公务员期刊网 精选范文 测量论文范文

测量论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的测量论文主题范文,仅供参考,欢迎阅读并收藏。

测量论文

第1篇:测量论文范文

在锅炉自身检验工作开展过程中,我们经常会发现如果炉墙温度过高时,会使得热量大量的散失和消耗,从而降低了锅炉的工作效率,同时对于整个锅炉系统的安全运行也带来了非常不利的影响。当前我国出台的锅炉节能标准中,对于锅炉的炉墙温度进行了一定的限制,对于检测壁面的传统设备等也发挥了很好的作用。因此采用新的热成像检测技术能够使得更好的完成检测过程,使得检测更加直观、具体,检测结果也更加容易方便记录。在利用热成像技术开展检测过程中,能够迅速的检测锅炉壁面的运行温度,通过对其相关的仪器设备显示情况进行显示,能够准确的了解锅炉内部的高温点分布情况,同时对于超过正常温度的范围可以提前做好控制,提高能源的利用效率,减少能源不必要的消耗,同时也可以为检测工作人员做好相应的准确工作,提前可以做好保温措施,避免出现工作中的一些遗漏。在利用热成像技术开展工作的过程中,利用壁面进行取像时,可以利用自然光进行取像操作,通过采用专门的软件设备,可以对不同的热成像图像进行对比,寻找不同之处,对其进行原因分析,从而能够有助于对锅炉运行过程中,热成像技术的运行精确度进行把控,对其影响因素不断进行分析和探讨,从而不断提高锅炉运行过程中的精确度,提高其检验效率,节约检验成本投资。热成像技术在应用于锅炉检测过程中,能够对存在温度异常的锅炉区域进行科学检测,从而有助于检测人员及时的发现保温层受到损害的情况,及时开展解决工作,降低其测量过程中的误差。采用这种新型的检验方式,能够更好的帮助工作人员制定一个检测计划,比如定期开展检测和养护工作,能够有助于能源的合理利用,提高能源利用效率。采用热成像技术对于锅炉的水垢方面也能够实现很好的识别管理,有效的做好水垢清除工作,节约成本,保证锅炉的良好运行。

2辅助设备的检验应用

在锅炉运行过程中,辅助设备的良好运行对于锅炉的安全运行有着重要作用,因此在锅炉检验工作开展过程中,还需要假期nag对辅助设备的检查和控制。在最近几年中,我国锅炉运行的自动化程度不断提升,因此采用辅助设备也会对锅炉的安全运行带来一定的影响,比如锅炉持续发热,就可能意味着锅炉的辅助设备出现了一定的磨损情况,或者是整个辅助设备出现了故障等,因此需要及时的展开检测工作,利用热成像测量技术就可以快速的展开检测工作,及时发现辅助设备中出现的电线脱落、连接过密等情况,从而能够及时的采取措施来达到有效解决的效果,从而保证其辅助设备的良好运行。

3结语

第2篇:测量论文范文

1.1三维可视化技术

三维可视化技术,是对一种能够形象立体的描述矿山模型的技术手段,利用三维可视化技术可以更加全面的了解矿体的地表形态与矿体空间信息之间的位置关系,为测量人员提供更精准形象的空间分析数据。三维可视化技术是通过三维动画软件来实现的,常用的动画软件是3DMAX,它具有先进的运动匹配以及数字化建模等功能,可以大幅度的提升三维可视化模型的制作品质。

1.2数字化资料处理技术

资料的数字化处理,是矿山测量系统的一项重要工作,矿山测量工作包括数据信息的采集、存储以及处理,数据类型主要是图形、数字以及表格等[2]。进行资料的数字化处理,需要用到计算机的辅助绘图功能和电子图表化功能,许多测量工作者会运用VB、AutoCAD等软件进行实际的数据处理工作。

2数字化测量在地面控制测量中的应用

2.1GPS地面控制网的布设要点

地面控制测量的主要目的是为施工放样、变形观测、地面大比例成图、建立整体的控制奠定基础,建立地面控制网可以对全局有一个整体的把控,限制测量误差的积累和系统之间的错误信息传递,因此,有利于提高测量数据的精准度[3]。GPS与地面控制测量结合,就形成了GPS地面控制网这种先进的地面控制测量方法,在布设地面GPS控制网时,要充分考虑测量范围的大小、精度要求以及点位密度等因素,可以根据工程的需要设定不同的边长。在分布网点时,要遵循统一的测量规则,按照严格的等级标准进行施工作业。

2.2常见的网形

GPS地面控制网对横向误差没有影响作用,但其长度却会对地下贯通的纵向产生误差,因此,两点通视网形和后视同一点网形这两种简便灵活的网形,在城市地铁的地面控制网布设中具有更加明显的优势。针对丘陵隧道情况,采用后视同一点布设网形不能直观的通视两个控制点之间的联系,但可以在丘陵山脊上设置一个新的控制点,实现与两点之间的通视,只要水平角度够精确,就可以显著地减少地面控制网对横向误差的影响[4]。

3数字化测量在井筒深部延伸中的应用

立井井筒深部延伸是矿井测量的一项关键工作,利用激光测距仪、全站仪等进行井筒深部延伸的贯通测量能够有效的降低横向误差,提高贯通测量的精确度,而且与传统的测量方式相比,还能满足井筒深部延伸的精准定位要求[5]。针对地理坐标北纬30°55′,东径117°49′,平均海拔为168.5m的丘陵地带开掘的直径3m,筒深600m的辅助井,可以直接对其改造并延伸成井,一般是先在井筒内预留一段超过5m的岩柱作为井筒隔离层,在180~300m深部采用吊罐反掘的方法刷大成井。为了提高竖井贯通工程的测量精度,采用全站仪和陀螺仪能够定向的反映辅助井的贯通施工,对丘陵地带的辅助井贯通施工具有很强的指导意义和实用性。

3.1贯通测量误差的预计

贯通测量误差,需要从既定的k点开始,沿平巷和下山敷设导线,并测量回到k点所引起的误差,从外部形式上看像一条闭合的导线k-1-2...15-16-k,在实际贯通之前是一条支导线,所以,在水平方向上的重要贯通误差,实质上是支导线终点k在x方向上的误差。

3.2辅助井贯通测量

在辅助井贯通测量的地面控制测量中,可在辅助井、措施井及混合井井口附加埋设3各相似的近井点,并建立以第1个近井点为坐标原点,其余两个为假定方位的坐标系统,将3个近井点之间用1条直线连接,利用全站仪测量6个回数,利用激光测距仪测量往返距离,在闭合的三角形中就可以测定导线边长,同台仪器的往返测距和不同测量方法的测量结果可以多次使用。由测量误差所引起的x、y方向上的误差,采用全站仪导线,全站仪的测角精度为2s,测距精度为2mm+2ppm,由于平均误差小于100m,所以各边的误差均小于2.2mm。利用陀螺仪可以简化深部延伸井筒的定向程序,先在地面上独立测量3个仪器常数,再在井下定向边上独立测量2次陀螺方位,基础定位程序可以在3d之内完成。辅助井井中测量的目的,是为了确定井筒的垂直度,一般是先地表标记出一个以井筒为中心点的十字线,沿井筒十字线放置两根钢丝作为几何投点,通过测量多处井点,利用余角法就可以推算出井中坐标的具置,并进而确定井筒的垂直度[6]。主井与辅助井贯通时的测量误差来自于两工作面上井筒中心的相对偏差,一般是先假定井筒中心线方向为y'方向,与它垂直的方向为x'方向,最后求出井筒中心的平面位置误差。对于两个相向开凿的立井贯通,需要同时进行地面测量、井下测量和定向测量,这些测量误差的所得出的贯通相遇点的误差,需要同时预计x'、y'两个方向上的误差。

