前言:小编为你整理了5篇集成电路教程参考范文,供你参考和借鉴。希望能帮助你在写作上获得灵感,让你的文章更加丰富有深度。
摘要:
微电子器件作为电子科学与技术专业的核心课程,是学生学习理解后续专业课程的基础。为了符合学院应用型人才培养模式的需求,笔者对传统实验教学进行了改革,引入TCAD仿真软件进行实验教学,学生能形象直观的了解器件的制作流程及器件制备过程中相关参数对器件电学,光学性能的影响;带学生参观电子薄膜与集成器件国家重点实验中山分室,了解有机器件的制备测试流程。微视频,翻转课堂教学模式的引入,不仅提高了学生主动学习课程的积极性,也促进学生更好的理解课程的理论教学内容。
关键词:综合性实验;工艺流程;器件结构;软件仿真;有机器件
引言
微电子学综合实验的课程目的是让电子与科学技术专业的学生通过实验加深对半导体器件物理与工艺的理解,通过实验教学,深入理解半导体材料的物理特性,器件制备的工艺步骤,工艺条件对器件结构性能的影响,器件结构对器件电学,光学性能的影响。实验课程的开展可以有效提高学生对微电子器件理论课程的学习理解,为设计具有特定功能的器件和电路准备条件。学院目前传统的微电子学实验课程设置以验证性实验为主,实验简单,实验设备少,不利于开展综合型实验,也不利于学生更深入的学习理解课程内容。因此,对传统的实验项目进行改革是极具意义的。
一、传统实验项目及学时改革
微电子学综合实验授课学时40学时,共有10个实验项目。传统实验目的是帮助学生进一步掌握半导体材料的寿命、薄膜厚度的测试方法、测试器件的电流电压特性、温度特性、测量器件的开关时间、特征频率等。传统实验教学对学生深入理解理论课程有一定作用,实验设置基本以验证性实验为主,实验难度有限,不利于学生综合设计能力的培养,另一方面,由于仪器设备数量限制,每台仪器有4-5个学生循环使用,学生不能充分利用实验学时。因此,笔者经过反复教学尝试,提出了如下改革方案,传统实验项目依据课程的相关性调整为8个项目,每个实验项目学时缩短到2个学时。为了解决仪器数量不足,每次实验课同时开设2个实验项目,这样每台仪器人数可以控制在2人左右。一次课讲解2个实验项目,实验讲解时间太长,学生容易遗忘,教师需要反复讲解,没有太多时间给学生处理实验过程中遇到的疑难问题。为了解决这一问题,笔者对每个实验项目原理及操作的讲解录制成微视频,上传至学院数字化平台供学生下载预习,上课的时候利用多媒体循环播放,这样学生就可以根据视频教学完成实验内容,笔者也有足够的时间为学生解答实验过程中的疑难问题。教学方式的改革不仅取得了良好的实验效果,也大大缩短了实验学时,作者可以利用剩下的24学时开设TCAD仿真实验项目。
摘要:针对常规电路实验教学中存在的元器件参数固定、被动实验、工程实践能力培养不足等问题,研发了模块化电路实验教学平台,形成了“以学生为中心”、层次化的电路实验教学体系。几年的教学实践表明,该平台便于学生更好地完成个性化、探究性实验任务,提高学生的动手能力和创新能力。
关键词:模块化;电路实验;实验平台;自主设计实验
随着电路实验教学内涵建设的不断深入,对学生的动手能力和创新能力提出了更高的要求。为解决常规实验教学模式中元器件参数固定、内容单一、被动实验、工程实践能力不足、缺乏实验内容开放的环境等问题[1-2],设计开发了模块化电路实验教学平台。该平台按照资源共享、功能集约的原则,将目前大部分高校普遍使用的实验台、实验箱中的元器件分离出来,制作成分立的元器件模块,让学生可以根据自己的设计选取合适的模块,建构个性化的实验电路来完成实验。该平台自2017年秋季学期开始使用至今,获得了令人满意的教学效果。实践表明,模块化电路实验教学平台的建设满足新时代、新形势下对建设一流课程的要求,真正体现了“以学生为中心”、学生学习与发展成效驱动的教育理念,可以有效地帮助学生在当前已有的全开放自主学习环境下,更好地完成个性化、探究性实验任务。基于该平台的实验改革,完善了课程内容的高阶性和创新性,提高了学生主动学习的意识和创新能力,保证了电路实验课程的教学质量[3-4]。
1模块化电路实验教学平台研制的必要性
电路实验课程作为电类专业技术基础课,是电类专业培养方案中一门重要的必修课程。原有的实验方式通常是基于定制的实验台或元器件固定的实验箱进行实验,这种实验方式将大部分实验元器件隐藏到了面板内部,存在如下问题。一是学生对实际工程中的元器件和测量设备缺乏直观认识,不利于培养学生的工程意识和实际动手能力。二是元件配置基本固定,开设新的实验必须制作新的实验箱,需要花费大量经费。三是由于元器件之间不通用,导致开放实验室的使用效率和安全性降低。大部分学生无法完成自主设计创新性实验。基于上述问题,设计了模块化电路实验教学平台,它具有以下几个突出特点。第一,搭接电路全部为分立元器件的模块,元器件全部裸露,接线直观、清晰、方便,使学生进行开放自主设计实验时由漫无边际变得具有现实可行性。达到了每个实验项目都可以进行创新设计、每名学生都能自主实验的目标。第二,元器件参数覆盖范围全面。在其设计中,充分考虑元器件模块之间的通用性,使得一些复杂的综合设计型实验内容可在基础实验课程中引入。同时,考虑了模块之间连接的安全性,采用带护套的连接插孔和导线,经济耐用,接触良好,全方位助力学生完成自主设计实验。第三,实验教学资源的管理更加科学、规范、合理,后续的实验更新只需在已有模块的基础上增添一个或几个模块,可以节省大量实验经费。
2模块化电路实验教学平台的构成和功能
模块化电路实验教学平台包含56种模块和多功能电路连接底板,如图1所示。模块主要包括基本电路模块、综合设计实验箱模块(也称黑箱模块)、高电压实验模块等。这些模块既能在交、直流电路使用,也可在高、低压电路通用。
摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪.事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉.昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程.
关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理
1引言
物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础.纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展.正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程.按照教育部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时.然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程.他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时).试问这么少的课时怎么讲丰富、深奥的大学物理?怎么能够真正发挥出大学物理的作用?于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理.从《大学物理课程报告论坛》上获悉,这不是个别学校的做法,在全国具有普遍性.殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可.这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现.本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识.
2物理学是科技创新的源泉
且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化.这两次工业革命没有发生在中国,使中国近代落后了.本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉.1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线.直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6].伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞.CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置.当今,各医院都设置放射科,X射线在医学上得到充分利用.X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现.1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长.布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖.当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器.1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=9.11×10-31kg,电子荷电e=-1.602×10-19C.电子的荷电性引发了20世纪产生革命.1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展.1958年,美国的工程师基尔比制成第一批集成电路.1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器.80年代末,芯片上集成的元件数已突破1000万大关.微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄.到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性.
1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S軋,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7].电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小.利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8].GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现笔记本电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用.阿尔贝?费尔和彼得?格林贝格尔获2007年诺贝尔物理学奖.1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12].然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚.1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小.”提出著名的质能关系式△E=△m莓C2式中△m.表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量.爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的.”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变.核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降.后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行.2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%.截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为21.4千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标.核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机.利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量.那时,能源危机彻底解除.
