公务员期刊网 论文中心 纳米技术范文

纳米技术全文(5篇)

前言:小编为你整理了5篇纳米技术参考范文,供你参考和借鉴。希望能帮助你在写作上获得灵感,让你的文章更加丰富有深度。

纳米技术

纳米电子技术发展与趋势的探讨

1纳米电子技术的研究动态和核心技术

纳米电子技术的研究动向主要有基础的理论知识、材料、电子元件和电子系统等,以及一些附加的加工技术。纳米电子技术能够实现元件加工的集成化处理,能够按照顺序进行集成化的加工,在对元件进行加工的时候,一般采用的是半导体材料,将固定的电子器件和集成电路结合起来,通过高速率的条件,生产出所需要的纳米材料,然后形成一定的功能,最终形成大规模的电路。纳米电子技术在研发完成后需要测试,待测试通过后就可以投入使用,对元件的结构和性能进行分析,运用显微镜等器材分析纳米电子材料的微观结构,然后实现精确的测量,使纳米电子材料能够在大型的器械中使用。也可以运用电学原理,通过对纳米电子材料信号的测试,借助半导体的测试,运用显微镜进行扫描,这种测试方法可以起到抗干扰的效果,即使纳米电子材料的电流比较微弱、环境比较复杂,也可以进行精确的测试。

2纳米电子技术的发展方向和趋势

现在,很多国家都在极力开发纳米电子技术,将这项技术应用到生活中,通过研究纳米材料、元件和系统,从而促进这项技术的发展。

2.1新型的电子元件

现在,纳米技术的研发越来越多,很多新型的电子元件出现,在世界范围内都开始研究纳米技术,美国耶鲁大学和韩国的很多高校联合研究了分子晶体管,相继美国高校又开始研发纳米处理系统,实现了自动的编程技术,这表明今后的计算机发展会朝着纳米技术的方向发展,然后,美国的科学家劳伦斯又通过不断的实验探究出了纳米电子系统,将这一系统与生物技术结合起来,能够实现对三磷酸腺苷的控制和驱动,同时将生物技术与纳米电子晶体管联合使用,将人体的神经系统能够得到有效的连接,实现了无缝的电子界面。通过运用显微镜技术,能够观察原子的动态,研发出了以量子为单位的晶体管,这样的设备可以通过人工来制造,结合半导体技术,研发出纳米晶体管,纳米电子晶体管朝着能耗低、高效率的方向发展。在今后的几十年内,电子技术的发展会越来越迅速,很多电子元件将会被研发出来,能够提升数据存储的效率,同时能够促进计算机技术的发展。

2.2石墨烯

点击查看全文

物理技术中节能环保建筑的应用

摘要:社会经济的发展,人们的生活水平得到显著提升,对于能源需求量也逐年增多,能源危机是目前各个国家都非常关注的问题,建筑领域消耗的能源较多,如何实现建筑的节能环保是当前研究的重点难题。就物理技术在节能环保建筑中的应用进行分析。

关键词:物理技术;节能环保;建筑领域

0引言

随着工业化发展的深入,能源危机愈演愈烈。节能环保成为世界发展的主题。作为能源资源紧缺的国家,我国政府提出了建设能源节约型和环境友好型社会的要求。在建筑领域内,节能环保成为建筑行业的发展趋势。本文重点介绍几种应用于建筑行业并具备明显节能环保作用的物理技术。

1纳米技术

纳米技术是建立在混沌物理、量子力学、分子生物学以及计算机技术、微电子技术和扫描隧道显微镜技术基础上的综合科学技术,在此基础上衍生出纳米物理学、纳米生物学、纳米化学、纳米电子学等多种学科。纳米加工技术也类属于纳米技术,能够直接以原子或分子来构造具有特定功能的产品,具有传统材料无法比拟的表面和体积效应、介电效应等特殊性质,用纳米技术生产的纳米材料成为工业领域的尖端科技产品,在建筑行业也经常会用到纳米技术和纳米材料。首先,人们利用纳米技术研制成功了智能混凝土材料,不仅大幅提高了混凝土材料的强度和耐久度,对碱骨料的反应也有一定的抑制作用;而且,受纳米材料本身所特有的量子尺寸效应和光催化效应的影响,纳米混凝土材料可以分解空气中的有毒物质,对空气和居住环境具有净化的功能。人们甚至还研制出了能够智能报警和具有自我修复功能的纳米混凝土材料。其次,纳米技术还可以被用来制作弹性和延性水泥、抗菌陶瓷、光催化涂料和抗菌塑料等高性能节能环保产品以及电磁屏蔽玻璃、太阳能电池玻璃、保温隔热玻璃等系列节能玻璃材料,不仅降低了能源的消耗,而且减少对环境的污染,是节能减排效果良好的新型建筑材料。

2太阳能技术

点击查看全文

物联网技术的实用性探究

1物联网技术和研究

1.1智能技术

智能技术是将一个智能化的系统植入物体中,使物体具备一定的“主观能动性”即智能性,能够与用户进行沟通,是物联网的关键技术之一。目前的智能技术研究包括人工智能的理论的研究、虚拟现实及各种语言处理的入机交互技术与系统、可准确性定位跟踪的智能技术与系统、智能化的信号处理。

1.2纳米技术

纳米技术,是研究结构尺寸在0.1nm-100nm范围内材料的性质和应用,纳米技术能使微小的物体也能进入物物相关的网络,进行信息的交互,这使物联网真正意义上做到了万物的互联。可见纳米技术必然在物联网中扮演着重要的角色。

1.3GPS

目前最成熟的全球定位系统给物联网提供了强大的技术支撑,使物与物之间的准确定位成为可能。GPS技术以其高精度广泛等特点为物联网中的定位追踪提供了便捷的服务,使物联网功能更加完备。

点击查看全文

纳米材料在生物医学中的运用

【摘要】近些年来纳米材料在生物成像、癌症早期诊断和药物运载等领域的应用越来越广泛,为医学诊断和治疗提供了有力的物质基础和技术支持。但纳米材料在生物医学上的应用存在一些安全性问题,因此亟需开发消除纳米材料生物毒性的方法以减少对生物体和生态环境的破坏。本文将对纳米材料在生物医学的诊断和治疗上的应用以及其安全性问题展开讨论。

【关键词】纳米材料生物医学生物安全性

一、引言

纳米材料主要是指结构单元在纳米尺寸范围(1~100nm)内的一类材料,由于表面原子具有很大的比表面积,其表面能极高,从而获得较多的表面活性中心,化学性质十分活泼,因此纳米材料通常具有特异的性能。纳米材料的发现始于20世纪80年代初期,随后人们逐步发现其在光学、磁学、电学和力学方面具有比普通材料更加优越的特性,进而得到了多个领域的关注并逐渐发展起来,广泛应用于生物医学、环境、航空航天和石油钻探等领域的研究。尤其是在生物医学方面,基于纳米技术的药物和传感器已经应用到实际的医学应用中,而且能够得到是理想的治疗和诊断结果。通过从纳米尺度进行精确地制备纳米材料,人们打开了更小的微观世界,特别是生物体细胞层面上的化学反应都发生在纳米的度,纳米材料的使用能有效地检测或调控微观的生理和病理过程。纳米材料发展对医学诊断和医学治疗具有重大意义,已经成为医学界关注的热点和前沿,具有广泛的应用前景和产业化发展空间[1]。

二、纳米材料在医学诊断中的应用

2.1纳米生物传感器

纳米生物传感器是一种由纳米材料制成的检测装置,主要根据将检测到的信息按一定规律变换为电信号或以其他的形式输出,使人们能定量定性地分析检测物质。生物传感器的研发中人们使用纳米材料,能够提高生物传感器的灵敏度以及检测范围。同时以纳米材料制备的新型传感器具有稳定性好,成本低,生物相容性好等优点,在医学的临床诊断方面得到了高度重视,特别是作为一项新兴的前沿技术,纳米生物传感器的研发能够进行早期癌症的诊断。纳米传感器可以利用高灵敏度的特点,在血液中可通过微小的电流变化反映出癌细胞的种类和浓度。这种对癌细胞进行的精确分析,有望实现特殊疾病的无创、快速诊断,今后人们只需将纳米材料注入人体内,便能在短时间内完成确诊。

点击查看全文

生物医学纳米材料作用

1纳米材料

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1~100nm)或由纳米粒子作为基本单元构成的材料.纳米粒子也叫超微颗粒,处于原子簇和宏观物体交界的过渡区域,这样的体系既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,与常规尺度物质相比具有表面效应、小尺寸效应和宏观量子隧道效应等[1-2].纳米技术是通过对纳米尺度物质的操控来实现材料、器件和系统的创造和利用,例如在原子、分子和超分子水平上的操控.纳米技术应用于生物领域产生了纳米生物技术,纳米生物技术的发展已经对医学产生很大的影响,过去的几十年中,市场上已经出现基于纳米技术的一些药物,许多具有药物诊断和药物传输功能的纳米材料都可以应用到生物医学中.纳米技术打开了微米尺度以外的世界,而细胞水平上的生理和病理过程都发生在纳米尺度,因此纳米技术将对生物医学产生深远影响.纳米生物技术和生物医学以及其他技术的关系如图1所示[3].本文仅对量子点、纳米金、碳纳米管、氧化铁和富勒烯等纳米材料在生物医学中的应用研究现状及发展前景做一综述.

