网站首页
教育杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
医学杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
经济杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
金融杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
管理杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
科技杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
工业杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
SCI杂志
中科院1区 中科院2区 中科院3区 中科院4区
全部期刊
公务员期刊网 论文中心 正文

数据挖掘技术工程管理论文

前言:想要写出一篇引人入胜的文章?我们特意为您整理了数据挖掘技术工程管理论文范文,希望能给你带来灵感和参考,敬请阅读。

数据挖掘技术工程管理论文

一、数据挖掘技术概述

(1)确定业务对象:做好业务对象的明确是数据域挖掘的首要步骤,挖掘的最后结构是不可预测的,但是探索的问题必须是有预见的,明确业务对象可以避免数据挖掘的盲目性,从而大大提高成功率。

(2)数据准备:首先,对于业务目标相关的内部和外部数据信息进行查找,从中找出可以用于数据挖掘的信息;其次,要对数据信息的内容进行全面细致分析,确定需要进行挖掘操作的类型;然后,结合相应的挖掘算法,将数据转化称为相应的分析模型,以保证数据挖掘的顺利进行。

(3)数据挖掘:在对数据进行转化后,就可以结合相应的挖掘算法,自动完成相应的数据分析工作。

(4)结果分析:对得到的数据分析结果进行评价,结合数据挖掘操作明确分析方法,一般情况下,会用到可视化技术。

(5)知识同化:对分析得到的数据信息进行整理,统一到业务信息系统的组成结构中。这个步骤不一定能够一次完成,而且其中部分步骤可能需要重复进行。

二、数据挖掘技术在水利工程管理中的实施要点

水利工程在经济和社会发展中是非常重要的基础设施,做好水利工程管理工作,确保其功能的有效发挥,是相关管理人员需要重点考虑的问题。最近几年,随着社会经济的飞速发展,水利工程项目的数量和规模不断扩大,产生的水利科学数据也在不断增加,这些数据虽然繁琐,但是在许多科研生产活动和日常生活中都是不可或缺的。例如,在对洪涝、干旱的预防以及对生态环境问题的处理方面,获取完整的水利科学数据是首要任务。那么,针对日益繁杂的海量水利科学数据,如何对有用的信息知识进行提取呢?数据挖掘技术的应用有效的解决了这个问题,可以从海量的数据信息中,挖掘出潜在的、有利用价值的知识,为相关决策提供必要的支持。

1.强化数据库建设

要想对各类数据进行科学有效的收集和整理,就必须建立合理完善的数据库。对于水利工程而言,应该建立分类数据库,如水文、河道河情、水量调度、防洪、汛情等,确保数据的合理性、全面性和准确性,选择合适的方法,对有用数据进行挖掘。

2.合理选择数据挖掘算法

(1)关联规则挖掘算法:关联规则挖掘问题最早提出于1993年,在当前数据挖掘领域,从事务数据库中发现关联规则,已经成为一个极其重要的研究课题。关联规则挖掘的主要目的,是寻找和挖掘隐藏在各种数据之间的相互关系,通过量化的数据,来描述事务A的出现对于事务B出现可能产生的影响,关联规则挖掘就是给定一组Item以及相应的记录组合,通过对记录组合的分析,推导出Item间存在的相关性。当前对于关联规则的描述,一般是利用支持度和置信度,支出度是指产品集A、B同时出现的概率,置信度则是在事务集A出现的前提下,B出现的概率。通过相应的关联分析,可以得出事务A、B同时出现的简单规则,以及每一条规则的支持度和置信度,支持度高则表明规则被经常使用,置信度高则表明规则相对可靠,通过关联分析,可以明确事务A、B的关联程度,决定两种事务同时出现的情况。

(2)自顶而下频繁项挖掘算法:对于长频繁项,如果采用关联规则挖掘算法,需要进行大量的计算分析,不仅耗时耗力,而且影响计算的精准度,这时,就可以采用自顶而下频繁项挖掘算法,这种算法是一种相对优秀的长频繁项挖掘算法,利用了事务项目关联信息表、项目约简、关键项目以及投影数据库等新概念与投影、约简等新方法,在对候选集进行生成的过程中,应该对重复分支进行及时修剪,提升算法的实际效率,从而有效解决了长频繁项的挖掘问题。结合计算机实验以及算法分析,可以看出,这种方法是相对完善的,同时也是十分有效的。不过需要注意的是,当支持度较大、频繁项相对较短时,利用关联规则挖掘中典型的Apriori方法,可以起到更好的效果。

(3)频繁项双向挖掘算法:这种算法是一种融合了自顶向下以及自底向上的双向挖掘算法,可以较好的解决长频繁项以及段频繁项的挖掘问题,主挖掘方向是利用自顶向下挖掘策略,但是结合自底向上方法生成的非频繁项集,可以对候选集进行及时修剪,提升算法的实际效率。

三、结语

总之,在当前信息时代,应用数据挖掘技术,可以强化水利工程管理的效率和质量,确保水利工程功能的充分发挥,推动社会经济建设的稳步进行。

作者:丁云球 单位:江西省上饶市万年县水利电力勘察设计室

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

AI写作,高效原创

在线指导,快速准确,满意为止

立即体验
文秘服务 AI帮写作 润色服务 论文发表