高等工程教育作为培养工程科技人才的重要环节,与国家和产业的发展密切相关[1-2]。随着国家创新驱动发展战略、“一带一路”倡议和“中国制造2025”的进程,如何培养具有工程创新意识、工程实践能力和创新能力的复合型人才,已经成为国内高等教育领域最重要的任务[3]。为推动工程教育不断改革创新,以适应国家战略的发展需要和国际竞争的新形势,我国2016年加入了《华盛顿协议》[4-5],2017年提出了“新工科”建设的思路[6-11],强调培养目标为导向,注重教育成果产出及持续改进人才培养质量,实施以学生为中心的教学理念[12]。工程创新能力是学生在工程实践活动中综合素质的体现。实验教学是工程创新能力培养的启蒙环节,是工程教育中不可或缺的组成部分。实验教学是在一定的实验资源支撑下,以实验项目为载体,通过让学生循环往复地学习、模仿和积累,训练学生掌握实验技能的过程。实验教学需要内容优化、资源平台支撑和过程管理三位一体的协调运作[13]。教育部《关于2017—2020年开展示范性虚拟仿真实验教学项目建设的通知》要求“深入推进信息技术与高等教育实验教学的深度融合,不断加强高等教育实验教学优质资源建设与应用,着力提高高等教育实验教学质量和实践育人水平”。各高校已经和正在进行着诸多有益的探索[14-15]。为了适应当前经济社会发展对创新型人才培养以及高等教育实验教学改革的新要求,依托我校省级和部级计算机实验教学示范中心并联合我校国家级电工电子实验教学中心,在原有工作基础之上[16-18],以“计算机逻辑设计综合实验”课程急需的信息化实验教学内容为指向,依托现代信息网络技术,研发了模块化、层次化、多元化、系列化虚拟仿真实验教学项目以及虚拟仿真实验教学网络平台,拓展了教学内容的广度和深度,延伸了实验教学的时间和空间,积极探索线上线下教学相结合的个性化实验教学新模式,逐步形成教学效果优良、开放共享、运行有效的实验教学项目新体系,为培养具有扎实信息基础知识、强烈工程创新意识、较强实践动手能力和创新能力的计算机类专业创新型人才提供有力保障。
1教学体系构建
实验教学示范中心坚持课程建设与人才培养相结合、教学与科研相结合、理论教学与实验教学相结合、虚拟仿真与真实实验相结合的原则,构建了“123456”虚拟仿真实验教学体系,如图1所示。“123456”虚拟仿真实验教学体系包括:1个目标——以创新创业能力培养为目标;2个融合——通过第一课堂和第二课堂之间知识互补、机制互动的融合,优化整合优质教育资源;3个集成——着力打造数字逻辑理论课程、实验课程和特色拓展实践课程之间系统集成,从单元学习和设计、再到系统学习和综合设计的全过程教学;4个导向——引导学生通过研发或设计成果展现其成功自信、专业能力、为学情操和绩效责任等能力和素质;5个模式——通过探究式演示、观察和验证、反设计推论、网络学习和创新创业项目训练5种自主学习模式,完成知识学习、运用和能力训练;6个能力——培养学生的工程知识运用、方案设计开发、现代工具使用、工程社会分析(工程中的社会因素及工程对社会的影响分析)、团队沟通表达、项目工程管理6个方面工程实践和创新能力。依托省部级实验教学示范中心打造高起点教学平台,在教材建设、设备研发、项目开发、考核评价方面,开发高水平、高质量的优质共享教学资源,保证虚拟仿真实验教学体系高质量、高效率的运行,从而在专业技能、研究潜能、合作交流、项目管理方面能够实现全方位培养创新人才。
2教学资源平台设计