4结语

第3篇:测量论文范文

热模拟测量法并非直接的测量,而是通过模拟绕组与变压器油之间的温度差来测量变压器的温升平均值。其工作原理是加热电流流经一个电热元件,产生了附加升温,再使用电流匹配器进行调节,使所升高的温度恰好与绕组油的温差相同。这种方法的缺点是受外界环境影响较大,必须在规定的环境条件下进行测量。并且,这种方法只能模拟平均温升,而无法获知最高温度。另外,电流回路还会增加设备维护的难度,安全措施难以做好。

2间接计算法

这种方法需要获知几种变压器其绕组的热点温度,通过套入公式来间接计算需要测量的变压器的温度。这种计算方法的模型有三种,分别基于技术标准、热路和热阻。这种方法的优点是计算结果准确,实用性非常强。

3在线测量技术的优越性

上文中提到,直接测量法成本高昂且结果不精准,光纤光栅法结果精准,但成本高昂,而热模拟法虽然在日德等许多国家都有应用,但理论分析与实际情况有着巨大差别,导致了测量结果的较大偏差。仅间接计算法按照《油浸式变压器负载导则》中提到的计算公式[2],可以较准确地计算出变压器的热点温度。间接计算法经济实用、操作简便的优越性使其在变压器测温方面得到了广泛应用。由于间接计算法要通过几种变压器来间接获得最终结果,计算过程耗费时间较长,对计算机运算能力要求极高,待结果得出后向有关部门反应,有关部门再派出维护人员进行维修,这使得间接计算法暴露出一个非常明显的缺点——计算复杂、反应不及时。为此,业界许多研究人员对变压器的温度测量方法进行了深入的研究,目前已经取得了一定的研究成果,制作出一种在线监测仪器。这种仪器基于负载导则,模型依循旧版导则的简单计算公式,受到外界影响的可能非常小,结果的精确度非常高。由于计算公式涉及到的温度是稳态温度,不必考虑不同时间段温度的变化会对最终结果造成影响。在线监测仪器内置GPRS模块,可以与距离较远的变电站实现远程监测与控制。

4在线测量系统

4.1在线测量系统的工作原理

在线测量系统包括上位机、下位机、传感器和变压器本身。电力人员在油浸式变压器内安装在线监测仪器,在线监测仪器包括N个温度传感器,传感器在变压器温度上升时通过下位机中内置的GPRS模块将信息传送至变电站的控制中心,变电站的工作人员通过上位机获得变压器的温变信息,可以及时快速地安排人员前去维护。下位机的主要部件有温度传感器与单片机处理单元。下位机在变压器上只需安置五个检测点,即可对变压器的底部、油面、顶部、箱体以及环境五处温度进行及时的监测。下位机内置微处理器,与传感器相连,通过液晶屏显示即时温度。五处检测点,有任何一点的温度值超过内置的温度标准,将会引发微处理器发生报警信息。下位机通过内置的GPRS模块将信息传输至变电站内的上位机,上位机内的相关软件通过代码编译,迅速显示出工作人员可以理解的曲线和数据结果,并作出音像报警和故障分析。

4.2硬件

4.2.1下位机下位机的温度传感器通常为产自美国Dallas公司的DS18-B20半导体,微处理器一般为Atmel公司生产的AT89-S52。这种微处理器的串口可以跨越较远的距离,与GPRS模块进行数据传输。YM-12684液晶屏可以显示温度信息与故障代码。温度传感器通过屏蔽双绞线将温度信号传送至单片机中,鉴于屏蔽双绞线的特性,有效距离最多为50m。4.2.2GPRS模块GPRS模块是远距离无线通信的核心,通过TCP/IP协议,数据可以畅通到达终端设备处。

4.3软件

4.3.1通信协议在线测量系统的通信协议就是上文所提到的TCP/IP协议,AT指令集也能支持。4.3.2上位机和下位机软件上位机的软件可以借助GPRS模块查询到来自下位机的变压器温度信息,并显示温变数据、绘制温度曲线、打印温度报表、做出音像报警、记录故障信息、分析故障原因。下位机的软件依托于C语言指令,循环读取各个端口的温度信息,依照内置命令完成监控、报警功能。

5结语

第4篇:测量论文范文

随着科学技术发展,各行各业的技术进步已是日新月异,测量技术也取得了长足的进步,如今,全站仪、测量机器人、电子水准仪、激光准直仪、激光扫平仪等在工程测量中已广泛应用,不仅大幅降低了工程测量的工作强度,更为工程测量向自动化、数字化方面的发展提供了坚实的基础。同时,新装备的应用,也改变了工程测量的技术手段和作业流程,如改变了传统的工程控制网布网、地形测量、施工测量、变形监测等的作业方法,GPS测量控制网、测距导线网成为控制网布设的首选,GPS高程测定、光电测距三角高程导线已可以代替三、四等水准测量,具有连续定位功能的全站仪或RTK用于施工放样测量和碎部测量,免棱镜测距仪减轻了工程测量的工作强度,具有自动跟踪测量功能的测量机器人为碎部测量提供了理想的仪器;另外,测量数据处理的手段也发生了根本的改变,数据采集甚至实现了自动化,手工绘图已成为历史,数据计算已经全面电子化。

2、GPS定位技术在工程测量中发挥的作用

GPS技术的出现和广泛应用,是测量技术的重大变革,它改变了许多工程测量的方法和手段,大大减轻了工程测量的难度、工作量和工作强度。GPS技术具有全天候、海陆空均可进行三维定位的能力,利用GPS定位技术,在工程测量时可以方便快捷地测定高精度的三维坐标,具有高速度、高精度、操作简单、方便灵活的特点。当前,GPS定位技术已经应用到各行各业,在工程测量中,无论是各等级控制网的建立与改造,还是在单点定位、地形图测绘、线路施工、变形监测、地球板块监测、海岛海礁测量等,都具有得天独厚的优势和便利性。随着我国各地大范围、高密度CORS基准网的全面建设完成,利用GPS差分定位技术和RTK实时差分定位,单点定位技术和精度不断提高,GPS技术在工程测量中控制网布设、碎部点测绘、施工放样、变形监测、高程测定等方面已经全面应用于实际工作中。同时,利用GPS定位技术连续、实时、自动测量的特点,加上自动化处理技术,工程测量中自动测量、实时处理、连续监测的应用将有很大的发展空间。

