公务员期刊网 论文中心 正文

数学逻辑数学论文

前言:想要写出一篇引人入胜的文章?我们特意为您整理了数学逻辑数学论文范文,希望能给你带来灵感和参考,敬请阅读。

数学逻辑数学论文

一、对比分析能力(也称为类比分析能力)培养

对比分析法在数学学习的应用过程中遇到最大的挑战就是类比对象的选取,选取具有一定相似度却又存在差异的类比对象的能力,也是小学高年级学生需要着重培养的能力之一。因而在解读数学问题时,应该快速剔除无效信息,抓住问题实质,挑选恰当的类比对象。类比对象的挑选不容小觑,如例题:试问一公斤的土豆重,还是一公斤的豆腐比较重?说土豆重了吧,这就是干扰信息导致的对比分析对象选择失误的鲜活例子。对此,认知学家给出了科学解释:对干扰信息的剔除占用了一定的认知资源,导致用于关键问题解决的认知资源不足。因此,学生应重点抓住题目中两个“一公斤”,既然都是一公斤,就不存在谁重谁轻了。

二、整合与分化能力的培养策略

整合是指整合相关信息,全盘把握已出现的数量关系,明确已知条件和未知数学问题;分化是指分步进行数学的分析和问题答案的组织,最后再进行整合,形成完整的数学分析思路。以下通过一道典型应用题进行整合与分化法运用说明。假设你手上总共有500元人民币,想存入银行,现在银行提供两种储蓄方式,一种是两年定期存款,即两年期间一直将这笔钱存在银行里,每年的年利率为2.43%;另一种则是先将这笔钱存入银行一年,一年到期后连本带利取出来,再将本息存入银行,在这种情况下每年的年利率为2.25%,问该选择哪种储蓄方式以到达收益的最大化?根据整合与分化方法,这道应用题的解题步骤如下:

(一)掌握解题信息,整合数量关系

这是道信息含量十分丰富,解题背景相对复杂的一道数学应用题。解题的第一步就是要整合与解题相关的有用信息,全盘把握题中的数量关系(如下图),明确已知条件和未知数学问题,这道题要充分考虑两种情况,对比两种储蓄方式的最终受益。

(二)分情况、分步进行细节问题的探讨

根据第一步的信息整合,结合数量关系,分情况进行分析。

(三)整合解题思路,完善答题过程

结合第一步整合和第二步的分化分析,重新整理解题思路,形成完整的解题答案(如下表),根据图表数据,整合答案:储蓄方式一:通过这道例题的简单剖析,可以总结得出:整合与分化方法就是从整合—细化—再整合的过程,这种方法对于解决数学应用题来说效果尤为显著。

三、抽象概括能力的培养

数学知识定理通常是通过抽象化的数学符号呈现,数学探索的基本思路就是:具体实例—抽象概括—实际运用。

(一)积累丰富的感性认识,丰富

数学认知思维的飞跃必须建立在丰富的感性认识材料的积累的基础之上,抽象概括的思维活动不应该急于一时,没有丰富的数学知识的积累,是不可能成功抽象出数学问题的本质和规律。

(二)掌握数学抽象概括的具体实现方法

从认识角度看,抽象概括能力,就是透过现象看到问题的实质,实现认识飞跃的能力。在积累了足够的感性认识的基础上,就应及时进行数学的抽象概括思维活动,实现数学认识质的飞跃。有些抽象概括活动需要反复进行,不能在进行了一次后就停滞不前。

四、结语

数学逻辑分析框架下的四大部分:对比分析(也称为类比法)、整合与分化、数学逻辑互推和抽象概括,是数学问题分析和解决中的基本方法。要有效提升逻辑思维能力,掌握数学学习基本规律,就必须从这四个方面着手,并从其中三个角度探究数学逻辑分析能力的养成策略,而对于逻辑互推的能力培养的研究尚未形成体系,对逻辑互推的培养策略也将成为教师日后教学实践活动中的研究重点。

作者:罗元焱 单位:福建省连城县四堡中心小学