前言:小编为你整理了5篇电路设计论文参考范文,供你参考和借鉴。希望能帮助你在写作上获得灵感,让你的文章更加丰富有深度。
1高速数字电路设计技术的研究要点
在高速数字电路设计技术的研究中,最为主要的研究点在于:
(1)高速数字电路信号的完整性;
(2)高速数字电路电源的设计两个方面。在本节中,笔者将进行系统的阐述,强化对高速数字电路设计的认识与研究。具体而言,主要在于以下几点内容:
1.1高速数字电路信号的完整性设计
在高速数字电路信号的完整性设计中,最主要的研究要点在于两个方面:一是不同电路信号网传输信号的干扰情况;二是不同信号在电路信号网中的相互干扰情况。也就是说,在电路信号的完整性中,信号干扰是最为关键的因素,无论是对于干扰问题,还是对于反射问题,都是高速数字电路信号完整性设计的研究要点。在理想状态之下,不同阻抗是相等的,存在相互匹配性。所以,在电路设计的过程中,要特别注意阻抗的控制,阻抗过小(过大)都会对线路中的电流及电压造成影响,进而形成信号干扰问题。当然,在高速数字电路的设计中,是很难以让临界阻抗与电路新城相互匹配的状态,这就强调,高速数字电路信号系统,应最可能的处于较为合适的状态,以最大程度上提高高速数字电路的信号质量。
1.2高速数字电路电源的设计
1二分频单元设计
本次设计基于TSPC实现2n分频,即二分频单元是最基本单元模块。本设计采用基于TSPC结构的D触发器搭建二分频单元。
1.1基于TSPC的D触发器
基于TSPC的D触发器电路采用11个晶体管构成的四级钟控互补输出方式实现,其中D为输入信号,Q为输出信号,φ为时钟信号。从图中可以得到:当“φ=0”时,第1级电路将开启锁存器从而接收输入信号D,同时第2级的输出被预充电,第3、4级保持原有状态不变。当“φ=1”时,第1级的输出信号将作为第2级的输入,产生第2级新的输出信号,第3级将采样第2级的输出信号传送输出到第4级,第4级反相输出对应信号得到输出Q值。由于采用动态结构,该触发器晶体管数目少,且功耗较低,有利于达到后续多级级联结构中高性能、低功耗的设计目标。
1.2基于D触发器的二分频电路
基于D触发器的二分频电路由13个晶体管构成的互补反馈控制电路实现。当输入信号D频率为500MHz,脉冲电压为1.8V,从图中可以看到,基于TSPCD触发器构成的二分频单元可以准确地实现二分频的功能。
1.3二分频电路的优化
一、完善课程设置
合理设置课程体系和课程内容,是提高人才培养水平的关键。2009年,黑龙江大学集成电路设计与集成系统专业制定了该专业的课程体系,经过这几年教学工作的开展与施行,发现仍存在一些不足之处,于是在2014年黑龙江大学开展的教学计划及人才培养方案的修订工作中进行了再次的改进和完善。首先,在课程设置与课时安排上进行适当的调整。对于部分课程调整其所开设的学期及课时安排,不同课程中内容重叠的章节或相关性较大的部分可进行适当删减或融合。如:在原来的课程设置中,“数字集成电路设计”课程与“CMOS模拟集成电路设计”课程分别设置在教学第六学期和第七学期。由于“数字集成电路设计”课程中是以门级电路设计为基础,所以学生在未进行模拟集成电路课程的讲授前,对于各种元器件的基本结构、特性、工作原理、基本参数、工艺和版图等这些基础知识都是一知半解,因此对门级电路的整体设计分析难以理解和掌握,会影响学生的学习热情及教学效果;而若在“数字集成电路设计”课程中添加入相关知识,与“CMOS模拟集成电路设计”课程中本应有的器件、工艺和版图的相关内容又会出现重叠。在调整后的课程设置中,先开设了“CMOS模拟集成电路设计”课程,将器件、工艺和版图的基础知识首先进行讲授,令学生对于各器件在电路中所起的作用及特性能够熟悉了解;在随后“数字集成电路设计”课程的学习中,对于应用各器件进行电路构建时会更加得心应手,达到较好的教学效果,同时也避免了内容重复讲授的问题。此外,这样的课程设置安排,将有利于本科生在“大学生集成电路设计大赛”的参与和竞争,避免因学期课程的设置问题,导致学生还未深入地接触学习相关的理论课程及实验课程,从而出现理论知识储备不足、实践操作不熟练等种种情况,致使影响到参赛过程的发挥。