网站首页
教育杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
医学杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
经济杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
金融杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
管理杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
科技杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
工业杂志
CSSCI期刊 北大期刊 CSCD期刊 统计源期刊 知网收录期刊 维普收录期刊 万方收录期刊 SCI期刊(美)
SCI杂志
中科院1区 中科院2区 中科院3区 中科院4区
全部期刊
公务员期刊网 论文中心 正文

食品接触材料中纳米颗粒的风险评估

前言:想要写出一篇引人入胜的文章?我们特意为您整理了食品接触材料中纳米颗粒的风险评估范文,希望能给你带来灵感和参考,敬请阅读。

食品接触材料中纳米颗粒的风险评估

摘要:文章综述了近年来食品接触料中纳米颗粒风险评估研究进展,研究纳米颗粒的物理化学特性对胃肠道吸收的影响。评估纳米颗粒毒性的一个挑战是它们的物理化学性质可能在不同的环境中发生变化。在给定条件下充分表征纳米颗粒的物理化学形式是必要的,并对未来研究趋势进行展望。

关键词:纳米颗粒;迁移;风险评估

1食品接触材料中纳米颗粒的风险评估

可能最复杂的问题是最终释放的纳米颗粒是否会对人类健康构成威胁。已知纳米颗粒的毒性取决于纳米颗粒的各种物理化学性质。已经确定的纳米颗粒毒理学的三个原则涉及纳米颗粒的独特特性[6]。在纳米模型中,“运输原理”用于解释特定材料的固有毒性特别有效,通常非常精确地调节体细胞中离子和分子的摄取。然而,如果纳米颗粒不溶解但是长时间保持稳定或是在细胞中积聚,纳米颗粒可能以另一种方式变得“活跃”。“表面原理”通过大量表面原子和表面效应来解释纳米颗粒的小尺寸可能引起化学反应性的增强。“材料原理”用来解释纳米颗粒的毒性取决于纳米材料本身,包括材料特性、化学成分、表面特性和潜在杂质。如果纳米颗粒从食品接触材料中迁移出并且长久存在食物中,消费者可能通过胃肠道暴露。胃肠道壁吸收纳米颗粒的机制是很复杂的,对于胃肠道中纳米颗粒的运动轨迹知之甚少[7,8]。需要更详细地研究纳米颗粒的物理化学特性对胃肠道吸收的影响。啮齿动物的数据显示纳米颗粒可以进入体内通过肠道吸收[9,10],但吸收被限制在相对少量的小于1%的剂量(以质量单位表示)。胃肠道吸收可能受到纳米颗粒上不同涂层的影响[7,10]。食物中的蛋白质可能显著影响胃肠道对纳米颗粒吸收和纳米颗粒跨越细胞屏障的可能性。为了研究胃肠道中纳米颗粒的转化,建议测试胃肠液中纳米颗粒的稳定性,例如通过体外消化试验[11]。尚未研究不同体外消化模型对纳米颗粒溶解和降解造成多大程度的偏差。最近纳米颗粒的体外消化方案显示,食物成分不会导致纳米颗粒摄入的误导性和不确定性[12]。如果纳米颗粒被胃肠道吸收后,纳米颗粒会进入血液并进一步进入人体器官中[10,13]。在大多数情况下,肝脏和脾脏似乎是纳米颗粒积聚的主要器官[10,14]。发现大鼠中含金的纳米颗粒分布与纳米颗粒尺寸有关。最小的纳米颗粒在不同器官中都有分布,包括血液,肺,肝,脾,肾,胸腺,脑和睾丸[14]。较大的纳米颗粒主要存在于肝脏和脾脏中。