3、RS技术已是地形图测绘的重要手段之一

RS(遥感)技术在测量中的应用有着悠久的历史,并发挥着巨大的作用。RS技术的特点是不需要接触观测目标、直接通过遥感信息对其各项特征信息进行解译处理,提取有用信息。利用RS技术获取的信息(如遥感影像等),通过纠正定位,可以获取准确的地理空间信息,因此广泛应用到工程测量中。当前,随着高质量、高精度、高效率、低成本的遥感测量仪器的不断推出,结合计算机技术中的应用,RS技术已经能够提供完全、实时、大范围的三维空间地理信息,特别是广泛应用于地形图测绘中。RS技术的广泛应用,降低了测量成本,减少了外业工作量,缩短了测量周期,具有测量高效、高精度,成果品种多、直观性强等特点。在地形测绘、线路勘选、变形监测、文物保护等工作中起到了巨大的作用。如今,全数字摄影测量系统、集群式数字摄影工作站等新技术已经全面应用,为RS技术应用提供了更为高效的技术手段和方法,也使得RS技术在工程测量中发挥了极其重要的作用。

4、数字化技术成为工程测量中的主流

大比例尺地形图测绘是工程测量的重要内容,以往常规的模拟成图方法靠模拟采集、现场手工绘制、事后整理整饰,是一项脑力劳动和体力劳动结合的艰苦的野外工作,而且手工描绘成图周期长,产品形式单一,专题成果制作困难,成果应用不能实现多样化,难以适应现代化工程建设对地形图多样化的需要。随着全站仪、RTK等数字化测量仪器的广泛应用和数字化专业成图系统的出现,工程测量从模拟时代进入到数字化时代,它把野外数据采集、计算机数据处理、数字制图、成果分类分层存放等优势有机结合起来,形成了内外业一体化的数字化成图系统。况且数字化测绘技术产品成果多样,能够轻松制作不同用途的专题产品,能够轻松应对各类工程测量中的多样化需求,同时还能有效提高工作效率,成果存储、管理应用、转移等方便易行。如今,数字化测绘技术在工程测量领域已是广泛应用,大比例尺测图技术及其产品已经实现了数字化、信息化、多样化。随着专业数字化成图系统的不断发展,一些工程图纸(如纵横断面图、宗地图等)实现了自动绘制,有效提高了工程测量的工作效率。数字化的专业成图系统不仅可直接提供纸图,还可以建立专业数据库,为基础地理信息的多样化应用和服务自动化、网络化、社会化打下良好的基础。

5、GIS技术在工程测量成果应用服务中渐成主流

随着数字化技术在工程测量中全面普及,测量数据采集与处理已实现数字化,工程测量进入了全数字化时代。然而,大量测量成果如何更好地服务于社会发展和工程建设,是必须解决的问题。面对海量的地理信息成果数据,怎样管理和应用工程测量成果,目前最好、最有效的方法就是利用数据库技术和GIS技术。具体地说,就是将测量成果进行标准化、规范化的处理,通过建立地理信息数据库及其应用管理的信息系统,有效管理、存储和处理测量成果;利用GIS的统计和分析更能,提供针对性强、满足专题应用的图件和统计结果,更好的应用测量成果;同时利用网络技术,实现测量成果服务应用和定向分发的网络化和自动化,更好地应用到科学管理和科学决策中。GIS管理应用系统建设是一项复杂、庞大的系统工程,不仅需要较大的资金投入,也需要网络等基础设施的支撑,更需要技术人才的培养,才能发挥其巨大的作用。如今,GIS技术已经得到政府部门的高度重视,在专业部门得到推广应用,并已成为信息产业的重要组成部分,地理信息产业的发展,也迎来了良好的发展局面。

6、InSar技术逐渐被重视

合成孔径雷达干涉测量(InSAR)是近期才发展起来的一项新的对地测量技术,它是以合成孔径雷达复影像数据中提取的相位信息作为数据源,通过整合处理和运算,获取地表三维信息和及其变化信息,精度高、范围广,且InSAR技术具有全天候、全天时和一定的透视性的优势和特点,这种技术已经引起了世界各国的广泛关注和深入研究。目前,这种技术的应用已经十分的广泛,比如:在监测地震变形中的有着重要的应用,在大范围检测监测厘米级或更微小量级的地球表面形变中也起着越来越重要的作用,在形变灾害监测领域和滑坡形变监测中也有着不可替代的优势和作用,等。正因如此,InSar技术在工程测量中也逐渐得到重视,应用前景和发展前景十分广泛。

7、结语

第5篇:测量论文范文

作者:马知也 单位:兰州职业技术学院

网络流量采集方法

对经过该链路的流量进行监听和捕获,按一定格式将流量数据进行编码,或者将其汇聚为流数据,发送给后台的接受存储设备.IPFIX工作组[3]定义了采集设备将流量发送给后台接受设备的协议及数据格式.数据存储模块对采集并初步处理后的数据在存储设备中进行存储以备进行下一步数据分析.小型测量系统存储数据到本地采集系统的硬盘上,并实时的进行分析处理和应用.而在大型测量系统中一般有专用的中心存储设备来存储数据,通过专用或普通链路接受各个测量结点捕获的数据.数据分析部分对流量特征进行分析,并将这些数据用于计费、异常检测等应用.网络设备支持的流量采集有些路由器或交换机本身具有流量采集的功能,在进行路由转发等功能的同时,它们可以通过专用的硬件设备采集网络流量数据,并进行初步处理,然后将其转发到后台专用流量接收设备.目前网络设备中应用广泛的Cisco公司的Netflow和基于网络设备流量采集标准的sFlow两种流量采集技术.Netflow通过采集数据分组,根据配置对其进行抽样,并对具有相同“流关键字”的分组聚合形成为流信息,然后通过定义的格式把流信息发送到后台的流量接收服务器,再由后台服务器对流信息进行存储、分析等工作,从而实现完整的流量测量.而sFlow流量采集技术是将sFlowAgent嵌入在交换机和路由器等网络设备中,它负责对流量进行监视,并将采集的信息发送给后台的接收服务器.sFlowAgent通过对数据进行抽样而减少向后台服务器发送数据量.基于网络设备支持的流量采集技术一般被用于计费和流量分析等领域.随着网络速度的提高,流量采集功能的使用会对路由器、交换机本身的转发性能产生一定程度的影响,另一方面这种粗粒度的信息对于某些需要详细分组信息的应用也存在着不足.基于网卡采集在正常应用中,网卡从网络接口接收数据分组,然后将它传递到上层应用.基于网卡的流量采集方法有正常应用模式和混杂模式两种.在正常应用模式下,网卡只接收发送给自己的数据分组.而在混杂模式下,网卡可以接收所有到达的数据分组,硬件不对分组进行过滤,所有分组都会进入系统的内核.因此,当一个网卡专门用于流量数据采集时,一般应设置为混杂模式.专用设备进行采集虽然通过一系列技术改进措施,普通网卡结合计算机的网络流量采集技术可以对普通链路进行流量数据采集.但对于高带宽的链路,应该采用专用的硬件设备进行流量数据采集.一些公司推出了专用的流量采集设备,如Endace公司的DAG卡[4],NetScout公司的nGeniusProbes、nGeniusInfiniS-tream产品[5],以及一些基于网络处理器的流量采集方案等.这些专用设备使用高性能专用硬件实现数据采集工作,性能上较前两种采集方法有了很大的提高.并行采集随着网络速度的高速发展,单个设备的采集能力已经很难适应流量数据的采集.因此,利用多个采集设备并行完成流量采集任务成为一个较好的选择.但为了保证各个采集设备的负载均衡,必须对分流设备的分流策略进行仔细设计.如果分组被分到多个流量采集设备,那么将会给后续的汇总处理程序带来一定的困难.为了使多个采集系统在数据采集上一致,并保证数据集的完整性,多个采集系统之间必须解决时间同步等问题.

