前言:想要写出一篇引人入胜的文章?我们特意为您整理了大数据时代下的计算机专业高等代数教学范文,希望能给你带来灵感和参考,敬请阅读。
【摘要】大数据技术如火如荼,但其优势在教育领域尚未得到充分利用,尤其是在计算机专业应用型人才的培养方面。高等代数是计算机专业一门重要基础课程。本文以高等代数为例,分析了当前教学过程中遇到的问题,探讨了大数据时代背景下该课程教学方法与模式的一些改革思路。
【关键词】大数据时代;高等代数;教学方法
0引言
这是一个如火如荼的大数据时代,大数据早已不是空中楼阁,其分析和预测能力为大众开启了智能化时代的大门,正在商业领域发挥着巨大的作用,但在教育领域大数据技术还没能得到充分利用。大数据独有的规模性、多样性与高速性等优势,为高校计算机专业人才培养提供了有利条件,也对教师如何有效的利用这些海量数据提出了挑战。当今国内高等本科院校大都根据高校和相关专业需求来对人才的培养进行定位并确定人才的培养目标究竟是应用型还是学术型。计算机科学由其专业的特殊性决定了大多数高等院校的人才培养目标必然是应用型。在大数据时代下,计算机专业培养出来的应用型人才还应符合大数据时代的需求,具有自主利用数据学习的能力。大数据的直观表现就是海量数据。海量数据的最好组织方法就是矩阵。而高等代数课程的主要研究对象就是矩阵。鉴于高等代数对计算机专业学生后续课程(如科学计算、优化方法等)学习的重要性,本文以高等代数(有的本科院校计算机学院设置的是线性代数课程)为例,分析了其在当前教学中的问题,探讨了大数据时代背景下该课程教学方法与模式的一些改革思路。
1当前教学中的问题和教师教学能力的提升传统的计算机专业数学类课程
(高等代数为其中之一)由于受教材本身的限制,教学形式往往是灌输式填鸭式等单一形式。在教学过程中,大都是以教师课堂讲授为形式的理论教学,即使加入多媒体教学手段,学生学习仍然很被动,无法触类旁通。高等代数作为计算机专业本科基础课程,许多教师常年用同样的教材同一套课件甚至布置同样的作业,也从不举实践工程实例,忽略了与学生的交流与互动,从而导致学生在诸多的理论推导过程感觉枯燥乏味甚至出现昏昏欲睡等不良现象。学生由于数学基础不同接受能力和学习能力有所区别,对这类理论性强的教程的学习积极性并不高。如果存在开放的大数据平台使得学生可以实时学习,并根据每次学习的结果实时修正,然后根据自身的学习节奏和学习状态,适时地调整自身学习方法,学习效果必将与之前大不相同。高校教师作为高等教育工作者,应当谨遵清华大学施一公教授“育人在育心”思想,在培养学生的过程中“以学生为本”,以身作则,言传身教,通过阅读更多的课外书籍来拓展自身视野,通过研读更多的科研论文与相关专业文献来把握最新研究动态,不断提升自身理论水平和科研水平,从而提升自身教学能力。以高等代数这门课程为例,坚实的数学基础,必要的工程知识,丰富的教学经验和良好的编程能力是任课教师应当具有的基本素质。任课教师在教学过程中结合自身的科研项目,将其中涉及矩阵应用的案例(比如矩阵QR分解、LU分解问题及相关应用)讲解给学生,从而激发学生的学习兴趣,提升学生在今后计算机专业工程应用方面的理论基础以及实践动手能力,以领略理论与实践结合的真谛,从而以高昂的热情和积极性投入到后续计算机专业课程(比如优化方法、计算机视觉等等)的学习中去。
2大数据时代高校教师的着手点
“大数据配合互联网对教育产生了重大冲击”[1]。大数据顾名思义即海量数据,这需要经过一定程度的数据积累才能实现。比如高等代数作为计算机专业的基础课程已经教授了很多年,但是鲜有留下有效数据。这是因为,首先,这么多届学生的大量课程数据或者是没有收集,或者是被搁置、遗忘,少量数据达不到大数据应用的要求,即充分的大规模和多样性,或者是积累的数据仍存在许多不足。另外,大部分高等院校关于大数据的管理知识尚不够完善,而以什么样的目的来应用这些海量数据决定了大数据会成为垃圾还是宝藏。为此,高校教师应首先从建立大规模的数据库着手,开始收集学生学习过程中产生的数据,比如学生关于特征值求解,线性空间的基、矩阵的运算等不同的章节内容的作业情况,比如学生在某一章节内容学习中的实时反馈信息,比如教师结合学生的反馈信息对授课内容进行实时修正之后的教学效果对比,比如课程结束后的学生教学评价等等。实际上,教育评价方式作为高校人才培养模式的八个组成要素[2]之一,发挥的作用一直都很微弱,是时候考虑其影响力从而提上教学改革日程了。教师在逐步建立数据仓库的同时,可以参考互联网上的优质资源。“互联网与浏览器为大众开启了利用信息的平台:处理来自各种渠道的多种类型数据,需要高级的分析能力,接近数据的便利性”[3]。大数据时代应提倡学生通过网络寻找最新的技术来解决问题。
3教学改革探讨
3.1改编适合本校学生、符合时代要求的教材