在体内纳米颗粒与蛋白质相互作用可以随时改变并增强纳米颗粒的膜交叉和细胞穿透能力[15,16,17],从而影响纳米颗粒的生物学效应。目前非纳米材料的风险评估范例也同样适用于纳米颗粒。但是,风险评估应包括有关纳米颗粒特定性质的考虑,例如其化学成分,物理化学性质和与人体组织的相互作用[7,11]。评估纳米颗粒毒性的一个挑战是它们的物理化学性质可能在不同的环境中发生变化。在给定条件下(例如,在食品中和在给定的测试条件下)充分表征纳米颗粒的物理化学形式十分必要的。确定纳米颗粒特性是否受到不同环境的影响[11]。为了支持评估食品接触材料中纳米颗粒的潜在风险,EFSA制定了关于纳米科学和纳米技术在食品和饲料链中应用的风险评估的指导文件(EFSA2011),旨在供申请人和风险评估人员使用。作为本文件的一部分,针对六种不同情况概述了纳米颗粒的毒性测试方法,这取决于纳米颗粒的持久性/降解性(情况1-4)和非纳米形式的毒性数据的可得性(情况5-6)。这六个情况是:(1)食品接触材料中纳米颗粒的持续存在;(2)纳米颗粒从食品接触材料的迁移;(3)在摄入前,纳米颗粒转化为非纳米模型;(4)消化过程中纳米颗粒的降解;(5)非纳米形式的危害信息的可得性;(6)非纳米形式的无危害信息。如果纳米颗粒迁移到食物中并持续存在于食物和肠胃道消化液中,对特定的纳米特性进行危害识别和表征的毒性测试,应与EFSA指南(EFSA2011)给出的非纳米型数据(如果有这些数据)进行比较。EFSA(EFSA2008)对食品接触材料中非纳米模型进行指导和EFSA(2016)最近的新要求申请人提供给定的物质的具体迁移量/预期人类暴露水平的毒理学数据集。然而,由于对纳米颗粒的毒性了解有限,EFSA目前认为这种范例不适用食品接触材料的风险评估。必须逐个评估纳米颗粒[11,18]。迁移发生时,纳米颗粒的毒理学测试应根据EFSA指导进行,从评估潜在的遗传毒性开始[11,18]。纳米材料风险评估的主要限制在纳米颗粒的检测和表征上缺乏(高质量)人类暴露数据。能够检测低浓度和1-100nm全尺寸范围内的纳米颗粒的适当分析方法对于提供纳米颗粒迁移的证据至关重要。纳米颗粒的溶出速率和物理化学性质在不同的基质中有所不同,因此测量这些参数的标准测试方法对于纳米材料的风险评估是至关重要的[19]。大多数现有数据来自空气传播测量和吸入的纳米颗粒,而食品和消费品的纳米颗粒暴露评估很少[8,10,11]。此外迫切需要对纳米颗粒进行长期暴露研究,因为人类长期暴露后最有可能发生潜在的健康影响[10]。纳米颗粒迁移到食物中,应该考虑的另一个问题是食物基质本身可能与迁移的纳米颗粒的相互作用而发生变化。纳米颗粒有可能与有机分子的官能团相互作用,如羧基,羟基,氨基或羰基,这可能导致食物中蛋白质、脂类和多糖的变化。

2结束语

评估食品接触材料中迁移纳米颗粒的风险是最复杂的问题。目前还缺乏食品中迁移的纳米颗粒和胃肠道中迁移的纳米颗粒风险评估的相关数据。需要进一步研究纳米颗粒与食品的相互作用,并在不同的食品基质中表征纳米颗粒。需要考虑食品基质的变化对迁移纳米颗粒的影响。有待更详细地研究纳米颗粒的物理化学特性对胃肠道吸收的影响。建议使用体外消化模型预测胃肠道中纳米颗粒的迁移。

作者:李洁君 沈霞 代亚男 施均 李文慧 韩陈 单位:上海市质量监督检验技术研究院

免责声明

本站为第三方开放式学习交流平台,所有内容均为用户上传,仅供参考,不代表本站立场。若内容不实请联系在线客服删除,服务时间:8:00~21:00。

AI写作,高效原创

在线指导,快速准确,满意为止

立即体验
文秘服务 AI帮写作 润色服务 论文发表