前言:小编为你整理了5篇化学工程设计参考范文,供你参考和借鉴。希望能帮助你在写作上获得灵感,让你的文章更加丰富有深度。
摘要:计算机网络的发展改变了全世界各行各业的研究形式、发展形式,其相关软件在化学工程设计中的应用也非常普遍,并且发挥了巨大作用。化学工程设计的研究离不开化学实验、生产实践等,而对化学工程研究过程中各种数据的整理、分析等更是化学工程设计的重点,计算机软件以自身的优势,在数据处理、数据分析、试验模拟方面发挥优势,极大促进了化学工程的研究,提高了化学工程设计的水平。
关键词:化学工程设计;计算机软件;数据处理
化学工程设计的目的是利用化学方法和物理方法寻找工业生产的最佳过程,研究工业生产中的共同规律,从而使工业生产的效益最大化。计算机软件在工业工程设计中的应用已非常普遍,化学工程数学模型计算、实验设计、工艺流程绘制等,都会用到计算机软件,化学工程设计中最常见的应用软件有MATLAB、CAD、ORIGIN等,研究这些计算机软件的应用,能有效提高化学工程设计的效率,降低化学工程设计成本,使其设计结果更科学、更可靠。
1化学工程研究的内容及手段
化学工程设计就是对产品生产的化学过程、物理过程进行研究、设计,使其能够完成大规模的生产任务,使化学科学能更好为工业生产服务。如石油精炼、食品加工、药品生产、建筑材料生产等,这些都属于化学工程研究的领域,化学工程设计要对工程的相关因素进行充分的、全面的考虑,并结合装置效应,解决生产过程中的各类问题,确保化学工程生产过程可靠、安全、有效。这一过程涉及物理、化学、数学等多个学科,结合生产过程开发和操作理论等研究工业生产的最佳形式,包括单元操作研究、化学反应工程研究、传递过程研究等,是一项非常庞大且复杂的工程。一方面,化学工程本身比较复杂,它属于多学科交互的研究范畴,有时物理现象和化学现象同时发生相互影响,研究起来比较复杂。此外,化学工程研究的物质有气体、液体与固体,多种形态共存,研究起来比较复杂。另一方面,化学工程研究的物系流动时边界比较复杂,这就导致其设备没有固定的形态、构造等,要结合不同的生产需要,灵活设计化学工程,致使其设计比较复杂、多变。化学工程的研究方法较多,早期,人们主要通过实验来研究化学工程的设计,将实验的过程逐级扩大,以探索工业生产的规律、工艺等,人们将其称为经验放大法。随着化学科学在工业生产中的应用日益广泛,进入20世纪后,人们逐渐意识到化学工程研究的重要性,开始寻找新的方法对其进行研究,这一时期就出现了因次分析、相似论,研究的具体做法就是将影响过程的众多因素进行分析归纳,寻找相似的变量,尽可使研究变得简便,然后再通过实验求得这些数据的关系,再设计化学过程。这一时期,将数学模型方法应用于化学工程设计中的研究模式已初步形成,利用数学模型法,结合实验方法,取得重要的数据,再通过实践鉴别、验证这些数据,进而完善化学工程的设计。这一时期,化学工程设计面临的最大问题就是巨大的数据量与人繁重的工作之间的矛盾,而且人工计算、设计中易出错。计算机诞生后给各行各业的发展带来了巨大的契机,化学工程研究也迎来了新的局面,计算机在化学工程设计中的应用将人从繁重的运算、数据整理分析等工作中解放出来,提高了人力资源的利用效率,同时节省了时间、研究成本。直到现在,计算机仍是化学工程设计的重要辅助工具,计算机软件被广泛应用于化学工程设计当中,成为化学工程发展的重要支柱。
2计算机软件在化学工程设计中的应用
2.1计算机软件在化学工程设计中应用的优势
一、IChemE认证推动课程设置改革
