前言:小编为你整理了5篇系统优化论文参考范文,供你参考和借鉴。希望能帮助你在写作上获得灵感,让你的文章更加丰富有深度。
1液压泵站的液压原理
新的系统选用2台37kW电机分别驱动一台A10VSO100的恒压变量泵作为动力源,系统采用一用一备的工作方式。恒压变量泵变量压力设为16MPa,在未达到泵上调压阀设定压力之前,变量泵斜盘处于最大偏角,泵排量最大且排量恒定,在达到调压阀设定压力之后,控制油进入变量液压缸推动斜盘减小泵排量,实现流量在0~Qmax之间随意变化,从而保证系统在没有溢流损失的情况下正常工作,大大减轻系统发热,节省能源消耗。在泵出口接一个先导式溢流阀作为系统安全阀限定安全压力,为保证泵在调压阀设定压力稳定可靠工作,将系统安全阀调定压力17MPa。每台泵的供油侧各安装一个单向阀,以避免备用泵被系统压力“推动”。为保证比例阀工作的可靠性,每台泵的出口都设置了一台高压过滤器,用于对工作油液的过滤。为适当减小装机容量,结合现场工作频率进行蓄能器工作状态模拟,最终采用四台32L的蓄能器7作为辅助动力源,当低速运动时载荷需要的流量小于液压泵流量,液压泵多余的流量储入蓄能器,当载荷要求流量大于液压泵流量时,液体从蓄能器放出,以补液压泵流量。经计算,系统最低压力为14.2MPa,实际使用过程中监控系统最低压力为14.5MPa,完全满足使用要求。顶升机液压系统在泵站阀块上,由于系统工作压力低于系统压力,故设计了减压阀以调定顶升机系统工作压力,该系统方向控制回路采用三位四通电磁换向阀,以实现液压缸的运动方向控制,当液压缸停止运动时,依靠双液控单向阀锥面密封的反向密封性,能锁紧运动部件,防止自行下滑,在回油回路上设置双单向节流阀,双方向均可实现回油节流以实现速度的设定,为便于在故障状态下能单独检修顶升机液压系统,系统在进油回路上设置了高压球阀9,在回油回路上设置了单向阀14。该液压站采用了单独的油液循环、过滤、冷却系统设计,此外还设置有油压过载报警、滤芯堵塞报警、油位报警、油温报警等。
2机械手机体阀台的液压原理
对于每台机械手都单独配置一套机体阀台,机体阀台采用集成阀块设计,通过整合优化液压控制系统,将各相关液压元件采用集约布置方式,使全部液压元件集中安装在集成阀块上,元件间的连接通过阀块内部油道沟通,从而最大限度地减少外部连接,基本消除外泄漏。机体阀台的四个出入油口(P-压力油口,P2-补油油口,T-回油油口,L-泄漏油口)分别与液压泵站的对应油口相连接。压力油由P口进入机体阀台后,经高压球阀1及单向阀2.1后,一路经单向阀4给蓄能器6供油以作为系统紧急状态供油,一路经插装阀3给系统正常工作供油。为保证每个回路产生的瞬间高压不影响别的工作回路,在每个回路的进出口都设置了单向阀,对于夹钳工作回路因设置了减压阀16进行减压后供油,无需设置单向阀。对于小车行走系统,由比例阀12.1控制液压马达21的运动方向,液压马达设置了旋转编码器,对于马达行走采用闭环控制,以实现平稳起制动以及小车的精准定位。为避免制动时换向阀切换到中位,液压马达靠惯性继续旋转产生的液压冲击,设置了双向溢流阀11分别用来限制液压马达反转和正转时产生的最大冲击压力,以起到制动缓冲作用,考虑到液压马达制动过程中的泄漏,为避免马达在换向制动过程中产生吸油腔吸空现象,用单向阀9.1和9.2从补油管路P2向该回路补油,为实现单台机械手的故障检修,在补油管路P2上设置了高压球阀8,为实现检修时,可以将小车手动推动到任意检修位置,系统设置了高压球阀5.2。对于双垂直液压缸回路,由比例阀12.2控制液压缸22的运动方向,液压缸安装了位移传感器,对于液压缸位置采用闭环控制,实现液压缸行程的精准定位,液压缸驱动四连杆机构来完成夹钳系统的垂直方向运动;为防止液压缸停止运动时自行下滑,回路设置了双液控单向阀13.1,其为锥面密封结构,闭锁性能好,能够保证活塞较长时间停止在某位置处不动;为防止垂直液压缸22因夹钳系统及工件自重而自由下落,在有杆腔回路上设置了单向顺序阀14,使液压缸22下部始终保持一定的背压力,用来平衡执行机构重力负载对液压执行元件的作用力,使之不会因自重作用而自行下滑,实现液压系统动作的平稳、可靠控制;为防止夹钳夹持超过设计重量的车轮,在有杆腔设置了溢流阀15.1作为安全阀对