调整课程安排后,本科生通过秋季学期中基础理论知识的学习以及实践操作能力的锻炼,在参与春季大赛时能够确保拥有足够的理论知识和实践经验,具有较充足的参赛准备,通过团队合作较好地完成大赛的各项环节,赢取良好赛果,为学校、学院及个人争得荣誉,收获宝贵的参赛经验。其次,适当降低理论课难度,将教学重点放在掌握集成电路设计及分析方法上,而不是让复杂烦琐的公式推导削弱了学生的学习兴趣,让学生能够较好地理解和掌握集成电路设计的方法和流程。第三,在选择优秀国内外教材进行教学的同时,从科研前沿、新兴产品及技术、行业需求等方面提取教学内容,激发学生的学习兴趣,实时了解前沿动态,使学生能够积极主动地学习。
二、变革教学理念与模式
CDIO(构思、设计、实施、运行)理念,是目前国内外各高校开始提出的新型教育理念,将工程创新教育结合课程教学模式,旨在缓解高校人才培养模式与企业人才需求的冲突[4]。在实际教学过程中,结合黑龙江大学集成电路设计与集成系统专业的“数模混合集成电路设计”课程,基于“逐次逼近型模数转换器(SARADC)”的课题项目开展教学内容,将各个独立分散的模拟或数字电路模块的设计进行有机串联,使之成为具有连贯性的课题实践内容。在教学周期内,以学生为主体、教师为引导的教学模式,令学生“做中学”,让学生有目的地将理论切实应用于实践中,完成“构思、设计、实践和验证”的整体流程,使学生系统地掌握集成电路全定制方案的具体实施方法及设计操作流程。同时,通过以小组为单位,进行团队合作,在组内或组间的相互交流与学习中,相互促进提高,培养学生善于思考、发现问题及解决问题的能力,锻炼学生团队工作的能力及创新能力,并可以通过对新结构、新想法进行不同程度奖励加分的形式以激发学生的积极性和创新力。此外,该门课程的考核形式也不同,不是通过以往的试卷笔试形式来确定学生得分,而是以毕业论文的撰写要求,令每一组提供一份完整翔实的数据报告,锻炼学生撰写论文、数据整理的能力,为接下来学期中的毕业设计打下一定的基础。而对于教师的要求,不仅要有扎实的理论基础还应具备丰富的实践经验,因此青年教师要不断提高专业能力和素质。可通过参加研讨会、专业讲座、企业实习、项目合作等途径分享和学习实践经验,同时还应定期邀请校外专家或专业工程师进行集成电路方面的专业座谈、学术交流、技术培训等,进行教学及实践的指导。
三、加强EDA实践教学
首先,根据企业的技术需求,引进目前使用的主流EDA工具软件,让学生在就业前就可以熟练掌握应用,将工程实际和实验教学紧密联系,积累经验的同时增加学生就业及继续深造的机会,为今后竞争打下良好的基础。2009—2015年,黑龙江大学先后引进数字集成电路设计平台Xilinx和FPGA实验箱、华大九天开发的全定制集成电路EDA设计工具Aether以及Synopsys公司的EDA设计工具等,最大可能地满足在校本科生和研究生的学习和科研。而面对目前学生人数众多但实验教学资源相对不足的情况,如果可以借助黑龙江大学的校园网进行网络集成电路设计平台的搭建,实现远程登录,则在一定程度上可以满足学生在课后进行自主学习的需要[5]。其次,根据企业岗位的需求可合理安排EDA实践教学内容,适当增加实践课程的学时。如通过运算放大器、差分放大器、采样电路、比较器电路、DAC、逻辑门电路、有限状态机、分频器、数显键盘控制等各种类型电路模块的设计和仿真分析,令学生掌握数字、模拟、数模混合集成电路的设计方法及流程,在了解企业对于数字、模拟、数模混合集成电路设计以及版图设计等岗位要求的基础上,有针对性地进行模块课程的学习与实践操作的锻炼,使学生对于相关的EDA实践内容真正融会贯通,为今后就业做好充足的准备。第三,根据集成电路设计本科理论课程的教学内容,以各应用软件为基础,结合多媒体的教学方法,选取结合于理论课程内容的实例,制定和编写相应内容的实验课件及操作流程手册,如黑龙江大学的“CMOS模拟集成电路设计”和“数字集成电路设计”课程,都已制定了比较详尽的实践手册及实验内容课件;通过网络平台,使学生能够更加方便地分享教学资源并充分利用资源随时随地地学习。
四、搭建校企合作平台