课程设置关系到人才培养的质量。IChemE鼓励发展化学工程科学各分支的全面进步。IChemE认证具体要求被认证院校在化工专业课程设置上既要有深度同时需注重广度。在深度上,可以引进源于该学院科研优势的课程,让学生在某些具体技术领域获得“钻进去”的化工知识,着重培养学生的独立学习能力、开放式思维、分析问题及综合运用所学知识的能力。在广度上,可以引进更多基于该学院科研方向的课程,利用教授的强项开设一些前沿课程,拓宽学生的化工知识面。但无论是核心基础课,还是高层次专业课,课程内容都要不断完善,动态更新。我国的化学工程教育改革也非常强调学科交叉,扩大学生视野,使学生在更高的起点上突破原有知识体系,另辟蹊径,为学生的创新思维打下基础。同时提倡化工课程设置要注意吸收当代国内外化工发展的重大成果,反映化工发展的最新成就,减少陈旧、过时的化工知识。化工教育改革在确定培养目标、设置专业课程时提倡综合考虑几个平衡,即科学教育和工程教育之间的平衡、工程设计和研究项目之间的平衡、课堂教育和工程实践之间的平衡、知识和能力之间的平衡等。而我国传统化工教育则是重书本、轻实践,重知识、轻能力,重科研、轻教学。因此,IChemE国际专业认证工作在国内相关院校的开展,将促使各院校对传统的化工课程结构进行调整,以适应培养具有市场竞争力的合格化学工程师的需求。同时,IChemE严谨的监督工作及动态的认证周期(五年一次)为中国化学工程教育国际化改革的连续性提供保证,使国内的化学工程教育始终与时俱进,面向世界,面向未来。
二、IChemE认证推动教学模式多样化
长期以来,国内的教学都是沿袭前苏联凯洛夫的五环节课堂教学模式,即教师以传授知识为主要目标,认为学生学习是认识真理,不是发现真理,忽视学生智力的开发和能力的提高;只考虑教,不考虑学,学生处于被动地位。IChemE鼓励新颖创新的教学方法,以促进化学工程教育的改进。比如IChemE提倡三类教学模式:诱导式教学(提问式教学):多问开放性问题和反问式问题。让学生在大一第一学期就开始接受开放性问题的挑战,并将这种挑战在整个本科生培养计划中延伸和扩充。启发式教学:多用案例分析和多问“为什么”及“如果不”的问题,也可把真实的工程问题带进课堂,让学生思考和提出解决方案,调动学生学习的积极主动性。以项目为主的教学:学生自我管理,导师提供咨询,培养学生的自学能力、交流沟通能力、团队合作能力和解决问题能力。对学生的评估方法,IChemE更看重学生课外作业和项目作业的完成情况。IChemE提倡根据课程本质,明智地使用不同类型的考试方法,以及书面课外作业、口头报告等组合的评估方法,并在考试、书面课外作业及口头报告中都要而且多包括开放式的、具挑战性的问题。中国素质教育倡导广大教师勇于突破“教师中心”、“课本中心”、“课堂中心”的陈旧模式,采用启发式、开放式、多元化的教学方法积极进行教学研究和教育改革。教学模式应以培养学生能力为中心,尊重学生主体,真正做到因材施教。这样才可能使传统的课堂教学实现本质转变,即变只重学习结果为注重加强学生能力的培养;变教师主宰课堂为以教师为主导,学生为主体,训练为主线;变只重知识传授为同时重视学习过程;变一讲到底为讲学结合。同时,现代化学工程教育提倡建立科学的教育评估模式,为学生个性发展创造有利环境。强调构建复合式、全程性、多元化的考核体系,使课堂教学与课外自学有机结合起来,注意在考评学生学习能力和效果的同时重在提高学生的综合素质。
三、IoChemE认证强化学生的工程设计训练
