前言:想要写出一篇引人入胜的文章?我们特意为您整理了数据挖掘在企业精准营销服务的应用范文,希望能给你带来灵感和参考,敬请阅读。
【摘要】企业精准营销服务是在充分了解客户的基础上,针对客户特点及需求,有针对性地进行产品营销的行为。大数据时代数据呈现井喷式爆炸性增长,不断驱动企业大数据精准营销的应用,数据挖掘成了企业从海量数据中获取信息知识的必要技术手段。本文主要探讨数据挖掘常见方法、挖掘过程及在企业精准营销服务的应用,以实际案例分析总结企业利用数据挖掘开展精准营销工作更为合理的方法、流程。
【关键词】数据挖掘;方法论;精准营销服务;策略
一、引言
大数据时代的来临,数据呈现井喷式爆炸性增长。在海量数据中,隐藏着无数商业机会,但如何将大数据利用起来却是一项艰巨的工作。在企业实施精准营销服务过程中,面临着客户在哪?客户有什么特征?客户需要什么产品?如何进行有效营销,提升客户价值?我们在数据的海洋里淹死了,却在知识的海洋里渴死了……而从庞大的数据中,借助合适的数据挖掘技术及工具,借助结合实际的数据挖掘方法,以客观统计分析和挖掘算法挖掘出企业精准营销服务的潜在目标用户、用户特征,同时匹配合适的营销服务策略,可以显著提升企业营销服务精准度与成功率。
二、数据挖掘方法
数据挖掘工作本质上是一个解决实际业务问题的过程,需要有系统、科学的数据挖掘方法论来指导。业内主流的数据挖掘方法论有:欧盟机构联合起草的CRISP-DM、SAS公司提出的SEMMA。CRISP-DM将数据挖掘分为6个阶段,即商业理解(Busi-nessunderstanding)、数据理解(Dataunderstanding)、数据准备(Datapreparation)、建模(Modeling)、评估(Evaluation)、部署(Deployment)。而SEMMA将数据挖掘分为5个阶段,即数据取样(Sample)、数据特征探索、分析和预处理(Explore)、问题明确化、数据调整和技术选择(Modify)、模型的研发、知识的发现(Model)、模型和知识的综合解释和评价(Assess)。从工作流程来看,CRISP-DM是从项目执行角度谈的方法论,更关注与商业目标的结合,而SEMMA则是从具体数据探测和挖掘出发谈的方法论,更关注数据探索的过程。但从具体工作内容来看,CRISP-DM和SEMMA本质上都是在数据挖掘应用中提出问题、分析问题和解决问题的过程。因此,CRISP-DM和SEMMA互不矛盾,只是强调的重点不同而已。结合企业实施数据挖掘工作的实践经验,经常采用PDMA数据挖掘方法。PDMA将数据挖掘分为4个阶段,即定义业务问题(Problemdefinition)、数据准备(DataPreparation)、模型构建(ModelCreation)、模型应用(ModelApplication)。与CRISP-DM、SEMMA等相比,PDMA类似CRISP-DM,但又有较大差异。首先,PDMA将CRISP-DM的数据理解、数据准备做了提炼与分解。PDMA的数据准备是在满足业务目标的前提下,确定挖掘建模的数据范围,并构建生成宽表数据及核查数据准确性。PDMA的模型构建是在数据准备后,从数据集中采集业务问题相关的样本数据集,探索数据的规律和趋势,针对数据建模的数据集数据进行探索,选择一种或几种挖掘算法,进行模型构建及从技术和业务两个角度进行模型评估。可见,PDMA的数据准备只负责建模挖掘宽表准备,数据探索包括衍生变量的生成、选择等部分数据处理工作在模型构建阶段实现,各阶段间的工作分工也更为清晰。其次,PDMA的模型应用不仅仅是模型部署,还包括模型评分、模型监控与维护,确保当市场环境、用户数据发生变化时,能及时判别在用的挖掘模型是否还有效、适用。对于不适用的挖掘模型及时调整优化,实现模型闭环管理。同时,PDMA的模型应用还强调模型输出目标用户的细分,及与市场营销策略的匹配建议,帮助业务部门更好理解模型输出及指导后续工作的开展。PDMA数据挖掘方法论是CRISP-DM、SEMMA等方法论的提炼优化。
三、数据挖掘精准营销应用
随着三大运营商全业务经营的迅猛发展,宽带市场竞争激烈、市场日益饱和,越发呈现价格战的竞争格局。借助大数据分析挖掘可精准识别宽带营销服务潜在目标客户及特征,从而实现营销服务有的放矢。
1、定义业务问题
(1)基于历史数据挖掘过往宽带营销服务客户宽带使用特征、消费水平特征、上网偏好等,剖析营销服务用户的主要特征和原因,输出潜在目标用户清单。(2)在输出潜在目标用户清单的基础上,对目标客户进一步深入挖掘分群,剖析出不同人群客户的宽带使用、消费行为的典型特点,提出针对性营销服务策略。(3)针对输出的潜在目标用户清单和分群制定具体的销售策略,进行派单执行,跟踪效果,做好下次模型迭代优化。
2、数据准备
数据准备是在满足业务目标前提下,确定数据建模的数据范围,描述和检查这些数据,并构建建模宽表。针对宽带用户的行为特征,可以选取以下几个数据维度:上网偏好维度、消费行为维度、产品及终端结构维度。其中,偏好类别数据主要利用DPI数据对用户访问的目标URL地址,进行多维度的统计计算后,得出的兴趣类别标签。输入模型的变量要根据不同区域和每次预测的数据源动态调整。经过数据清洗、整理、派生,最终确定模型输入变量时,主要依据对于模型输出结果的影响显著性选择。
3、模型构建
模型构建就是在数据准备后,从数据集市中采集业务问题相关的样本数据集,探索数据的规律和趋势,针对数据建模的数据集数据进行修正,选择一种或几种挖掘方法,进行数据模型构建,从技术和业务两个层面进行模型评估。通常情况下,主要以逻辑回归和决策树等作为建模主要方法,此类模型能输出具体流失公式和规则。在进行用户分群时,主要以聚类模型为主要方法,寻找不同类型用户特征,制定分群针对性维系策略。
4、模型应用
在输出潜在目标用户清单的基础上,对目标客户进行分群。根据数据挖掘模型结果,宽带营销服务用户可以分为以下5类:低需求型用户、供给过剩型用户、供给不足型用户、长期高需求型用户、短期高需求型用户。基于分群后的目标用户,可以针对性进行营销服务策略匹配,如低需求型用户可以采用宽带资费优惠(如对上网少用户采取特定的低资费),供给不足型用户可以采用加快低宽带客户向高带宽的迁移政策。最后进行派单执行,跟踪效果。
四、结束语
大数据时代,由于信息技术的应用普及,产生了大量的数据,每年都以指数级速度增长。数据量大导致数据应用也会变得越来越困难,而借助合适的数据挖掘技术及工具,结合实际的数据挖掘方法,可以更加有效地提高数据的利用率,更深层次地挖掘出对企业精准营销有价值的信息,实现对海量信息的掌控,让企业实现更为精准的营销服务。
作者:陈庆波 单位:中电福富信息科技有限公司