网络流量测量模型

在现实中许多比较难以解决的问题,一般解决方法是先建立问题模型,模拟一定的场景和条件,然后在这些场景和条件下对问题进行模拟解决.由于互联网络的异构型和网络高突发性业务量使得网络呈现复杂的非线性,为了有效的对网络流量进行测量,就需要建立一定的网络流量测量模型,而且这种模型的建立也是非常有必要的.首先建立仿真模型对真实网络流量进行描述,这种模型还能够对网络流量将来的行为趋势有效地进行预测.传统的网络流量模型多以泊松过程为基础,其中有泊松模型、马尔科夫模型、自回归模型、自回归移动平均模型和自回归合成移动平均模型等,这些模型同属于短期相关性模型,即若测量时间的间隔足够大的时候,当前时刻所采集到的业务流量与过去时间所采集到的业务流量不具有相关性.从时间的角度来看,这些模型所采集的数据流量具有短相关性,随着测量时间间隔的变大,网络流量会趋于一个恒定的常量,也就是说,网络流量突发性得到了一定的缓和,因此,传统网络流量测量模型并不能描述网络性能的长相关性.对网络流量自相似性进行深入研究后发现,自相似网络中业务流量在较大的时间间隔具有突发性,并且这种业务流量的长相关性比较明显.因此,传统流量模型一般不适合用来进行自相似流量的模型建立.所以,目前对网络流量的描述逐渐采用自相似模型,这种模型能够表征长相关性与突发性.自相似性网络流量模型以自相似过程为基础而建立,模型在精度和灵活性方面与统计特性下建立的模型比较并没有什么优势,甚至没有统计特性下建立的模型好,但其具有明确的物理意义,有助于理解网络流量产生自相似的原理.在自相似性网络流量模型中流叠加算法使用较多.ON/OFF流叠加模型定义叠加大量的ON/OFF源,每个源都有两个周期交替的ON和OFF状态.在ON状态时,数据源通过连续的速率发送数据包;在OFF状态时,数据源不发送任何数据包.在这一过程中,所有发送源都出于ON或OFF状态的时长独立地附和重尾分布.对于网络流量统计模型是以其统计特性下表现出的性质为基础而建立模型,这一类模型相比其它模型虽然在灵活性和精确方面占有一定优势,但其并没有具体明确的物理意义.分形布朗运动、分形ARIMA过程、多重分形小波模型和小波域独立高斯模型都属于这一类模型.虽然自相似性测量模型以网络特征为基础而建立的模型,它可以对业务流量的自相似特性和流量突发性与长相关性进行描述,可以全面认识网络业务流各个方面的内在规律,在一定条件下能够取得较好的预测效果.但实际的网络业务流中,既有短相关特性,又有长相关特性,这种短相关特性与长相关特性并存的多种特性给网络业务流量精确预测带来很大的挑战.因此,自相似网络流量模型对网络流量的所有特性也不能完全描述.

第6篇:测量论文范文

随着全站仪的广泛使用,使用跟踪杆配合全站仪测量高程的方法越来越普及,使用传统的三角高程测量方法已经显示出了他的局限性。经过长期摸索,总结出一种新的方法进行三角高程测量。这种方法既结合了水准测量的任一置站的特点,又减少了三角高程的误差来源,同时每次测量时还不必量取仪器高、棱镜高。使三角高程测量精度进一步提高,施测速度更快。

一、三角高程测量的传统方法

如图一所示,设A,B为地面上高度不同的两点。已知A点高程HA,只要知道A点对B点的高差HAB即可由HB=HA+HAB得到B点的高程HB。

图一

图中:D为A、B两点间的水平距离

а为在A点观测B点时的垂直角

i为测站点的仪器高,t为棱镜高

HA为A点高程,HB为B点高程。

V为全站仪望远镜和棱镜之间的高差(V=Dtanа)

首先我们假设A,B两点相距不太远,可以将水准面看成水准面,也不考虑大气折光的影响。为了确定高差hAB,可在A点架设全站仪,在B点竖立跟踪杆,观测垂直角а,并直接量取仪器高i和棱镜高t,若A,B两点间的水平距离为D,则hAB=V+i-t

故HB=HA+Dtanа+i-t(1)

这就是三角高程测量的基本公式,但它是以水平面为基准面和视线成直线为前提的。因此,只有当A,B两点间的距离很短时,才比较准确。当A,B两点距离较远时,就必须考虑地球弯曲和大气折光的影响了。这里不叙述如何进行球差和气差的改正,只就三角高程测量新法的一般原理进行阐述。我们从传统的三角高程测量方法中我们可以看出,它具备以下两个特点:

1、全站仪必须架设在已知高程点上

2、要测出待测点的高程,必须量取仪器高和棱镜高。

二、三角高程测量的新方法

如果我们能将全站仪象水准仪一样任意置点,而不是将它置在已知高程点上,同时又在不量取仪器高和棱镜高的情况下,利用三角高程测量原理测出待测点的高程,那么施测的速度将更快。如图一,假设B点的高程已知,A点的高程为未知,这里要通过全站仪测定其它待测点的高程。首先由(1)式可知:

HA=HB-(Dtanа+i-t)(2)

上式除了Dtanа即V的值可以用仪器直接测出外,i,t都是未知的。但有一点可以确定即仪器一旦置好,i值也将随之不变,同时选取跟踪杆作为反射棱镜,假定t值也固定不变。从(2)可知:

HA+i-t=HB-Dtanа=W(3)

由(3)可知,基于上面的假设,HA+i-t在任一测站上也是固定不变的.而且可以计算出它的值W。

这一新方法的操作过程如下:

1、仪器任一置点,但所选点位要求能和已知高程点通视。

2、用仪器照准已知高程点,测出V的值,并算出W的值。(此时与仪器高程测定有关的常数如测站点高程,仪器高,棱镜高均为任一值。施测前不必设定。)

3、将仪器测站点高程重新设定为W,仪器高和棱镜高设为0即可。

4、照准待测点测出其高程。

下面从理论上分析一下这种方法是否正确。

结合(1),(3)

HB′=W+D′tanа′(4)

HB′为待测点的高程

W为测站中设定的测站点高程

D′为测站点到待测点的水平距离

а′为测站点到待测点的观测垂直角

从(4)可知,不同待测点的高程随着测站点到其的水平距离或观测垂直角的变化而改变。

将(3)代入(4)可知:

HB′=HA+i-t+D′tanа′(5)

按三角高程测量原理可知

HB′=W+D′tanа′+i′-t′(6)

将(3)代入(6)可知:

HB′=HA+i-t+D′tanа′+i′-t′(7)

这里i′,t′为0,所以:

HB′=HA+i-t+D′tanа′(8)

第7篇:测量论文范文

1渠系水利用系数

1.1渠系水利用系数的影响因素

渠系水利用系数是指灌区末级固定渠道放出的总水量于渠首因进水量的比值。渠道水利用系数的影响因素是多方面的,其中主要因素为渠道的防渗措施、土壤的透水性能、输水流量和地下水水位。

