中文学校,英文不够好,当然考不上那时唯一有医科的香港大学,结果无心插柳柳成荫,考取了香港中文大学化学系。”
1969年从香港中文大学毕业后,李述汤先后以优异成绩取得美国纽约州罗彻斯特大学和加拿大英属哥伦比亚大学化学硕士和博士学位。1974年,李述汤应聘到美国加州大学柏克莱分校做博士后研究工作,1976年成为美国柯达公司高级研究员,1994年担任香港城市大学物理与材料科学系教授及超金刚石及先进薄膜研究中心主任,2001年被聘为中国科学院理化技术研究所教授及纳米有机光电子实验室主任。
三次荣获国家科技进步奖
李述汤长期致力于有机光电子材料及显示器件、纳米功能材料及器件、金刚石及相关超硬薄膜材料的研究,取得了一系列创新性研究成果,获美国专利20余项。
在金刚石研究方面,李述汤着力开展硅衬底上金刚石成核、生长及异质外延的机理研究,揭示其形成机理,探索出制备高质量外延金刚石薄膜的方法,用含烃的低能离子束在硅衬底上直接生长出异质外延的立方金刚石纳米晶,并将技术推广到合成其他半导体材料的纳米线中。他研究的“金刚石及新型碳基材料的成核与生长”“氧化物辅助合成一维半导体纳米材料及应用”和“高效光电转换的新型有机光功能材料”3项成果,先后荣获德国洪堡基金会研究成就奖(Humboldt Research Award)、香港裘槎基金会高级研究成就奖(Croucher Senior Research Fellowship)、2008年度何梁何利基金科技进步奖,2003年度、2005年度和2013年度国家科学技术进步奖二等奖。
这些年来,李述汤在国际化学、物理、材料等科研领域的著名期刊发表学术论文900余篇,出版专著9部,其中有5篇尖端在美国著名的《科学》杂志和英国的《自然》杂志上。他的论文被引用超过2.6万余次,据ESI和ISI数据库检索,其论文引用次数在全世界材料科学领域中排名前25位。因而,他先后被聘为《Applied Physics Letters》和《Diamond & Related Materials》杂志副主编,《Physica Status Solidi》杂志亚太区主编(2004~2007),《New Carbon Materials》和《Journal of Materials Science & Technology》杂志编辑委员会委员,《Advanced Functional Materials》和《Applied Nanoscience》杂志顾问委员会委员。
1994年回到香港后,李述汤相继成功策划、主持了30余项大型研究项目,先后获得香港研究资助局和创新科技基金提供的6000余万港元的科研资助。近些年来,李述汤在内地也分别承担了多项国家“863”和“973”项目的研究任务。
因为取得了这些令全球科技界折服的研究成果,李述汤于2005年当选为中国科学院院士。2006年5月31日,中国科学院院长路甬祥飞抵香港,亲自为李述汤颁发院士证书。此后不久,李述汤又当选为第三世界科学院院士。
亚洲纳米技术领军人物
2003年3月21日,全球自然科学界最权威的刊物《科学》杂志的封面,刊登了李述汤研究成功的3根漂亮的纳米硅线的照片,全球最细的纳米硅线第一次清晰地展现在世人眼前,这意味着全球纳米研究领域对李述汤研究成果的肯定,也表明这项研究在全世界的影响力。
纳米是长度单位,原称毫微米,就是十亿分之一米,相当于4倍原子大小,比单个细菌的长度还要小。纳米技术乃当今世界科技研究最尖端、最有前景的领域,而纳米硅线又是纳米技术中最热门、竞争最激烈的研究领域。自20世纪初以来,无数科技精英投身其中,力图跨越这十亿分之一米的距离。但谁也没有想到,李述汤凭借自己渊博的学识和坚忍不拔,在这个领域力拔头筹,成为亚洲纳米技术研究的领军人物、香港纳米材料研究的第一人。
“不是吹牛,我做的纳米硅线是全世界最好的。”李述汤每次谈起他的纳米硅线,率真得煞是可爱。他旗下的超金刚石与先进薄膜中心,是世界上两所最早制造出纳米硅线的实验室之一。