于夹钳液压缸回路,工作压力经减压阀16调定工作压力后由比例阀17控制带位置监测的液压缸23的运动,来驱动连杆机构完成夹钳的夹持动作,回路设置了双液控单向阀13.2,来保证活塞较长时间停止固定位置,考虑到夹钳开启压力原小于关闭压力(液压缸向无杆腔方向运动夹钳关闭),在液压缸无杆腔回路上设置了溢流阀15.3,调定无杆腔工作压力,当比例换向阀17右位工作时,压力油经液控单向阀13.2后,一路向有杆腔供油,一路经电磁球阀18向蓄能器19供油,当夹钳夹住车轮,有杆腔建立压力达到压力继电器20设定值后,比例换向阀17回中位,蓄能器19压力油与有杆腔始终连通,确保夹持动作有效,当比例换向阀17左位工作时,蓄能器19压力油经电磁球阀18与有杆腔回油共同经过比例换向阀17回回油口。紧急情况下,电磁换向阀7得电(与系统控制电源采用不同路电源),将蓄能器6储存的压力油,一路经单向阀9.11供给夹钳液压缸23,使夹钳打开,同时有杆腔回油经电磁球阀18,单向阀9.9回回油T口;一路压力油经节流阀10,单向阀9.3使液压马达21带动小车向炉外方向运动,液压马达回油经比例换向阀12.1,单向阀9.5回回油T口。以确保设备能放下待取车轮,退出加热炉内部,保护设备安全。
3结论
全液压装出料系统经优化设计,系统的装机容量由100kW下降到37kW,大大降低能源消耗,适应了当今绿色发展的要求。由于系统采用备用泵设计,确保了系统的长期稳定运行;蓄能器的大量使用,保证了系统的流量和压力满足生产实际的要求;集成阀块的设计方式,减少了系统下泄漏的几率,降低了油液消耗,保护了环境;紧急回路的设计,可以有效保护设备的使用安全。该技术成果具有向同类加热炉装出料机构推广应用经济价值。
作者:刘爱兵 耿培涛 单位:马鞍山钢铁股份有限公司
一、项目选题背景及研究内容
变频技术不仅仅是异步电动机,结构坚固,易于维护,更重要的是由于采用变频技术的异步电动机的机械性可以达到了直流电动机调压调速的功能。这样子可以很好的解决国内供水的很多问题。从而人们可以按照序曲自行研发一个合适的而且比较方便环保的调速控水系统。恒压供水系统改变原有的调速方式,实现了无极控制恒压供水,依据用水量的变化自动控制调节系统运行的参数,保证了供水的安全可靠。随着电子技术的不断深入,恒压变频器的日益完善,功能越来越强,即可利用恒压变频的各种功能对其变频调速恒压供水系统提供更多的服务,从而保证恒压供水系统的更多功能,供水的更稳定,更好的为人类服务。
二、项目介绍
恒温恒压供水控制系统由可编程控制器、可视化触摸屏显示器、变频器、交流电动机、压差传感器、液位变送器、温度变送器、板式换热器、继电器、辅助加热器、以太网线及相应模块、等其它电控设备、以及5台循环水泵和一台小流量隔膜泵等构成。在整个系统中,可编程控制器与可视化显示器安装在中控室,远程可使用以太网络监控现场模块。在水箱入空和出口安装压差传感器,检测水压。在水箱底部安装液位变送器。在水箱里安装温度变送器。可编程控制器中的模拟量模块采集液位变送器、温度变送器送来的4-20mA信号电流。将测量信号与PLC设置的信号进行比较,经过PID模糊运算后,由PLC控制变频器输出的频率来调节交流电动机的转速,改变循环泵的流量,来保证供水水压恒定。箱体水温温度由板式换热器供给。温度控制阀来调节温度。辅助加热器用来保证温度的恒定。这样就构成了以设定压力温度为基准的恒压恒温闭环系统。触摸屏显示器用于显示供电电压、工作电流、变频器实际频率、供水压力及各循环泵的工作状态等;可以通过触摸屏以太网络在线修改供水压力和温度控制恒温供水系统的运行。
三、程序设计原理
3.1整套热水供给系统采用西门子CPU226PLC控制
软件使用西门子S7-200进行控制程序编辑。可视化面板使用西门子Smart1000显示屏,软件使用WinCCflexible。同一公司系列产品,兼容性好,协议一致利于通讯。STEP7是用于SIMATIC可编程控制器组态和编程的标准软件。它是SIMATIC工业软件的组成部分。为功能模板和通讯处理器赋值参数、强制和多处理器模式、全局数据通讯、使用通讯功能块的事件驱动数据传输、组态连接。WinCCflexible项目包括能让系统接受操作和监视的所有组态数据。在WinCCflexible中,组态数据根据主题类别进行编译。每个类别都在单独的编辑器中进行处理。编辑器的可用性取决于所用的WinCCflexible版本和要组态的HMI设备。WinCCflexible的工作环境只显示当前使用的HMI设备所支持的编辑器。也就是说,组态工作非常简单且易于进行。
