前言:小编为你整理了5篇运动力学研究参考范文,供你参考和借鉴。希望能帮助你在写作上获得灵感,让你的文章更加丰富有深度。
摘要:运动力学是研究物体运动规律的,通常指的是物体的运动.随着现代运动力学理论的不断延伸发展,其在很多领域已经有了比较深入的应用.基于此,在本文的研究中,主要对运动力学在机械结构设计中的应用进行论述,并结合一些实际机械设计案例,对运动力学的应用价值和作用进行分析,希望可以对相关机械结构设计领域对运动力学的科学运用起到一定的参考和启发作用.
关键词:运动力学;零部件链接;机械结构;设计应用;疲劳力学
机械结构设计过程中,会运用很多原理,其中运动力学原理发挥着非常重要的理论指导作用.在物理学的很多力学实验中,运动力学也是受到很多研究人员重视和关注的.可以说,运动力学作为机械科学与物理学科的一种连接纽带,通过科学合理的应用运动动力学,对于机械结构设计的改良和优化,具有十分有价值的指导意义.机械机构设计质量和效率的提升,离不开运动力学理论的支撑.因此,本文通过对运动力学进行深度解析,并将机械结构设计的要素进行系统归纳总结,结合一些实际案例,对运动力学在机械结构设计中的应用问题进行分析.
1机械结构设计在应用中的技术要素
机械结构设计是机械工艺技术革新的重要技术手段,而在结构设计中很多关键技术要素,正是决定机械机构设计水平的基础.运动力学在机械结构设计中,不仅要实现关键技术要素的改良优化,并且在设计工艺、生产效率方面也要得到提升.机械机构设计在几何层面、理论原理层面,要遵循精密设计技术的原则指导,保证零部件之间实现精细紧密的咬合,并保证咬合力得到一定程度的提升.在机械机构运动过程中,咬合力能够随着机械零部件的转动,而实现动态的变化,保持同机械运动作业要求相符合的力度要求.机械结构设计中要对不同的面进行优化,通过应用运动力学原理,保证每一个不同的面上的用力、收礼以及摩擦阻力等,在机械设备运转的过程中,达到和动态平衡变化.
2运动力学在机械结果设计中的应用
运动力学在机械结构设计中,有着很高的应用价值.从当前的实践应用情况来看,其价值主要体现在如下两个方面:
0引言
工业经济虽然在知识经济时代的来临和冲击之下,逐渐走向了式微的发展阶段,但这并非意味着在社会生活和经济生产中,已经失去了往昔的主导地位,仍旧存在着不可忽略的价值和功能,并在国家复兴的进程中,具有强大的助推作用。作为传统工业部门中的代表,机械制造业不但在经济发展的助推中,作用绝非可有可无,而且在当前科技创新的研究领域中,其平台作用也是不可小觑。在机械结构的设计原理中,运动力学在其中的干预作用最大,在物理学的实验活动中,也最受研究人员的重视和关注。
1机械结构设计的在应用中的技术要素
作为机械结构设计环节中的重要组成部分,结构设计中的关键要素,正是促进技术革新的重要手段之一。伴随着科研活动中的理论基础的日益夯实和技术应用范围的日趋扩大,物理学中的相关原理也逐渐拥有了充足的用武之地,在实际机械结构的设计中,不断满足着机械结构的符合要求,并促进生产水平的解放和提升。在机械结构设计层面的几何要素上进行分析,机械结构的设计原理,秉持着其精密的设计技术的指导和应用,在零部件之间能够实现咬合力的提高,并实现位置关系的明确定位和精密确定。在这种几何要素的关系体系之内,机械结构设计中最为关键的因素,便是不同的面,在这些不同的面上,通过完善和优化的考量,来保证在零件的不同接触面上,都可以进行合理的安排。
2运动力学在机械结果设计中的应用
运动力学在机械结构设计中的应用价值,主要体现在2个方面:
(1)在零部件的链接方面。在这一环节中,诚如上文中论述的那样,存在着直接链接和间接链接的差别,由于存在着应用方面的差别,所以在运动力学的应用潜力上,也存在着截然相异的表现。但是作为机械设计中的核心要素,运动力学所产生的抽象指导上,从根本上也是如出一辙。例如,利用力矩的变化,通过计算不同联接点的摩擦力和压力,从而可以了解到不同的节点的压力和零件的材料选择等。在力学计算和相应的选择性指标的衡量下,构成决定零件的选材和位置的排列组合等等,都体现出这一点。
摘要:本文将围绕柔性机械臂动力学建模与控制进行研究,注重柔性机械臂系统描述以及柔性机械臂数学模型的构建,旨在保证柔性机械臂系统的完整性,为后续研究工作奠定基础。
关键词:柔性机械臂;动力学建模;动力学控制
随着现代化科学信息技术的不断发展,柔性机械臂的功能越来越突出,详细的对柔性机械臂动力学中PID控制器、反馈线性化控制、奇异摄动法控制、变结构控制以及反演控制法进行研究,从而提升其应用水平。
1柔性机械臂动力学建模研究
1.1柔性机械臂系统描述。柔性机械臂系统主要包括柔性关节机械臂传动系统、柔性关节机械臂传感系统、柔性关节机械臂控制系统等几个方面。其中,柔性关节机械臂传动系统是机电系统的重要组成部分,是保证机电设备安全运行的关键,柔性关节机械臂传动系统包含的方面具有多样性,主要包括连杆结构、链传动等。柔性关节机械臂传感系统是提升系统品质的关键,其评价指标具有多样性,主要包括分辨率、温度范围、震动能力等,其中动态响应特征为关键的评价指标。柔性关节机械臂控制系统中的底层控制系统可以对数据进行整合处理,为了保证传输到驱动电机控制信号的准确性,要对数据的反馈程序进行优化,其中底层控制系统主要是可编程逻辑门阵列发挥作用。上层系统的数字处理器的处理数据信息的速度较快,可以准确的掌握柔性机械臂系统的具体位置,保证数据传输结果的精确性。1.2柔性机械臂数学模型。柔性机械臂动力学建模的前期需要建构柔性机械臂数学模型,根据柔性机械臂动力学方程的运算情况得出柔性机械臂系统的势能以及动能表达式,其中,影响柔性关节机械臂控制系统的因素具有多样性,主要包括重力势能以及弹性势能。假设有T个自由度的柔性机械臂,需要对2T个刚体的动能进行计算,其中2T中主要涉及T个电机转子动能以及T个刚性连杆的动能。在列动能方程式时要将连杆的位置矢量以及栏杆的惯量矩阵充分考虑在内,并根据电动机转子转动速率推算出V-1个连杆的相对速率。在柔性机械臂动力学建模的环节中,要对关节减速比设定为N=160、电机转子转动惯量、电机转子质量、电机减速前以及减速后的角度、连杆质量、连杆转动角度进行设定。
2柔性机械臂动力学控制分析
2.1PID控制器进行控制。PID控制器在实际的应用环节中操作简单方便并且实用性较强,主要应用在刚性机械臂中,PID控制器为了在柔性关节机械臂中充分发挥作用,要借助重力补偿的优势完善柔性关节的状态反馈结构,将状态变量进行优化,其中状态变量主要包括电动机转动角度以及时间求导,可以有效的对柔性关节机械臂进行轨迹控制,有利于保证柔性机械臂系统的安全运行。在应用PID控制器的环节中,需要将关节柔性以及柔性补偿等影响阴因素考虑在内,从而提升柔性机械臂系统的性能[1]。2.2反馈线性化控制。反馈线性化控制的应用已经得到了广泛的认可,反馈线性化控制主要是借助状态空间表达式的坐标变换,对其线性系统进行优化的过程,逐步形成新等效系统。其中,反馈线性化控制具有线性系统稳定的优势,可以有效的对柔性机械臂进行控制。