1994年,李述汤告别美国的优厚待遇,毅然加入香港城市大学。自1996年开始,他率领攻关小组,主攻纳米硅线。这个研究团队由2名讲座教授(香港大学级别最高的教授)和4名副教授组成,平均每人带领4至7名学生,夜以继日地开展研究、试验。7年间,他们取得了令全球瞩目的成就。首先,他们研制出全球最小的纳米硅线,直径只有1纳米(头发的五万分之一)。接着,他们通过扫描隧道显微镜,不仅看到了稳定的纳米硅线图像,更是拍下了极其清晰的珍贵照片。如今,他们更是进一步发现,纳米硅线具有特殊的光学性质。李述汤非常自信地向全世界宣布,他们的这一发现将为纳米材料的研究掀开崭新的一页。他估计,5年后,以纳米硅线为发光源的纳米激光将会问世,体积更小、速度更快的纳米电脑也将在10年内诞生。“这可是一个产值以千亿计的大产业!”李述汤难以抑制心中的兴奋。
“您在这个具有高度竞争性和战略意义的科学领域里,作出了特别显著的贡献。”纳米研究领域的国际权威、1996年诺贝尔化学奖得主克罗托(H.W.Kroto)教授在参观完李述汤的实验室后,作出如是评价。纳米硅线、纳米金刚石、纳米发光,是全球最具发展前途的3个研究领域。李述汤挂帅的超金刚石与先进薄膜中心,是亚洲纳米硅线研究的金字塔塔尖,是香港唯一受惠于国家资助高科技研究的“863”计划的机构。
创建苏州大学纳米科学技术学院
苏州大学坐落在古城苏州之南,是国家“211工程”重点建设高校,其前身为创建于光绪年间的东吴大学。作为全国最早建成的现代高等学府之一,苏州大学创造了中国近代高等教育史上的若干个第一:第一所实施西式办学体制的大学,第一所开展研究生教育并最早授予硕士学位的大学,第一所开设法学专业的大学,第一所创办学报的大学……而如今,有了李述汤的全职加盟,有了李述汤领衔创建的纳米科学技术学院,苏州大学更加声名远播。
李述汤时常对学生说:“中国人要在中国的土地上,做出令中国人骄傲的事情来。”他是这样说的,也是这样做的,在香港如是,在苏州亦如是。2008年,当苏州大学党委书记王卓君和校长朱秀林到香港拜会李述汤时,李述汤粲然一笑。他没有半点“矜持”,主动将实验室组建方案摊到桌上,只向来者提出了一个条件,那就是能在“无时间限制、无指标规定、无框架局限”的“三无”状态下,组建自己理想中的研究机构――一个真正干事的研究院。求贤若渴的书记和校长二话没说,双双伸出有力的大手,与李述汤紧紧握在一起。这一年6月9日,苏州大学功能纳米与软物质(材料)实验室在独墅湖校区成立。2010年10月16日,苏州大学纳米科学技术学院揭牌。2012年2月22日,苏州大学与加拿大滑铁卢大学、苏州工业园区联袂打造的纳米技术联合研究院正式启航。
加盟苏州大学后,李述汤全身心投入到了苏州这块纳米产业高地,无论是基础建设,还是招兵买马,他都亲自过问,亲自拉“盘子”。为了纳米科学技术学院的建设,李述汤可谓是呕心沥血,倾注了全力。
主要完成人:陈彦模、朱美芳、张瑜、陈龙、张志明、吴文华
项目背景
自20世纪90年代以来,纳米材料与纳米技术的发展形成了基础研究与应用研究并行发展的格局。纳米材料的研发涉及到有机、无机、高分子等各个方面,纳米材料结构功能的复合化已成为其应用研究极具生命力的方向之一;同时,与人们生活息息相关的化学纤维,从原料、技术、产品到应用都在迅速发展,传统功能材料已难以满足细旦化功能性化学纤维开发的技术要求,聚丙烯纤维的可染化、功能化、细旦化技术成为聚丙烯纤维新产品开发的主导方向。
然而,功能材料的纳米化,又为其在高粘度、复杂流场(温度场、剪切力场和速度场)作用下的高聚物熔体中的应用带来了新的难题,纳米功能材料在热塑性高聚物基体中的纳米尺度分散成为功能细旦化学纤维开发的核心问题。其具体难点表现在:(1)无机纳米粉体制备使用过程中的易团聚与难分散:(2)纤维成形过程中纳米结构有机分散相的形成机理与结构控制;(3)纳米复合材料功能纤维工业化推广的技术可行性与成本控制。针对目前可染聚丙烯及功能聚丙烯纤维材料研究开发和生产应用过程中存在的问题,该项目将前沿纳米技术与新型杂化技术、功能组装技术以及纤维加工技术有机结合,深入系统研究有机分散相原位纳米尺度生成、有机一无机杂化材料制备及成纤用纳米功能材料制备、修饰及纤维生产加工等一系列关键技术,开发出了新型可染细旦聚丙烯和纳米复合功能聚丙烯纤维及制品。
主要创新点
1、通过调控改性聚烯烃(MPO)与基体(PP)两组分配比和特性(粘度比、相容性等)配伍,控制纤维成形过程中的动力学参数(时间、压力等)和热力学参数(温度),自主开发了聚丙烯成纤过程中有机纳米分散相原位生成技术,首次研制出具有纳米级染座的常压可染细旦(纤维直径小于10 μm)聚丙烯纤维。