(1)渠道的防渗措施

渠道防渗是减少输水损失、控制地下水位,提高渠道水利用系数的基本工程措施。目前我省渠道采取的防渗方式主要有土料防渗、混凝土防渗和膜料防渗等。根据有关资料:采用土料夯实防渗一般能减少渗漏损失量45%左右,采用混凝土衬砌防渗能减少渗漏损失量70~75%,采用塑料薄膜衬护防渗能减少渗漏损失量50~90%。掌握上述各种措施的防渗效果,对确定渠系水利用系数测定方法、分析测定结果的合理性是十分必要的。

(2)渠道土壤的透水性能

对于土渠渠道的输水损失量主要取决于渠道土壤的透水性能。土壤的透水性能主要和土壤的质地有关。根据土壤的质地可把土壤划分为砂土、壤土和粘土三类。砂土类土壤主要有粗砂和细砂组成,粉砂和粘粒所占比例很少,因此土壤颗粒粗、粘性小孔隙直径大,土壤透水性强,由此类土壤组成的渠道由于下渗损失量大,渠系水利用系数小。粘土类土壤主要由粉砂和粘粒组成,土壤质地粘重,结构紧密,虽然孔隙率较大,但孔隙直径小,土壤透水能力弱,由此类土壤组成的渠道下渗损失量小,渠系水利用系数较高。壤土类土壤质地比较均匀,其中细砂、粉砂和粘粒所占比例大体相当,颗粒粗细及孔隙直径适中,土壤透水性能介于沙土和粘土之间,因此渠道下渗损失量和渠系水利用系数亦介于以上两种土壤之间。

(3)输水流量与地下水水位

对于某一级固定渠道,输水流量愈大,流速愈快,水流传播时间较短,流量渗漏损失相对较小,渠系水利用系数大:反之,渠道输水流量愈小,流速愈慢,水流传播时间较长,流量相对渗漏损失量愈大,渠系水利用系数小。反映渠道水量损失率与输水流量之间相关关系的经验公式如下:

(1)

式中:——渠道单位长度水量损失率;

K——土壤透水性系数;

M——土壤透水性指数;

Qj——渠道净流量(m3/s)。

某灌区渠道水量损失率与输水流量的关系如表1。

表1渠道损失水量与输水流量关系表

项目

流量(m3/s)

0.5

1

5

10

损失流量(m3/s)

壤土

砂土

0.03

0.044

0.039

0.059

0.065

0.099

0.079

0.107

公里损失率(%)

壤土

砂土

6

8.8

3.9

5.9

1.3

2

0.79

1.2

灌区地下水水位的高低,直接影响渠系水利用系数的大小。当灌区地下水位较高时,地下水顶托渠系水,减少渠系水的下渗的水力梯度和储水空间,对渠系水的下渗起到抑制的作用,从而提高渠系水的利用系数。当地下水水位高于渠道水位时,地下水还会“反补”渠道水,出现渠系系数大于1的现象,根据实测资料,宝清县宝石河灌区干

渠最大渠系系数为1.05,建三江种子站灌区支渠最大渠系系数为1.10、北引乌北干渠最大渠系系数为1.57。反之,当灌区地下水位较低时,则会有利于渠系水的下渗,降低渠系水的利用系数

1.2渠系水利用系数测定的基本方法

(1)静态测定法

《节水灌溉技术规范》对此法的要求为:“应选择一段具有代表性的渠段,长度为50~100m,两端堵死,渠道中间设置水位标志,然后向渠中充水,观测该渠段内水位下降过程,根据水位的变化即可计算出损失水量和渠系水利用系数。”对具体的测定步骤和计算方法规范并未提及。笔者认为,上述方法所要求的渠道长度过短,代表性不强,且未考虑流量变化对损失率的影响,因此对于斗渠及以上各级渠道的测定不宜采用此方法。但对于渠道较短,流量较小的农渠或毛渠采用静态测定法还是合适的。渠系系数应按下列方法计算。

(2)

式中:η——渠渠系系数;

、——观测开始时和观测结束时相应水深的渠道断面面积;

L——该级渠道的平均长度;

ΔL——代表渠段的长度;

Δ——观测开始至观测结束的时间。

(3)

式中:V——渠道水的平均流速。

(2)动态测定法

根据渠道布置情况,选择中间无支流、长度满足要求的代表性渠段,观测上、下游两个断面同一时段的流量,通过量化渠道损失水量的方法推求渠道水利用系数。代表渠段渠道水利用系数用以下公式计算:

(4)

式中:——代表渠段的渠道水利用系数;

——代表渠段上、下断面的流量。

干渠、支渠、斗渠和农渠各级渠道的水利用系数η渠系用以下公式计算:

(5)

将(4)、(5)式整理合并得:

(6)

全灌区渠系水利用系数用下式

(7)

式中:——全灌区的渠系水利用系数;

、、、——干渠、支渠、斗渠、农渠各级渠道的渠系水利用系数。

1.3渠系水利用系数的测定

1.3.1代表渠段的选择

代表渠段选择应遵循如下基本原则:一是所选的典型渠道能代表整个灌区的同级渠道的平均水平,渠道的土质、防渗措施、输水流量的大小和工程完好率等指标应与全灌区该级渠道相接近。二是为减少工作量,可采取抽样测量,但测渠应有足够的数量:对于大型灌区,总干渠1条,干渠不少于2条,支渠不少于2条,斗渠不少于3条,农渠不少于4条;对于小型灌,干渠1条,支渠不少于2条,斗渠不少于2条,农渠不少于3条。三是所选的渠段要有足够的长度:流量小于1m3/s,长度不小于1km;流量小于1~10m3/s,长度不小于3km;流量小于1m3/s,长度不小于5km;流量小于10~30m3/s,长度不小于10km,在满足上述条件的前提下,代表渠段的长度尽量接近灌区同级渠道的平均长度。

1.3.2流量测验

短距离小流量状态下,推求渠系水利用系数可能产生的最大误差是流量测验误差。因此对流量测验的精度必须引起足够的重视,引起流量测验的误差,主要包括控制断面选择的误差、测流仪器本身的误差和测宽、测深、测速时产生的误差。为了减少误差,提高流量测验精度,流量测验应尽量满足下列要求。

(1)测流断面:测流断面应选择在渠道顺直,断面稳定,水流均匀,无回流或水流脉动较小的地方;当测流断面生有水草或出现淤积时应对渠道进行整治,整治长度宜大于渠道水面宽的5倍,必要时要用木板或水泥板对断面进行衬砌处理。

(2)测流仪器:干渠和支渠流量和水深条件较好,LS25-1、LS-10型等常规流速仪的测定范围即可满足测深和测速的要求,因此干渠和支渠的流量测验可选用上述常规的仪器。斗渠和支渠的水深和流速均较小,采用常规的仪器无法施测或不能保证精度,宜采用专门测量低水位、小流速的ADV等新型仪器。流速仪应选择新的或使用时间短的,若使用两台流速仪同时测流,要进行比测,作一致性修正。观测农渠流入水稻格田水量时,由于流量很小

水位变化较快,无法用流速仪测流,此时应采用V型量水堰,通过观测水位和时间的方法测量流入田间的水量。

(3)测量精度:测长和测宽最好用钢尺量测,重复三次,取平均值。测深垂线按精密水道断面要求布设,控制断面地形转折变化,水深要读到毫米。测速垂线按精测法布设,测点按三点法和五点法,测流不低于100秒,测量的流速计至小数后三位,特别小时流速可计至小数后三位。流量成果计算到小数后四位。