1工程概况
该工程是集客房、餐饮、宴会、会议办公为一体的多层公共建筑,地下一层、地上五层,建筑体总高度22.46米,总建筑面积13735平方米。本建筑各层平面主要功能为:地下1层为厨房、库房及设备用房等,首层为餐饮、会议功能,二层~四层为客房层,五层为设备层。该工程的酒店级别定为五星级标准。
2空调系统设计
2.1冷热源设计
该工程空调计算冷负荷为1058kW,计算热负荷为423kW。由于该项目的功能特性决定了其空调设备同时开启的情况极少,故在冷热源装机容量的选择上取同时使用系数为较小值,制冷时的同时使用系数约为0.8,制热时约为0.6。由此,该工程选用了2台60冷吨(211kW)的螺杆式水冷冷水机组(其中有1台为热回收型机组)、1台120冷吨(422kW)热回收型螺杆式水冷冷水机组作为冷源,集中放置于地下一层空调主机房。热源选用2台额定制热量为130kW模块式风冷热泵机组作为热源,同时该风冷热泵机组可兼作过渡季节或夜间的极低负荷以及高峰负荷时的冷源。冷源系统的冷却塔及风冷模块式热泵机组放置于二层露天平台处,水泵则统一置于地下一层主机房内,方便集中统一管理。如图1所示为空调冷热源系统流程图。
2.2空调水系统设计
结合本工程业主方的要求及整体管理水平,该空调水系统以方便有效的管理为原则,以合理的节能运行为目的进行设计。空调水系统采用分区两管制,按照建筑功能,分为客房区域、餐饮区域及办公会议区域。各区供冷/供热转换在主机房内分集水缸的各环路总管上设手动蝶阀实现手动切换。空调冷却水、冷冻水、供暖热水系统均为水泵与主机一对一的一次泵定流量系统。冷冻水/冷却水/供暖水系统均采用二管制异程式系统。冷冻水供回水温度为7℃/12℃;冷却水供回水温度为32℃/37℃;供热系统供回水温度为45℃/40℃。
1多车型翻车机系统在港口的应用及问题
1.1多车型翻车机系统在港口的应用
经过发展后的现代化多车型翻车机在实际操作工作中的应用越来越广泛,其起到的作用来越来越重要。特别是对我国港口在大型大宗货物运输装卸方面,其重要程度不言而喻。像目前港口的大宗松散货物的运输装卸,多采取倾倒的方式来对其进行卸车,在这种情况下的卸车的效率是比较高的。随着翻车机系统的不断发展,其设备机器和规模也越来越庞大。随之而来的改变就是翻车机的结构构造和卸车方式上的不同。目前翻车机有多种不一样的机型和种类。主要有KFJ—1型侧倾式翻车机;M2型转子式翻车机;C型转子式翻车机等。现代化的转子式多车型翻车机主要为齿轮来进行的转动。目前多用于生产规模较大的物流运输公司,特别是港口在卸载大宗货物方面,起到了不可替代的作用。但是,受限于发展技术水平的影响,其相关的一些设计技术还不完善,所以,我国港口在卸载货物物料的时候,速度不能得到保障,有时候还得一定程度上借助于人力劳力的帮助。翻车机它是翻车机系统的主体,在整个翻车机卸载系统中,如何发挥其最大效果关键是取决于翻车机的内部构成及结构设计。
1.2多车型翻车机系统在港口应用中的问题
首先,因为多车型翻车机这种超大型的机械设备机体比较大,同时结构也相当复杂,再加上不少港口的机械设备更新不及时,使用的多是过于陈旧的机械设备,就比如说转子式驱动翻车机,它就是采用的钢丝绳来进行传动,虽然整体来看结构比较简单、轻便,但是其中的钢丝绳容易磨损、使用寿命也比较短,不利于工作运行效率的提高。其次,我们也都知道港口的地理位置,由于其特殊的天气状况等自然气象环境,像一些性能并不是很好的机械设备,则会非常容易造成伤害、磨损、腐蚀等现象。例如南京的浦口码头,以前经常会发生一些机械故障。因为有的翻车机入口坡度比较大,一般的机车已经无法顶送。但是,后来经过研究技术人员的优化改造,开发出了———铁牛推送装置。
2关于多车型翻车机系统的优化设计方面的探究
2.1多车型翻车机电动力系统的优化设计
1绿色变电站给排水系统的优化设计要点
1.1给水系统优化设计