2、采用有机一无机及有机一有机杂化技术在聚丙烯基体中引入有机和无机纳米相,通过对聚丙烯基杂化材料的结构设计,首次研制出鲜艳度明显提高的可染细旦聚丙烯纤维。
3、首次建立了聚丙烯基纳米复合材料纺丝动力学模型,揭示了无机纳米功能材料与聚丙烯基体在外场作用下的相互作用机理,开发了高压和高剪切纺丝成形工艺,解决了功能纤维细旦化难、可加工性差和纳米材料的“二次团聚”等系列关键问题,为生产推广中成纤过程工艺参数的制定提供基础理论依据。
4、研制出色牢度4~5级的可染至中偏深色的细旦聚丙烯纤维以及负氧离子发生率>5000个/cm3的系列负离子细旦聚丙烯纤维和远红外发射率>87%的系列远红外细旦聚丙烯纤维和抑菌率>99%的系列抗菌细旦聚丙烯纤维。
推广应用
该成果首次实现了通用纤维功能性、舒适性与可加工性的有效统一。产业化效果显著,聚丙烯纤维在可染基础上鲜艳度明显提高,功能组分加入量减少50%以上,可纺性好,生产过程无任何气固液废物排放,不会增加能源消耗,产品的加工成本低。
该成果拥有完全自主知识产权,在10多家企业得到应用,已开发2大类6个系列产品。2005年至2007年新增产值4.56亿元,新增利税1.18亿元,创收外汇2388.13万元。申请国家发明专利7项,其中已授权6项,在新材料制备成形加工理论方面有新的发现。近五年发表期刊论文17篇,并多次应邀作大会邀请报告或主旨报告。鉴定结论及检索结果表明,该成果处于“国际领先水平”。
论文关键词:静电纺丝,硝酸镧,氟化铵,PVP,纳米纤维
随着稀土应用研究的广泛和深入发展,稀土氟化物在新材料特别是功能材料研究方面,重要性日渐突现。LaF3晶体具有低的声子能量,高的热和环境稳定性,被广泛用于发光基质材料[1-4]。近几年,掺杂稀土的氟氧化物因其在光通讯方面的应用而发展了起来。这种材料可以提供低的声子能量[5]。自从1993年首次报道以来,稀土离子在氟氧化物中的溶解性,热和环境稳定性的研究得到了很大发展[6,7]。
目前,已见很多文献报道了用不同方法制备出稀土氟化镧纳米微粒[8]、氟化镧薄膜[9]、氟化镧纳米线[10]等,未见有制备出氟化镧纳米纤维的相关报道。本文将稀土氟化物和氟氧化物的特点结合起来,用静电纺丝技术成功制备出LaF3/LaOF复合纳米纤维PVP,并对其进行了结构表征,希望发现新的特性。
1 实 验
1.1 LaF3 /PVP溶液的配制
(1)用电子天平称取一定量PVP,置于磨口烧瓶中,量取一定量无水乙醇,注入磨口烧瓶中,再放入磁力搅拌子,盖上瓶塞。将该磨口烧瓶置于磁力搅拌器上,常温下搅拌12小时杂志网。得到无色透明有一定黏度的PVP的乙醇溶液。
(2)称量一定量硝酸镧固体和氟化铵固体,放入烧杯中,加入少量去离子水,搅拌几分钟,生成白色沉淀。将沉淀加入到PVP溶液中,搅拌24小时,形成白色悬浊液,即为LaF3/(PVP+乙醇)混合溶液。静置3小时,即可进行纺丝。
1.2 LaF3/PVP纤维的制备
将适量制备好的不透明溶胶倒入注射器内,金属电极插入注射管前端。接收距离以毛细管尖端与接收板(铁丝网)的距离为准,为15cm,然后施加20kV的电压。接收时间为48h,得到一层纤维毡。此过程需要不断向容器内补充LaF3/PVP复合溶液PVP,每隔约10min须用干净的滤纸擦拭毛细管管口。
1.3 LaF3/LaOF复合纤维的制备
取上一步骤制备的纤维,将其平铺在坩埚或方舟内,放置于马弗炉中加热。升温速度控制在约0.5°C/min,分别在500°C,600°C,900°C保温10h,自然降温。高温焙烧之后,纤维体积减少,韧性差。样品在热处理中发生了很大的变化,处理前是白色的纤维,当达到500°C时,样品体积明显变小,呈浅灰色薄膜状。达到600°C时,样品体积明显变小,呈白色薄膜状。达到900°C时,样品体积明显变小,呈白色颗粒状。
1.4 测 试
采用S-4200型SEM进行纳米纤维形貌与直径分析;采用Y-2000型X射线衍射仪进行结构分析;采用SDT-2960型差热分析仪对样品进行热重分析和差热分析。
2 结果与讨论
2.1 扫描电镜分析(SEM)