(4)测次安排:通过上述渠系水利用系数影响因素分析可知,对于同一代表渠段,渠道的防渗措施和土壤组成对下渗损失及渠系系数的影响是固定不变的,此时引起渠系系数产生变化的主要原因将取决于渠道的工作方式、输水流量的大小和灌区地下水水位的高低。受作物需水规律的控制和降水、回归水的影响,渠道不同时期的输水流量和地下水位,在不同的阶段都有较大的差异,因此流量的测验应贯穿整个灌溉期,根据灌溉制度选择几个代表时段分别测量,以求得整个灌溉期的平均值。

1.3.3渠系水利用系数分析计算

(1)每级渠道的平均值

将实测流量代入(6)式求得单次渠系系数计算成果,然后考虑输水流量大小对渠系系数的影响,采用流量权重系数法计算每级渠道渠系系数的平均值:

(8)

式中:η平均——每级渠道渠系系数的平均值;

Qi、Q——单次测验流量、各单次测验流量之和。

(2)渠系系数的修正

上述计算考虑了渠道长度和流量变化对渠系系数的影响,未包括地下水顶托作用对渠系系数的影响。地下水的顶托作用可以从两方面理解:一方面地下水抑制渠道水下渗,只要埋深适宜就会起到降低下渗强度、减少输水损失的作用,据有关资料,当渠道净流量达到100m3/s时,埋深为25m的地下水仍会起到顶托作用,影响渠系水的下渗,真正意义上的自由下渗并不存在,因此当地下水埋藏较深时,这一自然影响因素在计算时可不予考虑。另一方面,当渠首引水量小、地下水埋深很浅时,渠系水和地下水补排关系发生改变,形成“倒比降”,造成地下水“反补”渠系水,导致渠系系数明显偏大,甚至出现渠系系数大于1于的不合理现象时,地下水对渠系系数的影响影就必须在计算时予以考虑。在土地平整的稻田区,来自于区外的测向径流可以忽略不计,此时,补给渠道的地下水量主要来源于大气降水和进入田间的灌溉水,其中由灌溉水形成的回归水量在前期的渠道水测量中已被测到,属重复水量,在计算时应予以扣除。为此,本文水引入K1和K2两个修正系数,用来修正地下水“反补”现象对渠系系数的影响,修正方法如下:

(9)(10)

式中:η修正——修正后的渠系系数;

生育期设计灌溉定额(m3);

灌溉期有效降水量(m3);

β——回归系数,结合灌溉水利用系数测定工作,用水平衡法确定。

受条件限制无法确定回归系数时,亦可用如下方法对渠系系数进行修正:

(11)

(12)

(13)

(14)

式中:——受地下水影响的渠道单位长度水量损失率;

——考虑地下水影响的渠道渗水损失修正系数;

——地下水埋深;

——渠道净流量;

a、b、c——分别为系数和指数。

根据有关文献提供的数据,将、和与之对应代入(14)式,利用计算机采用最小二乘法对a、b、c三个参数进行率定,求得计算值的经验公式如下:

(15)

本文按上述方法计算的宝清县宝石河灌区渠系系数单次测定成果如表2。

表2宝清县宝石河灌区渠系系数计算成果

项目

Qs

(m3/s)

Qx

(m3/s)

σ

β

D

K1

K2

η代表

η平均

η修正1

η修正2

干渠

1.224

1.125

1.4

0.14

0.10

3.0

0.83

0.07

0.97

0.92

0.89

0.86

0.82

注:η修正1系由K1修正的值,η修正2系由K2修正的值。

2田间水利用系数

2.1田间水利用系数计算的基本方法

田间水利用系数净灌水定额与末级固定渠道放出的单位面积灌水量的比值。对于稻田来说,灌区灌溉水可分为水田泡田期水稻生育期两个阶段,由于泡田期和生育期水田的灌水规律和耗水方式差异很大,因此应分别测定田间水利用系数,采用水量加权的方法计算全灌区整个灌溉期的田间水利用系数。

(16)

(17)

(18)

式中:η田间、η泡田、η生育——全灌区田间水利用系数、泡田期田间水利用系数、生育期田间水利用系数;

M泡田、M生育——泡田期和生育期设计灌溉定额;

W泡田、W生育——泡田期和生育期的灌水量。

2.2参数的测定

(1)泡田期净灌溉定额

泡田期净灌溉定额可采用计算法(计算设计灌水定额)或实测法确定,本文仅介绍后一种方法。采用实测法时,泡田期的净灌溉定额按如下方法计算:(19)

式中:M泡田——泡田期的净灌溉定额(mm);

——稻田犁底层深度(m);

——稻田H2深度内土壤平均容重(t/m3);

——深度内土壤饱和含水率;

——深度内泡田开始时的土壤含水率;

——插秧时所需水层深度;(mm);

——泡田期日平均渗漏量(mm/d);

——泡田期日平均水面蒸发量(mm/d);

——泡田期天数(d);

——时段内的降水量(mm)。

1)土壤含水量的测定:在灌区中选择土地平整、田埂封闭较好的格田作为典型地块,沿水流方向布设测线,在测线的上、中、下游各选3个测点,从地表以下10cm、20cm、30cm处取土。采用称重法测定泡田开始时的土壤含水量,采用浸泡法测定饱和土壤含水量,分别进行算术平均后即可求得和。

2)泡田期日平均渗漏量的测定:待耙田结束、水层稳定后,在选择的典型格田内布设高程控制点,用带有“静水”措施的测针观读田间水层的水位变化,同时安装普通雨量计和20cm口径蒸发皿观测逐日降水量和蒸发量,然后用下列公式计算渗漏量:

(20)

式中:——前一天的水层水位(mm);

——当天的水层水位(mm);

——时段内的降水量(mm);

——20cm口径蒸发皿水面蒸发量(mm);

——20cm口径蒸发皿对E601蒸发皿的折算系数。

(2)泡田期灌水量

进入田间的水量,流量小、水位变化大,用流速仪测流不能保证精度,推荐采用V型量水堰测流,用水力学公式法计算进入田间的灌水量。具体方法是:首先对进水口进行休整,然后安装量水堰和自计水位计,观测整个灌水期的水位变化过程,最后根据水深和灌水时间计算出进入田间的灌水量W泡田。

(3)生育期净灌水定额

我省水田大都实施淹灌,整个生育期除水稻黄熟期和晒田期水层落干外,田面上始终留有一定深度的水层,在保持水层的淹灌阶段,水的消耗表现为淹灌水层的变化,从前一次灌水结束到下一次灌水开始这一阶段,稻田的水量平衡方程为:

(21)

(22)

式中:——生育期阶段净灌水定额(mm);

——日平均田间耗水量(mm);

——下一次灌水开始时田间剩余的水层深度(mm),当h4大于设计水层深h设计时取h4等于h设计;

1——前一天的水层深度(mm);

——当日的水层深度(mm);

h3——时段内的排水深度(mm);

——时段内的降水量(mm)。

由上述水量平衡方程可知,只要我们在水稻生育期选择一次(多次)完整的灌水过程(本次灌水与下一次灌水间隔时间较长),通过连续观测代表地块水深和降水量的变化(当有排水时可通过观读排水前和排水后的水深计算排水量),即可计算出生育期某一阶段的净灌水定额。我们在测定建三江农科所灌区和七星农场种子站灌区灌水定额时采用了上述方法,取得了较好的效果。