对变电站给水系统进行优化设计时,必须要严格遵照给水设计规范中相关技术指标。事实上,给水系统中的主要流量类型包括居民生活运水、工业企业生产用水、消防用水、绿化用水、公共设施用水和未预见水量等,用水来源是市政给水管网或地下水加压所提供的清洁水资源。为实现绿色智能变电站供水方案,我们可以根据节水性优化设计原则,对生活污水、生产污水进行物理和化学净化处理,将其用作绿化用水,从根本上降低变电站区情节水资源的综合使用量。比如本人曾参与某220kV户外GIS变电站给水系统优化设计工作,其设计用水量主要包括生活用水、绿化用水、未预见用水量等,工业用水、公共设施用水相对较小,此处不作考虑,而消防用水为一次性用水,可不计入设计用水量中,变电站内绿化用水量最大,占总用水量64.39%。为有效减少该变电站区清洁水使用量,经讨论决定尽可能降低绿化用水量,除了变电站区内绿化尽可能选择养护少、耐气候性的植物,还应釆取合理工艺对生活污水进行处理,经处理后的水用作绿化用水,有效减少清洁水源的使用量。经长时间分析统计可知,站区清洁水使用量已减少到常规用水量的84.3%,在户内GIS布置变电站,由于站区面积较小、站内绿化面积较小,清洁水使用量还望减少到常规用水量的72%以下。由此可知,对变电站给水系统的优化和实现中水回用对变电站的经济效益、环境保护来说具有十分重要的意义。
1.2排水系嬈优化设计
变电站排放的废水主要是含油废水和生活污水,含油废水常产生于重大事故中,如主变电站发生火灾等,但由于变电站重大事故较少发生,且我国目前许多变电站都会设有事故油地实现油水分离,尽可能减少对环境的污染,因此含油废水对变电站区环境污染影响较小。目前,变电站排放出的废水主要是生活废水,生活污水的排水方向主要有2处,即城市污水管网和变电站外附近自然水体,一般变电站会选择近期排至站外自然水体、远期排至城市污水管网的排水方式。变电站在选址时,为尽量少占经济效益较高的地段,常常会选择设置城市周边或偏远地区,这些地方一般欠缺完善的市政污水管网,因此,变电站内污水一般是与雨水合流排至附近自然水体,在一定程度上污染了周边环境。立足于节能减排理念,绿色变电站排水工程设计可以摒弃传统的污水外排形式,对站内生活污水进行合理净化,使之在变电站内实现有效循环。由于生活污水中含有大量有机物,具有较好可生活性,我们可以对其进行生物降解,以净化水质。除此以外,为实现绿色智能变电站的排水系统优化设计,设计变电站排水系统时应尽量占用较少空间、提高水处理质量、注重养护管理方便,若选用传统的传统钢筋混凝土构筑物进行污水处理,必然无法满足处理要求。因此,在设计该变电站排水系统时采用技术成熟的地埋式一体化生活污水处理工艺处理生活污水。该一体化生活污水处理设备能将氧化池、沉淀池、污泥消化池、消毒池集于一身,只需在实际工程中配套设计相应的污水调节池、集水井和控制系统则可实现生活污水在变电站内的有效循环。经地埋式一体化生活污水处理设备处理后的水质能达到生活杂用水水质标准,可用作绿化用水’这样一来,不仅可以有效减少清洁水使用量,还可以尽量避免生活污水排至变电站外对环境造成污染,真正实现绿色智能变电站的节能减排目的。
1.3管材合理性优化选择
绿色变电站给排水系统管道管材必须遵循合理性、适宜性原则,我国当前对变电站给排水系统管材的选择欠缺统一的标准,给排水设计人员在选择管道管材时随意性较大,像铸铁管、混凝土管等耐腐蚀性差、自重大的管道仍被广泛应用于设计中。对此,绿色智能变电站给排水系统对管道管材提出更髙要求,不仅要求给排水系统管材要符合安全卫生标准,还必须考虑管道管材是否安装使用方便、是否环保经济。近年来,人们的环保意识不断增强,已研制出环保经济、安装方便的环保型管材,如硬聚氯乙烯管材、交联聚乙烯管材、铝塑复合管材、无规共聚聚丙烯管材等新型环保型管材,因此,我们在设计绿色智能变电站给排水系统时应根据工程实际状况合理选择管道管材,实现变电站的节能降耗、绿色环保,为我国社会经济提供可靠保障》另一方面,我们要不断探索绿色智能变电站给排水系统优化设计方案,在给排水系统设计中积极引入先进的科学技术、机械设备和设计理念,探索更多节能降耗、绿色环保、经济可靠的给排水系统设计方案,促进绿色智能变电站给排水系统设计朝着可持续方向蓬勃发展,保证工程建设项目能顺利保质保量地完成,确保我国今后能安全稳定地发展。