公务员期刊网 论文中心 正文

电力通信网管数据中区块链技术运用

前言:想要写出一篇引人入胜的文章?我们特意为您整理了电力通信网管数据中区块链技术运用范文,希望能给你带来灵感和参考,敬请阅读。

电力通信网管数据中区块链技术运用

【摘要】为了利用密码学的方式保证数据传输和访问的安全,还能够利用由自动化脚本代码组成的智能合约来编程和操作数据等。本文主要以电力通信网管数据中区块链技术为研究对象,通过介绍电力通信网管数据中区块链技术应用,提出电力通信网管区块链技术应用方案,分析电力通信网中数据一致性、不可篡改性、可追溯性等优势,希望能够对相关人士提供参考与借鉴的作用。

【关键词】电力通信网管;数据;区块链

0引言

目前随着人们对通信技术的需求量不断增加,通信网络也变得越来越复杂,而我国的电力通信网络起源较晚,存在非常多的问题和漏洞,这些漏洞不可避免会带来很多问题,使电力通信网络存在很多的安全隐患。为了解决这些问题,就必须引进先进的技术,区块链技术以其数据一致性、不可篡改性、可追溯性等优势被广泛应用于电力系统中,为电力通信网络安全稳定运行提供重要的现实作用。

1电力通信网元数据分布式存储概述

对于电力通信网来说,应用区块链技术的根本目的是要通过区块链技术中所具有的“一致性”“不可篡改性”等特点,确保电力通信的稳定性和安全性。对于电力通信网来说,其数据的安全性至关重要,是确保电网业务正常运行的基础,确保数据的安全性和可靠性可以利用数据分布式存储的数据结构来实现。区块链技术应用时会对网络控制数据按照不同方式(包括:“交易+链”“区块+链”“区块+交易”)进行建立。区块链技术有其特殊的结构,主要是以多节点全分布式数据结构进行数据存储,最终会建立起某时间段内数据的一致性,最终通过哈希算子等方式来确保MerkleTree组成数据的安全性(不可伪造和逆转)。从另一个角度来看,区块可以当作分布式的数据记账本,可以将电力通信网每一个网元作为区块节点,通过不同类型数据(包括:原数据的数据头、数据增量变化的数据等)形成区块体。而后继区的数据头主要包括:前置区块的哈希值、随机数、时间戳、难度目标、MerkleTree等,这些不同类型数据头会和前个区块进行连接,在整个时间区段范围内每个区块都反映着一次数据增量的改变,并且会将变化值存储在区块当中。对于电力通信网来说,区块链技术在实际应用时会从客户端发出相应的业务指令,之后广播到通信网控制网络等待节点进行进一步确认。每一个网元节点在获取等待确认的相应数据之后,会将其进行整体打包并形成范围更大的候选区块,每一个区块的“前区哈希值”字段都会匹配相应区块头的全部数据实施SHA256计算获取的结果,此字段会将不同网元节点形成的区块链进行有效链接,从而确保前后区块链核心字段的有效性。参照前区块的相应内容(包括随机数、时间戳、难度目标字段、新区块等)建立起全新区块的数据,这些数据主要是利用哈希等密码学算子通过不同网元节点所计算形成的。对于电力通信网管来说,利用区块链技术能够确保各个增量数据信息全面的记录在每一个网元节点中,同时也可以确保不会由于单节点数据丢失而引发整个数据的不准确,并且也可以确保数据的安全性。

