网站首页
教育杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
医学杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
经济杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
金融杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
管理杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
科技杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
工业杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
SCI杂志
中科院1区 中科院2区 中科院3区 中科院4区
全部期刊
公务员期刊网 论文中心 正文

轧钢主机阻尼环优化探析

前言:想要写出一篇引人入胜的文章?我们特意为您整理了轧钢主机阻尼环优化探析范文,希望能给你带来灵感和参考,敬请阅读。

轧钢主机阻尼环优化探析

本文作者:李伟、陈卫杰 单位:哈尔滨电气动力装备有限责任公司

为分析阻尼环产生变形的原因,我们对阻尼环及其连接部件建立物理模型,进行了有限元计算,分析其变形原因,找出其解决问题的办法。

受力部件的物理模型

该电机的主要旋转部件包括主轴、磁极冲片、磁极压板、磁极线圈等。为提高主轴的抗冲击和过负荷能力,磁轭与转轴锻成一体,在磁轭上加工出鸽尾槽以便安装转子磁极。磁极冲片是由1.5mm厚优质冷轧钢板冲制而成,极身下部采用鸽尾结构。磁极线圈带有普通匝和散热匝,线圈匝间绝缘采用两层0.13mm厚上胶Nomex纸,线圈的上、下表面和对地绝缘均使用Nomex纸固化成型。磁极线圈套入磁极铁心后,用浸胶涤纶毡和环氧玻璃布板将端部和其它所有缝隙塞满,加热固化后使磁极线圈、磁极铁心和托板成为一体,提高了转子部分的电气可靠性。电动机的阻尼绕组采用全阻尼系统,阻尼环之间采用特殊的连接结构,并在磁极之间装有元宝形撑块,将磁极线圈压在磁极上。阻尼系统按电机工况的情况进行结构设计,为避免产生机械疲劳和有害变形,用阻尼环连接件将阻尼环直接固定在轴上,同时在阻尼环和磁极压板上加工有止口,有效防止了高转速下阻尼环变形。阻尼环连接结构如图4所示。

在磁极冲片建模过程中,磁极冲片、螺杆、阻尼条和轴以及连接键均采用平面应变单元。考虑到轴结构的对称性,转轴取整体结构的1/6,约束两端截面处结点的切向位移,由于螺杆和阻尼条的离心力作用于磁极冲片,而螺孔和阻尼条孔对冲片的刚度没有贡献,因此在有限元模型中,螺杆和阻尼条与磁极冲片采用公用节点连接,材料密度分别用钢和铜的密度,弹性模量均取一个很小的值,即10000Nm/mm2;连接键与磁极冲片配合面采用间隙单元连接,轴和连接键的接触面分别采用位移约束单元,以保证位移的一致性,线圈的离心力以力的形式加载在冲片的两端。

强度计算

本文采用有限元程序I-DEAS6.0,对TBP7000-6电机的阻尼条和阻尼环进行了计算。计算模型包括磁极压板、阻尼条、阻尼环、收缩环、螺杆孔、轴和连接键,计算参数如下额定转速:nN=710r/min超速转速:nN1=852r/min磁极压板材料:锻钢D20Mn磁极压板弹性模量:E=2.068×105MPa磁极压板屈服极限:σs=450MPa泊松比:μ=0.29磁极压板材料密度:ρ=7.82×103kg/m3轴的材料:34CrNi3Mo轴材料拉伸屈服极限径向:σs≥490MPa纵向和切向:σs≥540MPa阻尼条材料T2紫铜阻尼条材料强度极限:σb=275MPa

改进后的阻尼条应力分布如图5所示。φ20计算结果:根据实际受力情况,计算了超速转速下852r/min时9根φ20阻尼条和磁极压板、轴鸽尾槽以及阻尼环等的应力,其应力分布图见图5,计算结果见表1。由计算结果可以看出,阻尼条应力过大,已经接近其屈服极限。现将阻尼条面积加大,将φ20阻尼条换成φ25阻尼条,其计算后的应力分布图如图6所示。根据实际受力情况,在超速转速852r/min时,9根φ25阻尼条和磁极压板、轴鸽尾槽以及阻尼环等的应力分布图如图6所示,计算结果见表2。

由计算结果看到,将φ20阻尼条换成φ25阻尼条后,阻尼条的应力由207MPa降低到179MPa。阻尼条应力减小后,阻尼条的变形明显减小,因此阻尼环的变形会等到改善。另外经过电磁核算,由阻尼条尺寸的变化而引起电机的电磁参数的变化不大,如:励磁电流由622A增加到623A;励磁电压由79.9V增加到80V。

结语

通过对以上实例的分析,在以后精轧电机的设计中,要充分考虑阻尼环的变形。而阻尼环的变形,有可能是阻尼条的应力过大引起的,因此,要合理选择阻尼条的直径或改变阻尼环的结构。以防止阻尼环的变形。

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

AI写作,高效原创

在线指导,快速准确,满意为止

立即体验
文秘服务 AI帮写作 润色服务 论文发表