由于各个高校计算机专业的定位与培养目标不同,高等代数这门计算机专业的基础课程并没有统一的教材。高校教师在选取教材的时候如果没有考虑本校学生自身的特点,也没能与时俱进的结合当下时展的需求,教材往往存在一定的不合理性。比如某大学计算机学院选取的是北京大学数学系前代数小组编写的《高等代数》。该教材虽然内容丰富、知识点全面。但是对刚上大学的大一新生来说由于其三维空间概念还有待建立,思维模式还没有办法立即转换到矩阵或线性空间等层面,所以具有一定的难度。由于大一新生(第一学期)高中的数学基础参差不齐,如果教师在选用教材的时候能够先广泛查阅已出版教材(尤其是出版社反馈众多高校教师评价良好的教材),同时参考多种相关的专业教材,再结合网上优秀资源,并充分考虑本校学生的接受能力和学习能力,选择或者改编一本适合本校学生的教材。在大数据时代,除了基础知识点之外,还可以在教材中围绕基础知识点展开包括该数学思想的发展历史、工程应用实例等在内的介绍,并加入教学互动环节。高校教师可结合这种改编教材,根据学生的教学反馈,实时修正,对学生感兴趣的点进行拓展,也可利用MOOC(也被称为“慕课”)或SPOC等多种网络资源,对基础理论的讲解中加入动画与案例,使得课程更加生动有趣。
3.2大数据对教学的影响
从2012年开始,MOOC作为一种大规模开放式的在线教育形式正在受到教育工作者的广泛关注和应用。学生可以利用这个平台自主进行学习,而不再受到时间空间的限制。清华大学的张莉指出[4],“借助大数据,教师能随时观察和分析学生的学习行为,可以从中发现传统模式无法发现的教学规律,同时可以借助信息技术向学生提供个性化的在线学习过程;学生不再盲目地按照固有习惯去学习,可以通过分析、反思自己学习过程中产生的数据,发现自己的特点和优势,适时调整学习方法,甚至调整专业方向,进而在学习中更愉快更好地发挥自己的能力。”这种做法值得认同,它实际上指出了预测作为大数据的核心[5]在教育中的积极作用:通过分析海量数据预测未来,准备应对之策。数字化时代,数据的采集方式多种多样:电脑,Ipad或其他平板电脑,数码笔,可穿戴设备等都可以用来实时的数字化学生的学习数据。高校教师在教学过程中如能实时收集正在学习学生的当前动态信息:包括学生基本信息,哪一章节知识点,学生学习中遇到的困难及可能的解决方案,学生的作业和练习以及教师的指导过程及评价等,并参考以往学生的历史学习数据,运用情况信息进行筛选和整理、计算和挖掘,并对接下来的教学进行微调和修正,使其适合当前学生的特点和需求,将会对当前学生乃至下一届学生的教学产生积极的影响。另外,教学评价系统也可随之建立并完善,“大数据提供了多方参与评价的途径”[6],多种来源与结构的评价数据贯穿在课程的整个学习过程中,这样建立起来的教学评价系统模型又反过来应用于学生的学习和教师的教学决策。
3.3引入计算机软件,培养学生抽象思维能力
如前所述,海量数据的最好组织方法就是矩阵。MATLAB是基于矩阵运算的软件,因而在矩阵求解问题方面具有特殊的优势,可以很好的用于数学建模。对高等代数这门课来说,用MATLAB软件可以对海量数据进行连续的多次处理,即使对低阶运算,用矩阵运算(而不是代入法或消元法)求解,效率都可大大提高。大数据时代高等代数教学改革的目标定位为:在保持原有理论和实践水平的基础上,使学生学会高效的求向量相关性,求解高阶(比如6阶以上)特征值之外,能够结合时代需求,对遇到的工程问题能用矩阵建模:从问题的提出,到问题的分析,模型的准备,模型的建立与MATLAB求解,最后用计算机模拟情境。这一切都从写出矩阵表达式开始。这也是抽象思维形成的基础。高校教师在教学过程中,如能通过MATLAB引入大量矩阵建模案例,使抽象概念形象化,培养学生抽象思维能力,从而学会对更深奥的问题进行抽象思考。比如全市交通巡警的服务平台的设置与调度案例,可以根据路口个数、警台个数建立矩阵。根据第i个路口是否在第j个警台管辖范围设置决策变量,采用相关算法(比如Floyd算法)求解第i个路口是否在第j个警台的最短路程,从而建立模型。(详细建模过程可参考相关书籍,这里不再赘述。)
4结语
本文讨论了大数据对高等代数这门课程的影响和挑战,进而探讨了计算机专业学生的培养模式及可能的教学改革方法,比如改编适合本校学生的教材,比如充分利用不受教学资源限制的在线教育形式,又比如计算机软件的引入和应用等。值得注意的是,在应用大数据提升教学质量和学习效果的同时,高校教师应时刻注意信息的维护,解决好学生个人信息保护与数据应用自由之间的矛盾,从而更好的发挥大数据在教育工作中的重要影响和积极作用。
参考文献:
[1]李建敏,大数据环境下的计算机应用基础教学模式探究[J],中国培训,2016(12):170-170
[2]董泽芳,高校人才培养模式的概念界定与要素解析[J],《大学教育科学》,2012(3):30-36
[3][韩]咸由根蔡秉承著,朱小兰译,《掘金大数据》[B],北京:北京时代华文书局有限公司,2013.7
[4]郑莉,张铭,李国和等,大数据与计算机教育[J],计算机教育,2016(2),11-19
[5](英)维克托•迈尔-舍恩伯格,肯尼思•库克耶,《大数据时代(生活工作与思维的大变革)》[B],浙江人民出版社,2012.12
[6]李葆萍,周颖,基于大数据的教学评价研究[J],《现代教育技术》,2016,26(6):5-12
作者:陈雁 单位:华侨大学计算机科学与技术学院