前言:想要写出一篇引人入胜的文章?我们特意为您整理了高中生数学论文范文,希望能给你带来灵感和参考,敬请阅读。
一、培养高中生数学解题能力的方法、措施
1.通过猜想法培养数学解题能力
通过心理学研究表明,创新不是一种与生俱来的能力,学生的创新能力是教师依据相应的教学目的,通过各种信息来源的作用,使得高中生主动的进行思考、发展思维、转变思想方法而产生的一种独特的智力品质,每个人的创新能力都是独特的、独有的.在科学技术迅速发展的时代,一个国家的创新能力对于发展是至关重要的.因此,对于学生创新能力的培养迫在眉睫,要想迅速、有效地进行创新能力培养,就要在解决问题时进行大胆猜想,实际的教学活动表明这一方法具有实用性和良好的效果.在实际的教学活动中,不应一味地强调数学的严谨性、严密性与逻辑性,应鼓励学生通过大胆猜想的方法来探知问题的解决办法.在猜想的过程中培养高中生的推理能力,同时也可以提高数学的趣味性,激发学生对于数学学习的兴趣.
2.通过提高探索能力培养数学解题能力
求异思维是数学中极其重要的一种思维方式,同时也是一种创造性思维.高中生在原有知识基础上,凭借自身的数学思维能力,对待解决的问题从不同的角度进行分析、解决,通过不同方向的思考,创造性地解决问题.在长期的教学活动中发现,学生的数学思维一般以形象思维为主,很容易产生定式思维,在面对同一类型问题时,经常使用同一种既定的方法进行解决,忽略了不同问题之间存在某种情况上的差异.为了避免这种情况的发生,应从以下三方面进行改善,第一点,培养学生一题多解的能力,引导学生对同一问题从不同的方面进行思考,在不同的方位上提出解决的思路;第二点,培养学生在解题时的变通能力,将反复出现的数学问题通过条件替换或进行细微的改动使之成为全新的问题,让学生利用已经掌握的数学概念、定理、定律来分析问题,减弱学生的定式思维程度;第三点,培养学生一题多问的能力,对同一个问题让学生在不同的角度、不同的方面提出新的问题,锻炼举一反三的能力.
二、数学分析思想在数学解题中的运用
1.特殊与一般思想在高中数学解题中的分析与应用
在通过对大量高中数学题目进行总结后,发现了一个特殊现象,对于一些题目来讲,既可以使用最基础的定理、公式进行按部就班的计算,也可以通过简单地变换利用推导公式进行求解,第一种方法计算量较大但可广泛应用于各类题目,而第二种方法往往计算量较少较易得出准确的答案,但对题目本身的要求高,在满足相应要求时才可使用简便方法.当一种方法或一种理论在普遍的情况下均成立时,一般来讲,对于特殊情况也同样适用.特殊与一般思想在选择题的求解中运用较多,可以将这种思维推广到主观大题中,同样可以获得较为简便的方法.
2.数形结合思想在高中数学解题中的分析与应用
运用数形结合思想解题一直是高中数学的一个难点,也是高考考查的重点.数形结合思想的中心就是以形助数、以数助形,将数学问题简单化、形象化,可以快速地把握到问题的本质,作为一种优化解题的思路被广泛运用与题目的解答中,可以帮助高中生在问题陷入僵境时寻找突破口.
3.极限思想在高中数学解题中的分析与应用
极限思想在高等数学当中是一个极为重要、基础的思想,很多问题解题之始就是利用极限的相关知识进行的.同样的,极限思想在高中数学中也有所体现,是学生在高中数学学习中一个重要的方向,在遇到一些较为抽象的问题时,使用极限的思想方法往往可以使难题迎刃而解.极限方法有助于人们在有限中认识无限,在近似中认识精确,在量变中认识质变,是一种辩证的方法.不少利用一般方法解决显得极其繁琐的问题运用了极限的思想却显得比较简便,这正体现了极限在数学中的别样魅力,高中学生应学会利用极限解题,可收到意想不到的效果.
三、结语
总之,教师是学生在学习道路上的领路人与指导者,授人以鱼不如授人以渔,在日常教学活动中教师应注重对学生数学思想方法的培养,只有让学生掌握解决问题的根本方法,学生才能真正具备独自分析、解决问题的能力.在今后的教学活动中,要努力探索出适合学生的教学方法,帮助他们尽快领会数学思想,从而形成扎实的数学功底和解决问题的能力。
作者:常海波 单位:江苏省泰兴市第三高级中学