无机-有机前躯体纤维以及经过不同温度煅烧的纤维的形貌如图1。其中(a)为前驱体纤维,由扫描电镜的照片可以看出,LaF3/PVP复合纤维直径较大PVP,约为400nm,表面光滑,尺寸分布均一,彼此没有交连。而由经过焙烧后的 (b)可以看出,纤维中的PVP 逐渐分解,纤维产生非常明显的收缩,直径由原来400nm减小到200~250nm。纤维在热处理过程中,除了体积上的明显收缩以外,纤维出现弯曲杂志网。(c)可以看出,600°C时,PVP已分解完全,纤维没有因为高分子的分解而失去支撑,纤维直径约为150nm。 (d)可以看出900°C焙烧后纤维部分断裂,由颗粒堆积组成,说明焙烧温度过高不易得到纤维。
图1. LaF3/PVP复合纤维及不同焙烧温度下样品的
SEM照片
(a) LaF3/PVP复合纤维 (b) 500°C (c) 600°C (d) 900°C
2.2 XRD分析
将LaF3/PVP复合纤维分别在500℃,600℃,900℃下焙烧,所得样品的X射线衍射见图2。由图中a,b,c可以看出,500℃时已经生成氟化镧晶体PVP,但是晶体发育还不完全,衍射峰不明显,基线比较杂乱。600℃时晶体发育比较好,但是部分氟化镧转变成了氟氧化镧,这是由于焙烧温度升高、焙烧时间延长所致。900℃时晶体发育完全,但是大部分氟化镧转变成了氟氧化镧,这是由于焙烧温度更高,时间更长所致。
图2. LaF3/PVP复合纤维在不同焙烧温度下样品的XRD图
a.500°C b. 600°C c. 900°C
2.3 LaF3/LaOF复合纳米的形成机理
3 结 论
(1)采用静电纺丝技术成功制备出大量的
LaF3/LaOF复合纳米纤维,使无机纳米纤维的制备工艺大大简化,为一维结构纳米材料的深入研究奠定了坚实的基础。
(2) SEM 分析表明,得到的纤维平均直径150 nm,长度>50μm。
(3)XRD 分析表明,得到的纤维为LaF3/LaOF复合纳米纤维。在600℃时晶体发育比较好,衍射峰比较强。
参考文献:
[1]Stouwdam J W, van Veggel F C J M. NanoLett., 2002, 2: 73.
[2]Zheng H R, Wang X T, Dejneka M J, et al.J. Lumin., 2004, 108: 39.
[3]Kam C H,Buddhudu S J. Physica B, 2004, 344: 18.
[4]Wang X J, Huang S H, Reeves R, et al. J.Lumin., 2001, 229: 94-95.
[5]M.J. Dejneka,MRS Bull. 1998, 23: 57–62
[6]M.J. Dejneka, J. Non-Cryst. Solid. 1998,239: 149–155.
[7]Y. Wang, J. Ohwaki, Appl. Phys. Lett. 1993,63 : 3268
[8]张茂峰,孟建新,刘应亮,等.LaF3:Eu3+纳米粒子的水热法制备及发光性质研究. 中国稀土学报,2005,23(5): 564-567.
[9]M. Vijayakumara, S. Selvasekarapandiana,T. Gnanasekaranb, et al. Structural and impedance studies on LaF3thin films preparedby vacuum evaporation. Journal of Fluorine Chemistry, 2004,125: 1119-1125.
[10]张茂峰,孟建新,时朝璞,等.LaF3纳米线的低温溶剂热法制备及形成机理. 无机化学学报,2006,22(10):1883-1886.
[11]崔启征,董相廷,于伟利,等.静电纺丝技术制备无机物纳米纤维的最新研究进展[J]. 稀有金属材料与工程,2006,35 (7): 1167–1171.
CUI Qizheng, DONG Xiangting, YU Weili, et al. RareMetal Mater Eng ( in Chinese), 2006, 35(7): 1 167–1 171.