(4)生育期灌水量

田间灌水量采用水深法测定。在返青期和晒田后期,选择土地平整、田埂质量好、田间无水层的格田作为代表地块,布设2~3处水深观测点,用有防风浪措施的水深观测仪器观测灌水结束时田间的水层深度,同时记录本次灌水所需要的时间,然后用下列方法计算进入田间的水量:

(23)

式中:W生育——进入田间的灌水量(mm);

E单位——单位时间耗水量(mm/h),由E日耗换算求得;h5——灌水刚结束时田间水层深度(mm);

t3——本次灌水从开始至结束的时间(h)。

2.3田间水利用系数计算

用泡田期的净灌溉定额除以泡田期的灌水量求得泡田期的田间水利用系数,将生育期的净灌溉定额除以生育期的灌水量求得生育期的田间水利用系数,将其一并代入公式(18)后即可求得全灌溉期的田间水利用系数。按上述方法计算了七星农场种子站灌区田间水利用系数,计算结果:泡田期田间水利用系数为0.93,生育期田间水利用系数为0.96,灌区整个灌水期的田间水利用系数为0.95。

3灌溉水利用系数

灌区灌溉水利用系数的大小体现了灌区水利用效率的整体水平,其数值等于渠系系数与田间水利用系数的乘积。上述渠系系数和田间水利用系数的计算成果表明,灌区的水量损失主要来源于渠道的输水损失。因此,加强灌区的防渗工作,提高渠道的管理水平,对提高灌溉水的利用效率,促进水资源的可持续利用具有非常重的意义。本文对灌区水利用系数这一反映灌溉工程质量、灌溉技术和灌区用水水平的一项综合指标的测定方法进行了分析和探讨,方法简单实用,可操作性较强,可供有关人员在今后开展此类工作时参考。笔者水平有限,望有关专家能对文中的不足之处给予批评指正。

参考文献:

[1]中华人民共和国水利部,《节水灌溉规范》SL207-98

[2]国家质量技术质量监督局、中华人民共和国建设部,《灌溉与排水工程设计规范》GB50288-99

第8篇:测量论文范文

在这种环境下,许多公司的信息技术部门和营销部门面临同样的机遇与挑战。高层管理已经将信息技术和公司品牌视为公司的关键资产,二者现已成为最高层战略讨论的核心。但是尽管公司认识到这些核心要素的重要性,他们还是要为如何衡量二者的战略价值和各自的表现而绞尽脑汁。

随着技术管理人员介入高层关于公司品牌的战略讨论,他们开始进入一个崭新的领域。其角色已扩展到设计和运用工具、监控公司品牌战略的效率、以及评估品牌的表现,但是他们当中有许多人仍不清楚品牌的全部含义。

一个普遍的的误解是把品牌当成一个徽记、一个标签或一幅广告,其实这些只是对品牌的有形表述,属于营销部门最基础的工作。领先的全球企业认识到,品牌的内涵远不只这些。品牌是一整套期望和联想,源于对公司、产品和服务的体验,每一个喝可乐或开卡迪拉克车的人都知道这一点。

测量方法的选取

好的品牌测量方法在于能用来做实际业务决策,并可以根据所得到的信息采取行动。下面五项基本原则有助于帮助公司明确是否为它的经营战略和在市场中的定位选择了正确的测量方法。为了便于记忆,可以把这五项原则缩写为"SMART":

简单实用(Simpletouse)有用的测量方法是同搜集、分析和利用信息一样直接,关键要将测量品牌所花的时间减到最小,把使用信息的时间用足。

有意义(Meaningful)如果没有直接与公司的目标或公司与顾客各个接触点联系起来,那么,这个方法也许对提升品牌和公司的表现帮助不大。

能付诸实施(Actionable)一个测量方法的关键是要优化经理所做的决策,如果起不到这个作用,就要用其它有效的方法。

能重复使用(Repeatable)就数据收集而言,测量方法应该是可以重复使用的。如果你偏离上次的XYZ方法时,你也许不得不从头开始。要有可比性,即用苹果比苹果才可以有效地测量品牌。测量方法每年至少要评估一次或两次,将你的精力集中在"尖子中的尖子"上,而不是将投资分散在只能得到最小回报的地方。

要有接触点(Touchpoints)将测量的方法用在一些特定的群体上,虽然没有一个方法能够适合所有群体,但总有一两个方法对每个群体都重要。确定你最感兴趣的接触点,然后采用相应的测量方法。

品牌测量的类别

品牌测量通常蕴藏在两个大类之内:"战略性测量"(Strategicmetrics)和"接触点测量"(Touch-pointmetric)。"战略性测量"帮助团队评估各种品牌创建活动对品牌的总体财务表现的影响。"接触点测量"评估品牌的表现和品牌创建的主动性。当顾客访问网站或考虑购买产品和服务的时候,顾客与品牌就紧密地联系在一起。

"接触点测量"偏重于品牌表现的无形方面,每种方法都有特定的目的,并被设计成了解品牌是如何影响购买决策的。通过询问目标受众的一些具体问题可以追踪到有用的信息

品牌偏好衡量"(Brandpreferencemetrics)的真正价值体现在对市场反应的跟进。比如采访一个公司采购新电脑选什么牌子时,他们会说喜欢IBM产品,但到实际购买时,公司可能会选别的牌子。

"品牌意识和认知测量"(Brandawarenessandrecognition)常被同时用来显示整个营销组合能否有效地展示品牌的内涵。品牌认知旨在让潜在的顾客了解品牌能提供什么,以及顾客能否将品牌归类到合适的行业、产品类别和竞争优势中来。

高品牌意识和认知说明公司在传统的沟通方式上的投资可以降低一些,把资源腾出来投入到其它接触点上。"战略性测量"展现了品牌建设和管理对业务整体表现的影响,有些方法同盈亏有明显的关系,另一些方法则相对间接一点。这些测量可以用元和分来表示,或者用对盈亏有影响的指数来表示,"战略性测量"包括品牌的价格溢价(Pricepremium)和赢得顾客。

品牌的价格溢价是增加品牌收入的最好方法之一。如果一个企业的产品或服务比同类低价产品或服务多卖了100美元,这个单笔销售的价格所增加的100美元就是品牌价格溢价。

把公司与竞争对手做比较的时候,这个方法也管用。在这种情况下,主要测量品牌的价格优势或与竞争对手相比不利的方面,所获得的信息能帮助公司为强化自己的地位而制定清晰的战略性目标。

少而有针对性的测量方法对测量成功非常重要,同时,在"战略性测量"和"接触点测量"之间要保持平衡,保证将顾客从购买前到购买后的全部体验都包含了进来。"战略性测量"应该根植在公司业务测量之中,这样就能易于接受并与高层管理者联系起来。

技术所起的作用

信息技术部门无论在制定和监控新测量方法时,还是在向那些实际应用的人员提供反馈时,都起着不可估量的作用。

另外,管理层选中的测量方法应该基于公司现有的能力,技术管理人员要决定技术的基础架构能否让合适的人获得合适的信息,这些信息怎样才能得到,为了提高决策程序,如何与现有的业务数据交叉使用,以及为了保证最终的数据顺畅地传递,公司应该怎样更好地鼓励在业务中分享关键数据。