2电力通信网管数据一致性对比算法分析

对于电力通信网管数据来说,区块链技术应用过程中的核心内容就是形成分布式存储方式,同时在整个过程中确保全局一致性(主要保障增量数据变化、域名管理、数据上传以及更改等),而通过拜占庭一致性的方式可以有效处理非安全分布式环境中数据一致性问题。所谓的拜占庭算法初期更多是通过指数级算法来实现的,随着其不断发展,现已经在传统算法基础上优化成为多项式级别的协议算法,在很大程度上减少了一致性对比过程中算力资源的消耗,通过多项式算法可以确保分布式算法的有效进行。一般情况下,可以利用“单节点一致性验证”以及“混合节点一致性验证”等方法来实现电力通信网管区块数据一致性比对,其中“单节点一致性验证”主要是利用通信网管网络数低碳技术据来进行的,需要在审核以及下发等阶段提交协议来确保区块数据的一致性。在这两个阶段中需要实现数据增量变化的分发,以此实现电力通信网管数据一致性比对。在此过程中区块链服务器会向所有网元节点广播审核请求,若是区块链服务器接收到全部网元节点反馈的完成区块变化同意信息后就完成了一致性验证工作。而“混合节点一致性验证”主要是对拜占庭容错协议进行优化改进,对于主从模式以及参与网元数进行限定(一般限定人数为2n+1、限定总网元数为3n+1,n表示出错网元数量)。一旦网关网元获取网元控制请求之后就会向覆盖范围受控网元节点发送预准备信号,同时会对所在区域其他网元节点信号进行汇总。所在区域网元节点在获取预准备信号之后,若是满足设定标准就会向网络内其他网元节点发送预准备信号,其他节点会向服务器传递同意信号。一旦服务器所得网元节点所发执行信号数量在2n个之上,那么此网元就会实施数据变更。总的来说,PBFT协议针对的是容错网元节点为1/3的错误网元,同时需通过两轮交互来确定数据一致性问题。

3电力通信网管区块链技术应用方案分析

对于电力通信网来说,区块链技术应用时是建立在共识机制、点对点传输、网元分布式存储等技术基础之上来进行的,其关键点就是网元的分布式存储、传输和加密一致性等。对于完整的网络来说,其中每一个网元都可以看作同等级别的计算机,通过点对点的结构可以实现去中心化模式,能够提升网络的保密性。每一个网元都具有多种功能(包括:传播、路由、新建节点信息等),通过网元之间的关联来确保区块变化后实现整个网络的覆盖。电力通信网管区块链对于网元信息数据传播协议结构如图1所示。关键内容包括:(1)在进行网元数据变更时,主要是通过电力通信网络以点对点的方式实现,确保覆盖到每一个网元节点。(2)在网元接收到广播数据之后,第一步就是要验证其合法性,主要验证所发数据在非对称加密机制下网元数据变更信息签名和数据之间的匹配性问题。验证通过后就要对数据进行存储,同时将此数据以MerkleTree的方式加入到区块当中。另外,需要将时间戳以及区块头(利用哈希加密算法计算所得)写入到区块当中,并且对其实施封装。如果所验证的数据合法性存在问题,那么作为无效数据弃用。(3)在网元节点完成哈希计算之后,要建立起为解决区块哈希算子所用计算资源的工作量证明信息。需要在限定时间之内对每一个网元节点进行区块计算,之后对区块数据实施封装,利用后续网元节点进行传播,覆盖到整个网络当中。(4)每一个网元在经过以上区块链数据验证之后,通过MerkleTree对数据一致性进行对比分析,以此来判定数据的准确性。若是电力通信网管区块链数据发生相应变更,一般都是通过该范围之内8个节点实施区块确认,一定要确保1/2之上的网元在受到其他因素影响时还可以实现区块数据的准确恢复,并且要进一步增加节点确认数,可以进一步提升网络抗干扰性能(在此过程中会一定程度增加计算资源的消耗)。(5)以时间戳作为控制方式,网元在进行后续区块计算时往往是建立在上次所得哈希值基础上的,所以后续区块计算和上次计算结果具有紧密关联。

4结语

总的来说,在电力通信网管数据中应用区块链技术更多是要形成去中心化结构,使所有网元数据都会形成较为独立并且相同的存储结构,同时能够完全实现点对点的传输方式,这些也是保证区块链技术有效应用的基础。对于电力通信网管数据来说,通过区块链技术的有效应用能够实现更加安全可靠的管理方式,能够为今后智能电网的安全运行提供更加科学、更加安全的保障。基于此,本文主要对区块链技术在电力通信网管数据一致性、加密算法等方面进行相应的分析,对于后续充分研究电力通信网管数据中区块链技术的深入应用提供一定参考和帮助。

参考文献

[1]胡畔,薄珏,刘育博,等.基于区块链技术的智能电网数据管理框架研究[J].东北电力技术,2021(4):11-12,23.

[2]陆明远,张帆.基于私有区块链的分布式信息安全系统设计[J].电子设计工程,2021(7):54-57,62.

[3]赵波,冯菁,吴克.基于区块链技术的电力通信网管数据应用[J].中国电业,2019(2):94-95.

[4]马煜.基于区块链的星间通信网络安全加密控制系统设计[J].计算机测量与控制,2021(3):171-175.

作者:蒲华 单位:四川电力设计咨询有限责任公司