2.1设计原则。坚持以学生为中心、以实践为中心、以能力培养为中心的设计原则,以解决复杂工程问题为主线,引导科学思维为目的,把理论知识、实验技能以及创新意识融入到“计算机逻辑设计综合实验”课程的理论学习与工程创新实践教学当中,既要体现知识的综合性与工程创新性,又要体现能力与素质培养,遵循认识→理解→消化→实践→提升→创新的循序渐进认知流程。学生可根据已有的知识、技能、爱好以及工程创新意识进行理论知识学习与工程创新实践。通过以做带学、以学促做,激励自主科技创新学习,充分发挥自身探究能力特长,创造性地解决教师提出的复杂工程问题。2.2技术架构。计算机逻辑设计虚拟仿真实验网络平台(以下简称“平台”)包括理论学习、虚拟仿真实验、辅助功能和系统管理4个部分,如图2所示。平台基于Web技术构建,采用B/S架构.Net框架开发,插件为Multisim,选择SQLServer作为服务器后台数据库,托管校园网数据中心。客户端既可以在校内通过校园网直接访问仿真平台,也可以在校外通过Internet访问,支持500个并发用户。平台基于全局的实践教学观设计。在设计中,注重学生设计的规范性,如系统结构与模块构成,模块间的接口方式与参数要求;在调试中,注重电路工作的稳定性与可靠性;在测试分析中,注重分析系统的误差来源并加以验证;在学习中,注重对学生引导,加强学生对知识的理解、吸收、拓展和提升。2.3虚拟仿真实验项目。以急需的实验教学信息化教学内容为指向,将复杂工程问题和教研成果转化成示范性虚拟仿真实验项目。深入融合教研成果,依托信息技术,研发数量众多、内容丰富、类型齐全的虚拟仿真实验项目,与企业的真实案例和实用技术相当,提供工程氛围的实验教学条件,具有模块化、层次化、多元化、系列化特色,引导学生探索工程创新项目研发过程,掌握科学研究基本方法,强调人人都能成功,激发学生内在的学习动力,使学生由被动式学习变成主动式学习,以便加快工程创新人才培养。(1)逻辑测试实验。让学生熟练掌握逻辑门、编码器、加法器、寄存器、计数器等常用数字集成电路使用和测试,相比实物操作,可达到事半功倍的效果。(2)数字单元实验。让学生熟练使用逻辑门、编码器、译码器、触发器、寄存器、计数器、RAM、ROM、DAC、ADC等,进行简单应用电路的设计、理论计算、电路图绘制、仿真分析以及调试等全过程,具备分析和解决一般性工程问题的能力,养成实事求是的科学作风和认真严谨的科学态度。(3)数字系统实验。让学生熟练掌握常用数字系统、数字式控制器、数字式电子仪器、接口与数据通信等系列工程项目所涉及的学习研究、方案论证、系统设计、仿真分析、设计修改、实验样机制作、设计总结等全过程,具备利用数字逻辑技术知识构成数字逻辑系统的意识,能够应用数字逻辑技术的基本原理对工程复杂问题进行分析和设计,熟悉和掌握科学研究的基本过程及方法。2.4教材编写。为了拓展教学内容的广度与深度,编写与课程相关的工程教育系列教材,如《数字逻辑与仿真设计》《数字系统实验设计与指导》《数字电路实验与实践教程》等。新教材具有可读性、实用性和技术性,让学生感到学有所值、学有所用,无论是在课堂上学习,还是在课外自学,都能在一定程度上帮助学生学习掌握工程基本要素、工程技术设计方法和分析方法。2.5服务方式。(1)在实验的时间、空间、内容和仪器设备方面为学生全面开放。互动可视化操作贯穿于全过程中,实现自主学习、自主实践、自主创新。(2)为课堂教学、远程教学、学术交流提供有力支持。(3)让其他高校学生和社会上的学习者分享学习机会。(4)为各种竞赛培训、个性化培养提供便利,打下坚实基础。
3运行机制