第9篇:测量论文范文

关键词:GPS电压互感器二次压降锁相倍频

随着电力系统体制改革的深化,厂网分家的模式已初步形成。发电厂上网电量及电网间电量交换的精确计量直接关系到结算双方的经济利益,因此减小电能计量装置的综合误差是十分重要的。实际测试的结果表明,电能计量综合误差中电压互感器(TV)二次加路电压降引起的计量误差最为突出,大约占电费收入的1%-2%甚至更多,电费数百万元。为减小该误差,目前普遍通过铺设测试电缆进行压降的检测,再通过电压器进行跟踪补偿。这种方法测量功能有限,而且需要铺设很长的电缆,在距离远、地形复杂的地方甚至无法进行,这类装置使用麻烦且不能实现在线监测。因而开发种测量精度高、无需铺设专用电缆、具有远程通信功能的新型电压互感器二次回路压降自动跟踪补偿及监测装置很有必要。

基于全球卫星定位系统(GPS)的电压互感器二次线路压降自动跟踪补偿装置能很好地解决以上问题。装置以GPS信号作为TV二次线路两端数据采集的同步信号,同步测量TV输出端口和电能表输入端口的电压向量,结合锁相倍频技术,使系统的准确性和稳定性得到保证;并以电力线载波通信的方式进行数据通信,免去了铺设电缆的麻烦和安全隐患;通过D/A转换实时进行电压补偿,从而达到自动跟踪补偿的目的。

1自动跟踪补偿装置的总体结构

系统结构如图1所示。

基于GPS的电压互感器二次线路压降载波式自动跟踪补偿装置由测量主机和测量从机两部分构成。主机除了测量二次仪表输入口的电压参数以外,还向从机发送控制命令并接收测量数据,计算二次线路压降,通过D/A转换输出补偿电压,通过串口与上位机通讯实现远程监控和数据共享。从机结构与主机类似,只是没有D/A补偿模块,它能与主机通讯,按主机命令对TV输出端口的电压参数进行测量,并将实时数据及时地发送到测量主机。

装置的设计主要包括以下内容:(1)基于GPS的高精度时间同步测量单元的设计:GPS系统1PPS(秒脉冲信号)及100PPS和串口时间代码的提取、同步测量电压向量及计算处理二次压降。(2)电力线载波通信模块的设计:电力线波通信线路要求具备双工通信的能力、比较稳定的相移特性,以及足够的输出功率。经过反复试验比较,在TV二次线路上采用专用的电力载波数据通信芯片LM1893设计电力载波数据通信模块,通信距离达500m,能够满足现场检测的需要。(3)D/A补偿模块的设计:在单片机计算处理后的二次压降补偿值通过D/A转换器转换成模拟量,通过功率放大器后串联迭加到二次仪表输入端口,对二次线路上的电压损失进行补偿。

2基于GPS的电压向量测量

压降测量是通过分别检测TV二次线路两端的电压向量(应检测出幅值和相位),然后将两端测量值相减从而得出线路压降值的幅值差和相位差。电压的幅值测量较易满足要求,采用一般的16bitA/D变换的方法邓可。而相位差的检测则是技术难点,本装置对相位的测量是通过锁相环电路将电网频率信号倍频,用该倍频信号作为计数器的时钟信号。每次电压过零时,计数器重新开始计数。通过读取TV二次线路两端计数值并计算差值从而得出相位差。其结构图如图2所示。计数器时钟信号由锁相倍频电路产生,电压过零检测产生的信号经过整形后作为计数器的开始计数信号,GPS的100PPS脉冲在单片机控制信号的作用下对计数器当前值进行锁存,每个周期的相位采样数据(从锁存器读)、GPS接收机1PPS脉冲在单片机控制信号的作用下对计数器当前值进行锁存,每个周期的相位采样数据(从锁存器读)、GPS接收机1PPS信号以及它的时钟标签同时被送至单片机进行处理。

由于电压互感吕二次线路压降补偿装置的设计方案要求相差测量精度为±1'''',因此将电网频率360×60倍频,计数器记录倍频后的脉冲信号就可满足相位差测量精度的要求。由此可得计算相位差的公式为:

其中,C1、C2为两端计数器的读数,f0为电网频率。由上式可知,两端计数差值就是两端的相位差。

显然,这种方法所得的结构与电网频率无关,也不必靠高稳定度的高频恒温晶振获取纳秒级时标。得到的相位值不会受到电网频率波动的影响,得出的数据准确度高,而且采用的器件对环境适应能力强,有较高的性价比,非常适合在各种工业环境下推广使用。

3GPS测量电压向量的工作程序

GPS接收机至少提供两种形式的时间信号,即1PPS(每秒输出1个脉冲)信号和串口时间代码。1PPS的脉冲时间与世界协调时间(UniversalCoordinatedTime,缩写为UCT)的秒的同步误差不超过1μs;串口信息在1PPS脉冲之间给出,其中包括的时间信息用来说明前一个1PPS脉冲对应的UCT时间(年、月、日、时、分、秒)。许多接收机产品还能提供100PPS(每秒输出100个脉冲)信号,其时钟精度可达纳秒级。在本装置中采用这三种信号同步测量电压向量。

本装置可以对每一周期的相差进行采集。为了方便计算,方案采用主从机预约时间每次采样1秒或几秒的方式测量电压向量(本文以采样1秒为例进行说明)。参见图2,主从机预约时间GPS的1PPS信号为准,单片机控制与门的开关,从而对计数器采样1秒钟(同时也对电压幅值采样1秒钟)。在单片机输出高电平的1秒钟内,100PPS信号作为于锁存器,同时单片机内部对每一个100PPS脉冲信号进行中断处理,读取计数器的锁存器锁存的值及电压幅值,送入内存中依次排列起来。等待1秒钟后,从机将采样的数据发送到主机,主机再依次对数据进行计算处理,得出这1秒钟内的二次压降值及其补偿值,分别送到上位机和补偿模块。

图3为采样子程序流程图。当单片机主程序调用它时,子程序首先读取主从机预约的采样起始时间,在约定起始时间到来时打开与门(单片机输出高电平),同时打开100PPS的中断响应,开始等待下一秒钟GPS的1PPS脉冲信号。其间,系统每个周期采样一次电压幅值和计数器值。在下一秒钟的1PPS脉冲到来时,禁止响应100PPS中断,关闭与门(单片机输出低电平),返回主程序。在不需要采样的时段里,单片机一直输出低电平。其中,Ti是主从机预约的第i个电压向量采集时间。

图4

图4为GPS信号及电网信号的时序图。由于电网频率是变化的,电压过零脉冲相对GPS的100PPS时钟的位置也是随机变化的,如图5所示。在计算相位差δ时,当100PPS脉冲发生在δ之外,就是前面已经介绍过的(如图4所示),此时|ΔC|<15°,δ=C1-C2。当100PPS脉冲发生在δ之间需要注意以下情况(相位差值正常情况下不会大于15°);

第一种情况,首端电压相位超前,此时ΔC<-15°,δ=φ1+φ2=C1-C2+360°;

第二种情况,末端电压相位超前,此时ΔC>15°,δ=-(φ1+φ2)=C1-C2+360°。

综合上述三种情况,相位差为: