前言:小编为你整理了5篇人工智能论文参考范文,供你参考和借鉴。希望能帮助你在写作上获得灵感,让你的文章更加丰富有深度。
1园林设计的原则
第一,植物的规格要确定好,要结合植物所适应的地质条件来对各种规格的植物进行协调搭配。一般来说,中型及其以上规格的乔木作为园林的架构之一,会对整个园林所呈现出来的景观效果起着重要作用,应当先进行安放,然后才是小型规格的植物的安放,保证在园林景观的细节处做好处理;第二,要合理组合植物的品种类型,落叶植物和针叶常绿植物之间在园林中所占的比例应当保持一定的平衡关系,对于植物如花卉、叶丛的颜色要协调好,一般以夏东两季的植物色彩为主色调,其他色调为辅,以保证视觉上能起到互相补充的效果。
2园林设计中人工智能应用现状
2.1系统操作方面
由于园林设计既涉及艺术方法也涉及到技术手段,因此,对操作人员的综合能力要求就比较高,也就是说,操作人员应当对建筑理论、园林绿植知识和计算机基础三方面综合掌握,而事实上,很多参与园林设计的人员并没有很强的工程操作能力,要求太高,难以实现。
2.2园林可重复使用性方面
目前来说,园林的重复使用性还是太低,因为每个地方的气候条件和地理环境都不相同,所以,针对一个地方所制作的园林设计并不能简单地复制到另一个地方,如苏州园林的设计不能直接用在辽宁的园林设计,原因在于北方相对南方来说,园林供水相对困难,山石种类不同,绿植花卉种类也不如南方园林的丰富,而且南北审美观不同,北方园林设计多采用浑厚石材,绿植多为松、柏、杨、柳、榆、槐,加上三季更迭的花灌木,呈现刚健雄浑的特点,而南方则因为花木种类丰富,布局特别,注重山石与水的搭配,独具精致淡雅的特点,由此可见,园林的可重复使用性不高。
1引言
“人工智能”一词最早是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。人工智能其英文全称为ArtificialIntelligence,缩写为人所共知的AI,它主要是对用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统等进行研究讨论。对于人工智能的定义义众说不一,一般有两种说法:一种是人工智能是关于知识的学科,即怎样对知识进行表示以及怎样获取知识并对知识进行使用的科学;另一种是人工智能研究的是如何实现让计算机做过去只有人才能够做的智能工作。但是不管是哪一种,它都是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器。人工智能的定义可以分为两部分,即“人工”和“智能”。对于“人工”,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。诞生对于“智能”,则存在着很大的争议。因为这涉及到了诸如意识(consciousness)、自我(self)、思维(mind)(包括无意识的思维(unconscious_mind)等等问题。人类唯一能够了解的智能就是人类本身的智能。但是我们对我们自身智能的理解都非常有限,对构成人的智能的必要元素也了解有限,所以就很难定义什么是“人工”制造的“智能”了。人工智能的实现方式有2种方法。一种是采用传统的编程技术,使系统呈现智能的效果,而不考虑所用方法是否与人或动物机体所用的方法相同。这种方法叫工程学方法(Engineeringapproach),它已在一些领域内作出了成果,如文字识别、电脑下棋等。另一种是模拟法(Modelingapproach),它不仅要看效果,还要求实现方法也和人类或生物机体所用的方法相同或相类似。
2人工智能的发展
对于人工智能的研究一共可以分为五个阶段。第一个阶段是人工智能的兴起与冷落,这个时间是在20世纪的50年代。这个阶段是人工智能的起始阶段,人工智能的概念首次被提出,并相继涌现出一批科技成果,例如机器定理证明、跳棋程序、LISP表处理语言等。由于人工智能处于起始阶段,很多地方都存在着缺陷,在加上对自然语言的翻译失败等诸多原因,人工智能的发展一度陷入了低谷。同时在这一个阶段的人工智能研究有一个十分明显的特点:问题求解的方法过度重视,却忽视知识重要性。第二个阶段从20世纪的60年代末到70年代。专家系统的出现将人工智能的研究再一次推向高潮。其中比较著名的专家系统有DENDAL化学质谱分析系统、MTCIN疾病诊断和治疗系统、Hearsay-11语言理解系统等。这些专家系统的出现标志着人工智能已经进入了实际运用的阶段。同时国际人工智能联合会于1969年成立。第三个阶段是20世纪80年代。这个阶段伴随着第五代计算机的研制,人工智能的研究也取得了极大的进展。日本为了能够使推理的速度达到数值运算的速度那么快,于1982年开始了“第五代计算机研制计划”。这个计划虽然最终结果是以失败结束,但是它却带来了人工智能研究的又一轮热潮。第四个阶段是20世纪的80年代末。1987年是神经网络这一新兴科学但是的年份。1987年,美国召开了第一次神经网络国际会议,并向世人宣告了这一新兴科学的诞生。此后,世界各国在神经网络上的投资也开始逐渐的增加。第五个阶段是20世纪90年代后。网络技术的出现于发展,为人工智能的研究提供了新的方向。人工智能的研究已经从曾经的单个智能主体研究开始转向到基于网络环境下的分布式人工智能研究。在这个阶段人工智能不仅仅只对基于同一目标的分布式问题求解进行研究,同时还对多个智能主体的多目标问题求解进行研究,让人工智能有更多的实际用途。
3对人工智能的思考
3.1人工智能与人的智能
从哲学上的量变引起质变的角度来讲,人工智能在不断的发展过程中一定会产生质的飞跃。在最初,人工智能只具有简单的模拟功能,但是发展到现在已经具备了思考的能力(逻辑推理分析),这已经表明人工智能在不断量变的过程中已经发生了质变。有人认为有人会说人工智能不会超过人类的智能,理由是人工智能是人类创造出来的。但是现实中很多人类创造出来的东西已经在某一些方面超过了人类本身的能力,例如起重机的力气超过人类很多;汽车速度也远超过人类的速度。人类之所以会制造出各种各样的工具,其目的就是希望自身的能力能通过这些工具进行延伸和突破。人类研究人工智能就是希望人工智能帮助人类实现人类某些无法实现的东西。还有人认为人工智能是人类创造出来的,所以它一定存在着致命的弱点,也因此人的智能优于人工智能。但是殊不知人类与机器相比也有着十分明显的弱点,例如人类所需要的生存条件比机器更加的严格,人类思维会受到人的情绪所影响,而机器只是受到程序的影响,它们没有情绪的起伏。就目前的人工智能而言,它们在某一些领域比人类更强。但是目前我们必须正视人工智能的一些还没有办法改变的缺陷,那就是人工智能的学习能力与创新能力。人工智能的知识获取大部门都是人为的进行灌输,而无法像人类自身那样进行主动的学习。同时人工智能只能够利用已有的知识去解决一些问题,但是却还不能够创造性的提出一些新的东西。
摘要:我国科技期刊正加快数字化转型进程,即将面临数字化后的智能化升级。科技期刊人要抓住智能化转型的发展契机,积极发挥人工智能对科技期刊发展的推动作用。人工智能已在科技期刊出版中探索应用,人工智能可以协助审稿、策划组稿、编辑加工、检测出学术不端、鉴别数据造假、精准发行传播等,优化出版流程,提高期刊出版发行和学术传播的效率和质量,未来可能会有更广阔的应用前景。
关键词:科技期刊;人工智能;数字化;同行评议
2021年,中共中央宣传部、教育部、科技部印发《关于推动学术期刊繁荣发展的意见》,指出学术期刊要加快融合发展,推动数字化转型,引导学术期刊适应移动化、智能化发展方向,推动融合发展平台建设。人工智能正推动社会从数字化、网络化向智能化转型,科技期刊是率先有效引入人工智能的领域,人工智能与科技期刊出版的融合是发展的必然趋势。人工智能技术正越来越多地被开发、应用来帮助作者和出版人员,如对海量文献进行检索和分析,提取有用的信息;协助组稿审稿、编辑加工、出版发行;检出学术不端、鉴别数据造假等。人工智能可提高期刊出版和学术交流的效率,保证客观公正性和质量控制,减少人为偏倚和编辑职业倦怠,未来甚至可以指导特定领域如何开展新的研究。科技期刊出版平台未来将不仅限于提供学术论文数据库服务,还可以提供更多的信息和服务,人工智能在科技期刊出版中的应用前景值得思考和探索。
一、人工智能在审稿中的应用
Dimensions数据显示,2019年有超过420万篇论文发表,与十年前相比翻了一番。辛巴信息(SimbaInformation)统计数据显示,每年有超过250万篇学术论文发表在28000余种英文科技期刊上,科技期刊同行评议的论文数量是这个数量的两倍以上。发表论文数量的增加意味着高质量同行评议审稿的需求增加,也带来了严格保持审稿高质量和高标准的挑战。数量如此庞大的学术论文交到数量相对较少的固定的学者间进行同行评议,势必造成审稿效率的低下和学术论文的延迟发表。同行评议过程还存在个人偏见,审稿人可能是稿件作者的竞争者或反对者,抑或是朋友、未来的合作者或资助者等,这些可能会影响审稿意见的客观性和公正性。在实际的期刊出版工作中,也缺乏对审稿人审稿质量,以及拖延审稿或无效审稿等不当行为的约束和监督。这种情况亟须人工智能等可用于决策支持的技术来保证海量论文得到严格、一贯且高效的审评。引入人工智能技术可以大大优化审稿流程、提高审稿效率、缩短审稿周期。人工智能可以从网络出版平台的专家数据库中快速匹配符合选题方向的审稿专家,帮助提高审稿的效率和成功率。人工智能可以在数据库中根据研究方向、审稿记录、审稿效率和其他预设条件等,自动筛选最合适的审稿专家,分析排序后生成审稿人列表;并根据审稿人信息自动完成审稿邀请邮件的发送,还可以实时监控审稿状态和审稿人反馈;一旦出现审稿超时,自动向列表中下一位审稿人发出审稿邀请;收到审稿人的审稿意见后,实时通过邮件、APP、短信等及时反馈给期刊编辑进行相应处理。人工智能还可以根据论文标题、摘要、关键词和正文内容等对来稿进行初审,对图文进行快速识别,对论文的真实性、合理性、逻辑性、科学性、创新性和规范性等做出判断,为编辑初审提供详尽精准的参考。人工智能可以对论文的学术价值进行初步判断,对其中的文字和插图等进行深度识别。人工智能可以整句或整段地阅读释义,能识别出传统软件识别不出的同义表达,如此可减少学术不端,保证期刊的学术价值和品质。人工智能或许可以一定程度上遏制掠夺性期刊和掠夺性出版的泛滥。人工智能通过帮助编辑寻找新的审稿人并进行自动审稿等,大大提高学术和科技出版机构编辑出版高质量学术论文的能力,增加学术和科技期刊的论文接纳能力,也就减少了掠夺性期刊侵占学术资源的机会。人工智能还能对已发表的论文进行自动浏览回顾,基于掠夺性期刊的一些特征和标准,帮助筛选出那些不坚持标准的掠夺性期刊和出版商。Elsevier用人工智能软件EVISE取代了其过时的编辑系统,支持其编辑流程,提高了学术论文处理效率。EVISE可将来稿链接学术不端检测软件,从数据库中筛选推荐合适的审稿专家,链接其他项目资源对稿件内容、科学性和审稿人利益冲突等进行检测,自动生成与个人或机构的往来邮件等。开放获取期刊出版商Frontiers推出人工智能软件AIRA,对Frontiers的10万名编辑、审稿人和作者开放,能帮助他们自动评估学术论文的质量。AIRA可以阅读每篇论文,并在几秒钟内给出20条建议,包括对文字质量、图表的完整性、学术不端检测以及可能的利益冲突等。AIRA经过了Frontiers的审稿经验培训和测试,已完全融入Frontiers的内部工作流程,自动筛选和识别潜在的审稿人,加快审稿进程的同时,保证质量控制和客观公正,缩短了发表时滞,提高了出版效率。AIRA通过给出建议及半自动化检查的方式提供决策支持,仍然由相关领域专业人士做出最终决策,这种用户反馈被AIRA捕捉并进行学习和自我完善,这种人机协作有助于保证高准确性和高效率。
二、人工智能在策划选题中的应用
传统的策划选题依靠编委和编辑的经验、知识积累对学科发展方向的判断和预见,这种方式受人为因素限制,容易忽略有价值的选题且费时费力。未来,我们可借助人工智能的帮助,对已发表的海量文献、资源数据库进行检索分析,获取有用的信息进行相应的操作。人工智能可以从网络出版平台的专家数据库中快速匹配符合选题方向的作者,帮助提高组稿的效率和成功率。数据思维就是利用数据来深度挖掘和了解需求,了解存在和需要解决的问题,通过量化的数据来解决问题。人工智能基于大数据可以辅助选题策划选题、收集专家学者信息和研究方向,通过读者阅读信息和反馈来分析其关注点和需求,提供个性化的文献检索和信息传递服务等。人工智能可以通过对大数据的深度挖掘和学习,通过云计算技术,敏锐捕捉专业领域的新热点、新技术、新理论等;基于读者的阅读习惯、倾向及频率等进行量化分析,获取读者的需求信息;对国家自然科学基金等基金组织申报和资助情况、科技奖获奖情况、国际学术会议研讨热点等进行整合分析,对文献数据库等潜在信息进行挖掘和分析,快速推测出哪些内容具有独创性、前瞻性和话题性,生成选题策划资源库,帮助期刊编辑更精准高效的策划选题。基于人工智能的新型搜索工具Iris.AI,可以帮助学者从海量文献中筛选研究论文或专利等,提取关键的数据和要查找的信息。学术搜索平台SemanticScholar也是基于人工智能自主学习的学术搜索引擎,可快速筛选相关有用内容,并在一定程度上理解这些内容,展示相关主题历年文章发表情况及相关推荐内容等,可辅助期刊策划选题。
关键词:人工智能;选题策划;科技期刊;应对策略
《2018—2019中国数字出版产业年度报告》中指出,人工智能技术在出版领域的应用日趋深入[1],最直接的表现在于人工智能技术将改变出版行业长久以来模式化、规律化的生产运营方式,提高出版效率,提升知识服务能力.研究人工智能技术与出版融合发展的落脚点和着力点在于人工智能在学术出版领域的应用.向飒[2]认为人工智能不仅可以加速学术传播,在选题策划、编辑出版、生产印刷、营销发行等方面再造学术出版流程,还可以显著提升学术出版的知识服务能力.刘银娣[3]认为人工智能可以应用在反剽窃和同行评审专家匹配、智能学术搜索以及智能文献计量等环节.刘平等[4]介绍了借助人工智能的智慧出版模式,包括从选题策划、内容生产到阅读体验及内容服务等过程.江雨莲等[5]指出人工智能在医学期刊编辑出版中的应用包括选题策划与组稿、论文初审与同行评议、编辑加工、排版与校对等方面.然而,现有研究[2-7]大多是概述人工智能在内容生产到内容推送全流程中的潜在应用,鲜有专门探讨人工智能应用于选题策划的研究.选题策划是出版物编辑过程的最初阶段,也是影响出版物发展前景的至关重要阶段[8].探讨人工智能应用于选题策划是研究人工智能技术与学术出版融合发展的重要一环.本文将列举人工智能在科技期刊选题策划中的优势和可用于选题策划的人工智能产品,探讨人工智能选题策划面临的挑战及编辑的应对策略,以期为科技期刊应用人工智能进行选题策划提供参考.
1人工智能选题策划的优势及可用产品
科技期刊选题策划的方式方法与图书等出版物相比存在一些差异,它主要是根据当前学科热点及焦点问题,结合读者需求,制定具有前瞻性、引导性、实用性的选题方向、选题形式及内容,然后进行多途径组稿约稿,策划专题专栏、专刊甚至特刊来实现选题优化,强化期刊品牌特色,推进学科发展.
1.1人工智能在科技期刊选题策划中的优势
1.1.1提高选题策划的效率和准确性传统的选题策划主要依靠编委和编辑的知识积累、经验以及对学科方向的预见和主观判断来寻找有价值的选题,这种方式耗时费力,并且容易忽略非常有价值的选题.利用人工智能获取选题离不开人工智能学术搜索工具.2020年5月,清华大学人工智能研究院等单位联合了报告《人工智能之学术搜索》[9],该报告中指出,与以往的学术搜索引擎(例如开放式互联网学术搜索引擎)相比,人工智能学术搜索引擎不再局限于单纯地为用户提供文献检索的简单功能(例如关键词搜索、模型化计量等)来逐层过滤相关度不高的论文,而是将大数据、深度学习技术应用到信息筛选过程中,基于大数据、深度学习的检索系统能从海量数据中快速提取有效信息并进行科学统计分析,同时理解查询者的需求和文献的意思.人工智能可深度挖掘读者需求,通过读者行为(阅读、评论、下载、转发等)捕捉读者研究背景和研究兴趣;还可以根据学科领域内的热门事件和热点、前沿问题进行智能分析比对,快速推测出哪些内容更具前瞻性和话题性,有效提高选题策划的效率.人工智能选题策划是在开放的互联网上进行的,搜索范围更广、内容更丰富,获得的选题方向更全面、准确.由《纽时时报》数字部门的科学团队研发的机器人Blossomblot,是基于协作工具Slack软件上的一个虚拟智能机器人,它可以对社交网络的海量文章进行大数据分析,预测哪些内容更有话题性,帮助编辑挑选出适合推送的素材.据《纽时时报》的统计数据,经Blossomblot筛选后推荐的文章点击量是普通文章的38倍[10].
1.1.2提升约稿对象的匹配度随着科学技术的发展,学科间的交叉融合越来越多,学者进行跨学科研究的现象非常普遍;青年学者的学术影响力较弱.这些因素都可能导致编委或编辑不能准确、及时地获取潜在约稿专家的信息及他们的科研动态.人工智能可协助期刊编委及编辑寻找潜在的约稿专家.与传统的约稿方式(如在编辑部已有专家库中选择、其他专家推荐等)相比,借助大数据技术、知识图谱技术、图像识别技术甚至声纹识别技术等,人工智能可在海量信息中检索并标记可能相关的学术动态信息及其研究者,具有元数据结构的机器可“读取”、描述这些科学人物,并对他们的研究成果相关性及研究质量进行搜索、分析和排序,估算这些研究者的学术影响力.比如,人工智能可以快速搜索相关领域重要学术会议的特邀专家、重大科研项目的第一责任人、省部级科技奖项获得者等,分析这些研究者及所在课题组的科研轨迹和当前的研究方向,分析他们的科研产出,估算他们的科研活跃度;同时,通过学者关系网络图谱智能搜索与这些科学家合作密切的其他研究者.此外,人工智能还可根据当次约稿结果生成新的训练数据,为下一次选题策划、组稿约稿提供参考.人工智能赋能的学术搜索工具AMiner可采用知识图谱技术结合人工智能技术自动生成全球人工智能领域最有影响力的学者榜单、全球计算机领域高校排名、全球学术会议综合指数及排名等学术榜单,帮助编委和编辑在交叉领域和新兴热点领域寻找全球范围内合适的约稿对象[9].
摘要:媒体融合时代,智能技术为科技期刊的发展带来了前所未有的便利,然而文献的爆炸式增长也给科技期刊的精准传播带来了很大的挑战。文章从扩展学术搜索的路径、构建个性化的精准推送平台和多元化的传播模式、向用户提供有针对性的服务方面探索在媒体融合形势下如何提升科技期刊的精准传播能力。
关键词:科技期刊;媒体融合;知识服务;精准传播
近年来,随着计算机技术的进步,科技期刊出版正在经历着前所未有的巨大变革。目前,信息技术已呈现出“人-机-物”三元融合的态势,数据分析工具和基于云计算的数据资源成为期刊出版的重要特征[1],期刊出版的数字化和集群化发展成为当下期刊发展的主流趋势,人工智能也将在学术期刊的出版、存取、质量评价等多个环节上得到广泛应用,并推动科技期刊出版方式的变革[2]。目前,在科技期刊界,学者们就如何促进科技期刊媒体融合发展开展了大量的研究,既包括理论层面的探讨,又包括从实践和案例的角度开展的应用研究[3-6]。与此同时,我们注意到,全球的科学产出以极快的速度增长,从第二次世界大战结束以来,全球的科学产出相当于每9年就会翻1番[7],读者也更容易被无用的信息轰炸,难以在期刊论文的海洋中高效准确地找到自己需要的内容,科技期刊要想扩大自身的影响力也愈来愈难。信息爆炸时代,科技期刊关注读者“需要什么”比“提供了什么”更重要。在智能技术变革的时展潮流中,科技期刊应如何顺应时展趋势,利用智能技术整合资源,更好地满足读者的需求,扩大期刊的影响力,创造科技期刊人、出版商、作者、读者的共赢局面?本文从以上问题切入,尝试从扩展学术搜索的路径、构建个性化的精准推送平台和多元化的传播模式、向用户提供有针对性的服务方面探索在媒体融合形势下如何提升科技期刊的精准传播能力,以期为我国科技期刊媒体融合建设增瓦添砖。
1借助人工智能,扩展学术搜索的路径
互联网时代改变了人们获取信息的方式,搜索引擎在促进科技期刊的传播、提高影响力等方面的功能逐渐凸显。虽然现有的一些搜索门户网站诸如Webofscience、PubMed、谷歌学术、各图书馆网站、中国知网、万方数据知识服务平台等搜索引擎可以帮助读者检索科技论文,但是仍不能满足用户多样化的检索需求。Tancheva等[8]针对康奈尔大学图书馆开展的一项调查研究发现受访者“往往既对搜索方法的效率感到满意,同时又对搜索的棘手和费力感到不满……当研究人员无法完成一个特定的搜索任务,他们很可能放弃现有的方法(或工具或技术),而不是找出如何使它工作”。为了解决这一问题,需要开发新的模式解决学术出版的过量负载,利用智能技术优化搜索引擎的现有功能。目前很多科技公司都在探索开发基于人工智能的学术搜索引擎和知识服务。例如Springer网络平台不断对其功能进行集成,并提供个性化服务功能;Elsevier等出版商为用户等提供搜索引擎培训课程;微软学术(MicrosoftAcademic)通过在实体之间建立有意义的关联,自动生成可视化的知识图谱,引导学者阅读[2];2014年,Wiley线上图书馆为用户提供了增强型HTML文章服务(AnywhereArticle),它将可读性、交互性和可移植性设为用户体验的核心,使读者能够在页面中快速找到最重要的信息[9]。一些关于科学出版的新模式和平台被相继开发,如Chorus[10]通过集成服务和开放APIs,优化了科技论文被搜索的路径,并为政府机构、出版商、研究人员、图书馆员和作者提供可持续的解决方案。目前我国已经形成一些专业的期刊集群,一部分学术期刊数据库平台也开始进行语义出版形式的探索,对科技期刊内容进行深度加工和挖掘。不同的科技期刊具有不同的特点,在学术期刊的数据库平台建设过程中需要平台开发团队与期刊编辑充分交流[11],发挥编辑的优势和主导作用,凸显本学科的学科特色。
2利用智能算法,构建个性化的精准推送平台
技术是科技期刊创新发展的重要推手,技术应用能力也成为科技期刊发展的竞争资源,充分利用技术强化科技期刊的知识服务和加工能力,创新出版和传播模式,满足数字化时代的读者需求,对于科技期刊的精准传播和融合发展非常重要。在人工智能背景下,可以借助于算法实现科技期刊出版的智能化。算法的设计程序与设计者的思维密不可分,设计者选择数据样本、赋予数据意义、设计模型与算法,拥有数据并设定算法的智能化平台具有很强的主导性[12],因此设计者需要尽可能考虑并消除算法偏见和利益冲突对精准传播带来的负面影响。日前,腾讯研究院和腾讯AILab联合的人工智能伦理报告指出“人工智能等新技术需要价值引导,做到可用、可靠、可知、可控”[13]。目前“智能算法+学术期刊”已成为创新趋势,学术期刊可构建信息数据基础环境,进一步完成动态精准信息推荐,最后以传受关系交互实现长期有效的黏性连接[14]。一方面可以通过算法整合资源,实现大量科技期刊的数字资源的聚合;另一方面可以通过算法分析用户的阅读兴趣、研究领域,基于用户的需求建立相关用户数据信息,从而进一步将数字资源和用户数据相匹配,实现科技期刊的智能化精准传播。如中国知网推出的“CNKI全球学术快报”整合全球文献和超星集团推出的“域出版”超星学习通学术平台[15],用户不仅可以在其App上进行文献检索、分版阅读、专题阅读等,还可以与作者进行互动交流。此外,还可以利用智能算法设计追踪用户的信息反馈,通过学术平台进一步增加用户的体验感,提升科技期刊的精准传播能力。