目前国内高校的工科学生一般都缺少对工程设计和运用综合知识解决问题的重要性的理解,他们一般认为科学比技术更重要,这正是中国传统工程教育不重视工程设计的误区,导致学生缺少工程设计和实践的经历。有的学校即使设置了工程设计和实践教学环节,也大都形式重于内容,很难激发学生主动学习的积极性,达不到工程设计教学的目的和结果。事实上,学生必须在做设计的过程中学习如何将理论知识创造性地应用于解决现实工程问题,并且采取积极的学习态度和通过团队的合作来学会如何做设计。IChemE强调学生的工程设计训练不能仅限于大四的工程设计项目,而是要将工程设计训练深埋于整个本科阶段的培养方案,见诸于相关专业课的课程规划中。比如大一就需要对学生进行工程设计介绍,大二阶段给学生布置简单的质量和能量守衡设计任务,大三进行个体设备设计的训练,大四安排学生完成包括工艺和设备的设计项目。同时,大四设计项目是学生工程设计训练的重中之重。对学生项目的管理要科学有计划,项目评分要控制质量,力求整个专业每组学生的工程设计项目的难易程度相当,以保证评分的一致性。IChemE认证的这些工程设计要求与中国工程教育的国际化改革理念不谋而合。国际化的化学工程教育提倡学生的工程设计训练不要纸上谈兵、脱离工程实际。学生在工厂实习中应多参与生产环节,而不仅仅是走马观花的参观,以加深学生对化学工程的理解,提高他们的动手能力。同时,学校要主动与企业联合,启动合作培训项目,有条件的学校,应建立综合的工程训练中心,锻炼学生的设计和制造能力。IChemE认证在国内的开展,可以成为这些工程教育理念得到系统实施的强大推动力。教师是实施工程教育改革的重要一环,教师素质的高低也直接影响到教改的质量。目前国内高校青年教师普遍存在工程实践经历少、项目设计经验缺乏的情况,因此很难做到联系工程实际问题开展教学,造成在教学时更多的是理论到理论,培养的学生往往缺少解决实际问题的能力。因此,化工教育改革强调在强化学生的工程教育同时,也要注重青年教师的工程实践训练。而IChemE倡导来自企业的会员到高校讲学,或邀请杰出校友和工业界朋友以讲座方式向学生和教师介绍工程技术应用实例,以弥补高校教师工程实践方面的不足,在拓宽学生工程认识视野的同时,也为青年教师提供了工程实际的学习机会。
四、结束语
1围绕专业应用型人才特点,构建实践教学体系
1.1应用型本科人才要求
根据现代化学工业的特征及社会对化工人才需求的趋势,应用型高校化学工程与工艺专业的目标是培养化学化工理论基础扎实,实践动手能力、自主学习能力、创新能力及外语与计算机应用能力较强,适应化工、冶金、能源、轻工、医药、环保等部门从事工程设计、技术开发、生产技术管理等方面工作的应用型高级工程技术人才[2]。为了实现上述目标,化学工程与工艺专业应用型本科人才应具备的基本素质与专业能力包括7个方面:①树立正确的世界观,具有良好的人文精神、科学素养,能处理好人与环境、人与社会的关系;②掌握化学工程与工艺的基本理论和基本知识;③掌握化学装置工艺与设备设计方法,掌握化工过程模拟优化方法;④具有对新工艺、新产品、新技术和新设备进行研究、开发和设计的初步能力;⑤了解化学工程的理论前沿,了解新工艺、新技术与新设备的发展动态;⑥掌握文献检索的基本方法,具有一定的科学研究和实际工作能力;⑦具有创新意识和独立获取新知识的能力[2]。因此,根据现代科技和生产的发展需要,以服务地方经济社会发展为目标,把握高等教育规律和化学工程与工艺专业特征,制定化学工程与工艺专业应用型人才培养方案。在人才培养方案制定的过程中,合肥学院借鉴德国应用科学大学培养应用型人才成功经验,非常重视企业的作用,将企业要求与学生的培养相结合,构建理论教学与实践教学相统一教学体系,确定了以“面向企业、立足岗位、注重素质、强化应用、突出能力”为指导思想的“应用型”人才培养模式。