[摘要]提出了一种开放式、多层次的“五自”实验教学模式,应用了自由选题与分组、自行管理与实现、自主设计与实施、自行调试与安装和自主答辩与论文完成的“五自”实验考核方法,解决了以往传统实验教学内容与实际脱节、考核方式单一、学员主动参与性差等问题。该模式激发了学员学习电子技术类课程的兴趣,培养了团队协作精神,加强了实践操作技能,锻炼了学员对完整科研活动的过程和结果的总结表达、陈述能力,为毕业后第一任职岗位要求奠定了基础。
[关键词]电子技术课程;教学模式;实验教学
0引言
《模拟电子技术》课程是第四军医大学生物医学工程专业一门非常重要的骨干专业基础课程,主要是培养学员对模拟电路的分析、设计、调试等能力,为其毕业后能够胜任军队医疗卫生装备的维修与研发岗位需求打下坚实的理论基础。《模拟电子技术》课程的授课内容涵盖器件、电路及电路应用3个部分,要求学员完成课程学习后,应具备会计算电路参数、会选择器件、会设计电路、会测试电路参数“四会”基本技能[1]。实验是《模拟电子技术》课程非常重要的教学环节,通过实验既可以检验学员的理论学习效果,又能提高学员的实际动手能力。但是,传统的实验教学模式主要以验证性实验为主,即教员指定实验内容、提供实验元器件和实验仪表,学员按照教材中的电路图完成实验、测试电路参数后完成实验报告,整个过程学员始终处于被动,不能形成实验过程教与学动态交互的平台,无法激发学员对电子技术的兴趣,距离培养创新性思维方式甚远[2-5]。在这种实验教学模式下,学员只是能够计算电路参数、测试电路参数,并不知道如何选择器件、如何设计电路,无法满足实用、高素质军队医疗卫生装备研发人才的培养目标和要求。针对以上问题教学组融合课程特点,在实验教学设计中大胆创新与改革。在完成模拟电子技术经典实验项目的前提下,整合验证性实验内容,将实践教学拓展由课堂延伸到课外[6-7],增加以问题和需求牵引为导向的综合设计性实验,开放性地提出了“五自”实验教学模式;引导学员主动参与实际科研活动,灵活地选取探索的方法,为学员提供发展创造性思维和实践的机会,激发了学员对电子技术类课程学习的热情,同时加强了团队的协作,锻炼了对科研活动的总结和表达能力。
1“五自”实验教学模式
调动学员在《模拟电子技术》课程实验过程的主观能动性和学习积极性,教学组在基本要求“会分析计算、会使用常用的仪器仪表、会测量基本的参数”的指标基础上增加了“会设计电路”和“会选元器”件2个环节;开放性地提出学员自由选题与分组、自行管理与实现、自主设计与实施、自行调试与安装以及自主答辩与论文完成的“五自”实验教学模式。现将具体实施步骤介绍如下。
1.1自由选题与分组
摘要:数字电路的设计对数字电路的应用起到重要作用,集成电路成为应用的主旋律,在数字电路设计过程中,我们通常选择数字集成电路,数字集成电路比其它电路具有很强的抗干扰性能,这是其在应用过程中主要的优势。本论文主要从硬件抗干扰技术在数字电路设计环节的应用、软件抗干扰技术在数字电路设计环节的应用、案例分析进行阐述数字电路设计中的抗干扰技术分析,希望为研究数字电路设计的专家与学者提供理论参考。
关键词:数字电话设计;抗干扰技术;分析
科学技术不断发展,促进了电子设备的不断提高,现在人们广泛应用电子设备,尤其智能手机的应用,其用户不断增加,用电设备密度不断增加,在空间应用过程中,可能造成电磁环境的不断恶化,电子设备之间可能造成干扰,影响电子设备的正常工作,必须提高电子设备之间的抗干扰性能,因此我们在数字电路设计的过程中,采用数字电路集成电路的方式进行提高抗干扰性能,利用科技手段,不断提升抗干扰能力,符合现在数字电路设计的发展趋势。
1硬件抗干扰技术在数字电路设计环节的应用
1.1安全接地技术
安全接地技术是一种常用的技术,把机壳接入大地,让电量转移到大地,减少电荷积累情况,减少因为静电等原因造成人与机械设备等受到安全影响。设备装置在实际应用过程中,绝缘层可能出现破损等现象,就可能造成机壳带带电,这时候的电量是足够大的,不能及时转移,可能造成严重的后果,利用安全接地技术可以把多余电荷转移出去,还能及时切断电源等,对其安全性能起到保护作用。
1.2避雷击接地技术