2纳米材料在生物医学中的应用

2.1量子点

量子点(quantumdots,QDs)是一种粒径为2~10nm的半导体纳米晶,主要包括硒化镉、碲化镉、硫化镉、硒化锌和硫化铅等.与传统的有机荧光染料相比,QDs具有激发波长可调、荧光强度更高、稳定性更强、不易发生光漂白和同时激发多种荧光等优点.通过对多种量子点同时进行激发,可以达到多元化检测的目的,有利于进行高通量筛选.QDs的发射光谱随尺寸大小和化学组成变化而有所改变,因此可以通过控制QDs的尺寸和化学组成使得其发射光谱覆盖整个可见光区[4].随着QDs尺寸的减小,其电子能量的不连续性产生独特光学性质,因此,QDs可以作为荧光探针用于生物分子成像,进行生物分子的识别.Goldman等[5]利用亲和素修饰CdSe/ZnSQDs,通过亲和素-生物素化抗体的特异性结合形成荧光纳米粒子复合抗体,探讨了在蛋白毒素检测领域的应用前景.Genin等[6]以QDs为探针对半胱氨酸蛋白进行检测,检测时间可以持续到150s,检测机理是将QDs与有机荧光染料分子CrAsH、半胱氨酸依次结合,利用形成的复合体进行检测.Liang等[7]研究链酶亲和素修饰的QDs对mi-croRNA的定量检测效果,利用QDs发出的荧光信号对microRNA的含量进行测定,最低检测限达到0.4fmol.Shepard等[8]利用量子点和Cy3,Cy5荧光染料共同作用,对炭疽杆菌进行多元检测,大大提高了检测效率,与传统的双光色检测相比体系通量提高了4倍.杜保安等[9]采用水相合成法合成了Mn2+掺杂CdTe量子点,通过在CdTe量子点中掺杂Mn2+,进一步改良CdTe的发光性能及热稳定性,扩大了量子点的应用范围.聚乙二醇(polyethyleneglycol,PEG)因其容易和氨基、羧基、生物素等多种功能化基团反应而常用于QDs的表面改性,而且PEG还能够增加QDs的化学稳定性.研究发现,用低聚PEG-磷酸酯胶束包覆QDs后分散于水中,其荧光强度几周内都不会发生改变,若分散于磷酸盐溶液中,80h后荧光强度只降低10%[10].QDs特殊的光学性质使得它已逐步应用于光发射二极管、生物化学传感器、太阳能电池、生物分子成像和纳米医学等领域.

2.2金纳米粒子

金纳米粒子(AuNPs)具有独特的光学性质、良好的生物相容性、易修饰生物分子以及制备简单等特点,因此在生物传感、分子成像、肿瘤治疗和药物传输等生物医学领域得到广泛研究.Wang等[11]利用N-羟基琥珀酰亚胺修饰的AuNPs实时检测人体血液中链霉素和生物素的相互作用,发现经修饰后的AuNPs具有3μg/mL的低检出限和3~50μg/mL的宽动态检测范围,为构建全血中蛋白检测和细胞分析的新型光学生物传感器提供了思路.Huang等[12]将金纳米棒连接上表皮生长因子抗体后作用于癌细胞,发现金纳米棒附近的分子表现出更强、更敏锐和极化的拉曼光谱,这对于肿瘤的早期准确检测成像具有很大意义.Wei等[13]研究了AuNPs和紫杉醇对HepG2肝癌细胞凋亡的影响,发现AuNPs单独或与紫杉醇协同作用可以引起HepG2细胞凋亡,AuNPs可以增强紫杉醇对HepG2细胞的抑制和凋亡作用.Tong等[14]研究发现叶酸结合的金纳米棒在近红外光照射下可以破坏质膜,这是由于细胞内钙离子的快速增多进而导致肌动蛋白动态异常造成的.但是,关于AuNPs的研究还处于初级阶段,许多问题尚需进一步的深入研究.例如:如何制备各种形态和结构以及可控成分的AuNPs,如何在治疗过程中实现定向输送和释放的靶向性以及使AuNPs作为探针的信号放大以便用于生物检测等都需要进一步的探索.本课题组Liu等[15]研究了AuNPs对成骨细胞系MC3T3-E1的增殖、分化和矿化功能的影响,结果表明,20,40nm的AuNPs均促进MC3T3-E1细胞的增殖、分化和矿化功能,且呈现出剂量和时间依赖性.RT-PCR结果表明,20,40nm的AuNPs均促进runt相关转录因子2(Runx2)、骨形态发生蛋白2(BMP-2)、碱性磷酸酶(ALP)和骨钙素(OCN)基因的表达.结果显示,AuNPs能够促进MC3T3-E1细胞成骨分化及矿化功能,而且影响随纳米颗粒的尺寸变化有所不同.Runx2,BMP-2,ALP和OCN4种基因可能相互影响,从而刺激MC3T3-E1细胞的成骨分化.实验结果提示,与骨中羟基磷灰石晶体尺寸相似的AuNPs可能扮演了一个晶核的角色,从而刺激其周围细胞的增殖、分化和矿化,形成钙的沉积.随后Liu等[16]又研究了AuNPs对骨髓基质细胞(MSCs)增殖、成骨和成脂分化的影响,结果表明,AuNPs可以促进MSCs向成骨方向分化,抑制向成脂方向及成脂横向分化.结果揭示了AuNPs是如何进行细胞内活动进而影响骨髓基质细胞的功能,对合理设计用于组织工程和其他生物医学方面的新材料具有重要意义.

点击查看全文
友情链接