理论教学体系体现“三个服务”原则:基础理论教学要为专业技术课教学服务,理论教学为提高学生综合素质服务,把素质教育贯穿于教学全程,为培养学生具有独立分析和解决实际问题的能力服务,注重培养学生对技术成果的吸纳和综合应用能力。建立与培养目标相适应的实践教学体系,形成基础实训、专业实训及校内、外实训教学相结合的综合实训教学一体化,完成实训教学。促进学生掌握专业技能,实施“四年九学期制”,提高学生就业竞争能力。
1.2化学工程与工艺专业人才要求
化学工程与工艺专业是为了适应新世纪化学工业的发展而设置的,是由原来的化学工程、有机化工、无机化工、高分子化工、精细化工、煤化工、工业催化等专业合并而成的宽口径专业,覆盖面宽、涉及领域广[3]。该专业具有两大特色:一是覆盖面广。研究领域涉及无机化工、有机化工、精细化工、材料化工、能源化工、生物化工、医药化工、微电子化工等诸多领域;二是工程特色显著。该专业以化学工程与化学工艺为两大支撑点,化学工程主要研究化工过程及设备的开发、设计、优化和管理。化学工艺则研究以石油、煤、天然气、矿物、动植物等自然资源为原料,通过化学反应和分离加工技术制取各种化工产品。化学工程与工艺专业涉及的工程放大技术、系统优化技术和产品开发技术,不仅在化工领域,而且在医药、材料、食品、生工等众多相关领域均大有用武之地。因此,化学工程与工艺专业培养的学生应有较强的工程能力和工作适应性,需掌握化工生产技术的基本原理、专业技能与研究方法,具有从事化工生产控制、化工产品和过程的研究开发、化工装置设计与放大的初步能力[4]。
1.3应用型化工人才实践教学体系构建
高等工程教育强调综合素质的基础作用和工程素质的定型作用。培养应用型化工特色人才,核心就是培养实践能力强的应用型人才。以培养应用型人才为目标,以科学发展观为指导,遵循教育教学基本规律,坚持育人为本,教学为纲,根据学生需要,围绕学生能力拓展和知识结构构建实践教学体系。该体系由基本技能、专业能力、综合能力三层次训练组成,将课外创新活动和社会实践有机融合。借鉴德国成功的经验,培养学生工程设计能力、项目实现能力及创新能力。实践教学根据能力要求可分为3个层次:基础实践层、专业实践层、综合和创新实践层。基础实践层以强化“三基”,培养基础能力为目的,将基础化学实验分为3个层次和5个模块,构成一个彼此相连,逐层提高的体系[5]。通过化学专题研究训练,强化了知识和技能的综合性;认知实习在实践教学体系中处于承上启下阶段。学生在与自己相近或相关的岗位上经过认知实习,了解专业所需要的专业知识、能力、素质,有利于他们结合自己的兴趣,规划未来发展,在专业方向的选择、课程模块的选择上会更加理性。2周金工实习和1周电工电子实习,实现基础能力培养目标;专业实践层是在理论教学和基础能力培养的基础上,通过专业基础实验、课程设计、工程实训等实践教学的环节实现专业能力培养;综合和创新能力是对技术基础知识、运用专业知识解决实际问题能力和知识迁移能力的综合体现,反映学生整体素质。通过毕业实习、毕业设计(论文)等实践教学环节,配合第二课堂科技活动,达到培养专业技术应用能力的目的。总之,各层实践教学活动层层递进、相互渗透,达到培养目标规定的专业技术应用能力的要求。
1围绕专业应用型人才特点,构建实践教学体系
1.1应用型本科人才要求