平台提供的虚拟实验环境近乎真实情境,与实际工作相似,能够激发学生实验兴趣和学习动力。学生能够亲自动手接触电路,边学习、边设计、边实践,完全沉浸在现实的学习、工作情境中。虚拟仿真实验教学整体实施过程包括实验准备、实验仿真、实验总结和自我评价4个阶段,经过21个具体环节和步骤。3.1实验准备阶段。(1)实验需求分析:通过在线教材或者互联网自学,查阅与实验题目相关的背景资料,进行理论知识、实践技能等方面准备。(2)方案设计与论证:学习教材的相关内容,还可以查阅其他设计方案资料。(3)技术性能参数设计:选用教材中给出的数据,还可以自行调整数据。(4)电路结构设计及理由:按照教材中指定的去做,还可发挥自身创造力。(5)理论推导:按照教材指定步骤,进行公式推导及理论计算。(6)实验设计报告编写:归纳整理步骤(1)—(5)所形成技术资料,完成实验设计报告编写工作。3.2实验仿真阶段。(7)电路下载:在线浏览、下载虚拟仿真电路,进入虚拟仿真实验环境。(8)电路检查:按照设计报告或教材,严格仔细检查电路及线路连接。(9)仪器仿真数据测量:参照教材,选择合适的测试点,接入相应的仪器仪表,仪器参数设置,运行电路,观察测试点波形和状态变化,记录测量数据。(10)实验分析:对实验数据、波形、曲线进行认真仔细分析、研究,判断设计的合理性、正确性以及存在的问题等。(11)设计修改:以达到电路性能指标要求为目的,或适当提高技术性能参数。(12)电路布局调整与子模块电路生成:规范或完善电路设计,并为进一步设计提供便利。3.3实验总结阶段。(13)实验过程描述:主要包括设计方面、操作方面、分析方面等环节。(14)实验数据整理:整理实验数据,输出波形,绘制曲线,要求实验数据表格规范,波形、曲线图清晰、全面,且大小适中。(15)实验结论:利用数据、波形、曲线,阐述设计的技术性、改进性、创新性等。(16)技术讨论:围绕实验过程、改进性、建议等展开讨论。(17)实验收获:阐述宏观知识、技能等方面的收获、水平和提高。(18)实验情况报告编写:归纳整理步骤(7)—(17)所形成技术资料,完成实验情况报告编写工作。实验报告=实验设计报告+实验情况报告。3.4自我评价阶段。(19)实验报告成绩:参照实验报告评分指标体系,自行估算得分情况。(20)实验操作成绩:参照实际操作评分指标体系,自行估算得分情况。(21)实验成绩:实验报告分值100分,实验操作分值100分。实验总分=报告分数×40%+操作分数×60%。成绩等级:90~100分为优秀,80~89分为良好,70~79分为中等,70~69分为及格。
【摘要】《计算机应用》课程是我校针对专科层次学生开设的一门职业素质必修课,理清其教学思路,才能真正把握整个教学过程,提高教学质量。本文围绕《计算机应用》课程的四大实施要素,对该课程的教学思路进行了深入的分析。‘’‘’
【关键字】计算机应用;教学思路;教学指导
作为教学实施的主导者,每位教师都应该在教学开展前理清一条清晰的、有效的教学思路,才能在一门课程的教学过程中把握方向,从而获得一定的教学效果。另外,一门课程的教学思路不应该是固定而不能变化的,要能够因教学对象、具体教学过程的情况变化而进行适当调整,以适应不同的人才培养目标、实现不同的人才培养需求。本文针对《计算机应用》课程,从课程定位、教学目标、教学内容、教材、教学参考资料、教学方法与手段、学生学习方法的指导等多个方面,详细论述了这门课程的教学思路。
1课程定位和教学内容
1.1课程定位
《计算机应用》课程是面向我校计算机专业和非计算机专业专科层次学生的一门职业素质必修课,是培养信息时代高素质人才的基础性课程。该课程的任务是使学生具有信息社会背景在所必须的信息技术方面的基础知识,使用计算机和网络的基本知识,充分认识现代化信息技术对社会经济发展、科学技术进步以及社会整体环境的深远影响。在学习本课程后,学生能主动并积极地提高自身的信息素养;能掌握使用计算机进行信息的获取、加工、传播和应用的能力;能适应信息社会的网络环境,为今后的主动学习、终生学习和适应信息化工作环境奠定一个扎实的基础。
1.2教学目标