前言:想要写出一篇引人入胜的文章?我们特意为您整理了经济数学分段函数案例教学论文范文,希望能给你带来灵感和参考,敬请阅读。
一、案例教学
(一)案例教学的内涵
对于案例教学,不同的教育工作者给出了不同的定义,不一而足。笔者认为,经济数学的案例教学,是指教师以案例为基本素材,创设(问题)情境,通过师生、生生间多向互动,激发学生有意义的学习,使其加深对基本原理和概念的理解,以达到建构知识与提高分析、解决问题能力的目的的一种特定的教学方法,是一种理论与实际有机切合的重要教学形式。
(二)案例应用方式分类
依据案例在经济数学概念(原理)教学过程中应用的方式和出现的位置,可将其分为以下四类。
1.概念(原理)前案例。在进入教学主题之前,先引入若干简单、特殊的案例,然后以不完全归纳的形式呈现概念(原理)的教学方式称为概念(原理)前案例教学。概念(原理)前案例数量以二三为宜。如:在导数(边际)定义前引入变速直线运动物体的速度问题、曲线在一点处的切线的斜率问题,在定积分定义前引入曲边梯形的面积问题等。
2.概念(原理)中案例。通过引入贴合教学主题、难度适中的案例,随剖析随呈现概念(原理)的教学方式称为概念(原理)中案例教学。经济数学中的弹性概念适合概念(原理)中案例教学。
3.概念(原理)后案例。在呈现概念(原理)后,再抛出相对较难的案例,以演绎的形式再现或者应用概念(原理),以加深学习者对概念(原理)的理解、内化、迁移能力的教学方式称为概念(原理)后案例教学。概念(原理)后案例涉及的知识面比较广,难度较大,可以分为课上、课下两部分实施。课上以教师为主导,课下以作业的形式,促使有兴趣的学生翻阅资料钻研探索,锻炼其分析综合、解决问题的能力。概念(原理)后案例教学具有普适性。
4.前后呼应式案例。在进入教学主题之前,先抛出案例题干激发学生的学习兴趣,而后呈现概念(原理),最后剖析案例,应用概念(原理)解决案例的教学方式称为前后呼应式案例教学。前后呼应式案例教学适合于复杂概念(原理),如微分方程理论、差分方程理论、级数理论等。
例1:快递收费问题。圆通快递哈尔滨发深圳收费规定如下:首重1公斤,收费13元,续重每公斤10元。试建立快递收费y(元)与货物重量x(公斤)之间的函数关系。解:y=13,0<x≤113+10(x-1),x>—1例2:邮资问题。国内普通信函重量在100克及以内的,每重20克(不足20克,按20克计)本埠收费0.80元,外埠收费1.20元;100克以上部分,每增加100克(不足100克,按100克计)本埠加收1.20元,外埠加收2.00元。试分别建立本外埠邮资与信函重量之间的函数关系。
三、总结
数学到底有什么用?这是学习者———尤其是高动机水平的学生所热切关心的问题。经济数学的案例教学以案例为基本素材,以遒劲有力的笔触向学生点画出作为科学之王的数学在生产生活实践中的用武之地。快递收费问题、邮资问题,以及薪金所得税案例、出租车收费案例,联袂证明了分段函数不是一只无魂无魄的木偶,而是一只有血有肉的精灵。
作者:王新霞 张晓光 王 春 任秋萍 张亚平