根据现代化学工业的特征及社会对化工人才需求的趋势,应用型高校化学工程与工艺专业的目标是培养化学化工理论基础扎实,实践动手能力、自主学习能力、创新能力及外语与计算机应用能力较强,适应化工、冶金、能源、轻工、医药、环保等部门从事工程设计、技术开发、生产技术管理等方面工作的应用型高级工程技术人才[2]。为了实现上述目标,化学工程与工艺专业应用型本科人才应具备的基本素质与专业能力包括7个方面:①树立正确的世界观,具有良好的人文精神、科学素养,能处理好人与环境、人与社会的关系;②掌握化学工程与工艺的基本理论和基本知识;③掌握化学装置工艺与设备设计方法,掌握化工过程模拟优化方法;④具有对新工艺、新产品、新技术和新设备进行研究、开发和设计的初步能力;⑤了解化学工程的理论前沿,了解新工艺、新技术与新设备的发展动态;⑥掌握文献检索的基本方法,具有一定的科学研究和实际工作能力;⑦具有创新意识和独立获取新知识的能力[2]。因此,根据现代科技和生产的发展需要,以服务地方经济社会发展为目标,把握高等教育规律和化学工程与工艺专业特征,制定化学工程与工艺专业应用型人才培养方案,具体如图1所示。在人才培养方案制定的过程中,合肥学院借鉴德国应用科学大学培养应用型人才成功经验,非常重视企业的作用,将企业要求与学生的培养相结合,构建理论教学与实践教学相统一教学体系,确定了以“面向企业、立足岗位、注重素质、强化应用、突出能力”为指导思想的“应用型”人才培养模式。理论教学体系体现“三个服务”原则:基础理论教学要为专业技术课教学服务,理论教学为提高学生综合素质服务,把素质教育贯穿于教学全程,为培养学生具有独立分析和解决实际问题的能力服务,注重培养学生对技术成果的吸纳和综合应用能力。建立与培养目标相适应的实践教学体系,形成基础实训、专业实训及校内、外实训教学相结合的综合实训教学一体化,完成实训教学。促进学生掌握专业技能,实施“四年九学期制”,提高学生就业竞争能力。
1.2化学工程与工艺专业人才要求
化学工程与工艺专业是为了适应新世纪化学工业的发展而设置的,是由原来的化学工程、有机化工、无机化工、高分子化工、精细化工、煤化工、工业催化等专业合并而成的宽口径专业,覆盖面宽、涉及领域广[3]。该专业具有两大特色:一是覆盖面广。研究领域涉及无机化工、有机化工、精细化工、材料化工、能源化工、生物化工、医药化工、微电子化工等诸多领域;二是工程特色显著。该专业以化学工程与化学工艺为两大支撑点,化学工程主要研究化工过程及设备的开发、设计、优化和管理。化学工艺则研究以石油、煤、天然气、矿物、动植物等自然资源为原料,通过化学反应和分离加工技术制取各种化工产品。化学工程与工艺专业涉及的工程放大技术、系统优化技术和产品开发技术,不仅在化工领域,而且在医药、材料、食品、生工等众多相关领域均大有用武之地。因此,化学工程与工艺专业培养的学生应有较强的工程能力和工作适应性,需掌握化工生产技术的基本原理、专业技能与研究方法,具有从事化工生产控制、化工产品和过程的研究开发、化工装置设计与放大的初步能力[4]。
1.3应用型化工人才实践教学体系构建
高等工程教育强调综合素质的基础作用和工程素质的定型作用。培养应用型化工特色人才,核心就是培养实践能力强的应用型人才。以培养应用型人才为目标,以科学发展观为指导,遵循教育教学基本规律,坚持育人为本,教学为纲,根据学生需要,围绕学生能力拓展和知识结构构建实践教学体系。该体系由基本技能、专业能力、综合能力三层次训练组成,将课外创新活动和社会实践有机融合。借鉴德国成功的经验,培养学生工程设计能力、项目实现能力及创新能力,构建工程化的实践教学体系如图2所示。实践教学根据能力要求可分为3个层次:基础实践层、专业实践层、综合和创新实践层。基础实践层以强化“三基”,培养基础能力为目的,将基础化学实验分为3个层次和5个模块,构成一个彼此相连,逐层提高的体系[5]。通过化学专题研究训练,强化了知识和技能的综合性;认知实习在实践教学体系中处于承上启下阶段。学生在与自己相近或相关的岗位上经过认知实习,了解专业所需要的专业知识、能力、素质,有利于他们结合自己的兴趣,规划未来发展,在专业方向的选择、课程模块的选择上会更加理性。2周金工实习和1周电工电子实习,实现基础能力培养目标;专业实践层是在理论教学和基础能力培养的基础上,通过专业基础实验、课程设计、工程实训等实践教学的环节实现专业能力培养;综合和创新能力是对技术基础知识、运用专业知识解决实际问题能力和知识迁移能力的综合体现,反映学生整体素质。通过毕业实习、毕业设计(论文)等实践教学环节,配合第二课堂科技活动,达到培养专业技术应用能力的目的。总之,各层实践教学活动层层递进、相互渗透,达到培养目标规定的专业技术应用能力的要求。
摘要:随着我国经济的发展,化工产业进一步完善并在国民经济体系中占据了重要的位置,尤其是近年来科学水平不断提高的背景下,对综合性实践人才的需求越来越迫切。化学工程与工艺专业是我国职业化工教育领域中重要的学科,也是涉及广泛的一个专业,从人才培养的角度分析属于偏重工程实践的内容,符合我国化工技术人才培养战略。本文结合职业化工教育领域的发展现状,针对实践能力培养体系构建进行研究,并结合笔者经验提出合理的建议。
关键词:化学工程与工艺;工程实践;能力培养;体系构建
1化学工程与工艺专业现状分析
从发展历程来说,我国近代的化工产业远远落后于世界其他国家和地区,在人才培养方面存在很大的弊端。建国以后,为了改变这种现状,国内开办了很多职业化工教育院校以培养应用型人才。在所开设的专业中,化工工程与工艺专业是一门实践性强、动手能力要求高的学科,在教学目标中,强调学生的独立工作能力、独立自主能力和探索实验能力。从上世纪80年代以来,我国的化工类专业人才逐渐进入市场,在满足社会发展需求的同时,也逐渐反馈一些人才培养的改进信息。就现状而言,化学工程与工艺专业的教育体制依然需要改革,人才培养方式依旧需要深化,使之能够适应快节奏的现代化化学工业发展,满足市场经济体制下人才竞争的需求,提高企业在国际市场上的竞争力。
2加强工程实践能力培养的策略
(1)重视基础知识的掌握
化学工程与工艺专业具有较强实践性的特点,对于大部分学生而言,牢固的掌握基础知识,是日后提高自己的关键。从教学角度来说,从大学专业入门基础课程抓起,严格要求,特别是在基础实验动手能力方面要打好基础。结合专业特点而言,化学工程与工艺所涉及的基础学科包括化工原理、反应工程、化学工艺设备及化学物料基础管理等。如果忽视了基础知识的掌握,不但在真实工作中难以适应,也很难再有弥补的时间和精力。相对应地,基础知识掌握牢固,在安全、精细、稳定等操作层面会养成标准化的习惯,甚至不需要规章制度的约束就能够主动做好,促使工作效率大幅度提高。基于这一目标,要求教师在教学的过程中采取多样化的方式,让学生更多的接触到现实岗位环境。如借助多媒体手段,综合应用视频、动画、图片等,让现实中的具体形象呈现在学生眼前,比单纯地依赖课本去讲解、去想象要更有效果。例如,借助3D动画模拟的形式,对某一化工设备的工作原理展开讲解,通过不同角度、分解状态或透视功能,让学生了解工作状态中的机械设备状态;同时,也可以模拟不按照规章操作之后,可能发生的危险状况。而利用这种手段,可以举一反三,实现基础知识的强化。