在状态向量的变换环节中,要借助柔性机械臂动力学模型,对其进行控制。当反馈线性化等效发生变化时,要计算出位置对时间求导后的速度,并借助非线性观测器进行控制[2]。同时,由于反馈线性化控制的系统模型的准确性较低,在实际应用环节中,对使用效果的影响较大。2.3奇异摄动法控制。奇异摄动法控制应用速度较快,其中主要涉及边界层法。边界层法是对高阶系统进行分解,从而降低系统方程的阶数,提升慢变系统以及快变系统的相似度。在从高阶系统转变为低阶系统中,要结合慢变系统以及快变系统自身变化的实际情况设计出科学的控制对策。当奇异摄动法在柔性机械臂系统中应用时,要将连杆状态以及关节的弹力设定为慢变量、快变量。其中,奇异摄动法控制需要考虑的因素较少,但是控制器参数的准确性较低,在实际的应用环节中控制效果较差,对柔性机械臂的系统产生影响[3]。2.4变结构控制。变结构控制的稳定性较差,与系统的变化状态有关。在闭环系统结构的变换过程中,要借助切换函数的优势,将切换前与切换后的性能进行融合。其中滑模变结构是变结构控制的一种,在控制量切换的环节中保证系统处于正常运行的状态,一定程度上与切换函数有关。滑模变结构是可以准确的对控制对象的状态变量进行控制,状态轨迹会出现小幅度的运动。同时,滑动模态在运行的环节中不易受到外界因素的影响,有利于保证系统的安全运行。其中,变结构控制可以高效的对柔性机械臂系统进行控制,当柔性机械臂系统在运行时,变结构控制可以降低系统负载的变化,并在机器人中广泛应用[4]。
一、具身经济学研究方法;社会动力学范式
已经有研究探讨了模仿在发生躯体社会互动之中或之后对人的偏好和经济决策上的影响,表明了躯体动作在经济学中的作用。更好地理解运动行为是如何影响经济决策的一个可能性是把社会神经经济学与模仿的实验范式进行对比。在社会动力学的范式下进行社会神经经济学实验可能是探索这一目标的一个选择。社会动力学的范式是一个新颖的范式,它可以获得实时的自发躯体吸引和运动黏合,在个体交换信息的时,两人一组执行一个运动,每个人都按照他们自己的频率和振幅运动,不带其他的步调。被试没有得到任何关于彼此运动方式的的指导:因此可能出现的人际沟通协调模式是无意识的。当(视觉)信息没有发生交流时,个体独立地按照他自己的频率运动。然而,当他们分享他们之间的信息时,他们无意识地采取了一个同步的人际协调模式,他们的活动在时空上和频率上出现了无意识匹配。当他们停止分享信息,他们的运动频率就会出现偏离。有趣的是当这种信息的交流结束了后,他们的运动频率没有回到初始频率。仔细观察数据发现他们各自的个体运动依然受他们参加过的躯体社会互动的影响。结果清晰地表明了临时性相位锁定和频率锁定的关联(coupling)在后续行为中的一致性影响,即当人们不再存在于彼此面前的时候:某种运动社会记忆仍然存在。因此我们可以猜测是不是在他们互相交换信息上和在躯体上互相影响彼此时,自发同步的方式经验性的改变了他们经济决策的方式。
二、社会动力学范式神经生理学研究成果
此外,社会动力学范式的神经生理学版本,双脑电图仪系统揭示了一个新的脑波律动,社会互动的某种“神经中枢”(neuromarkers)。被称作Phi,频率在10赫兹的波定位在右中央顶皮层,随着个体间协调行为的显现和结束而出现和消失。这一发现无疑在大脑水平上解释了从不协调的社会互动到协调的社会互动的转变。在一项后续研究中发现当人们有意地去协调时,Phi的量级更大。神经系统版本的社会动力学范式提供了一个新的视角,解决了关于前面报告的从不协调行为到协调行为的转化是否在脑水平上也有一个相似的行为这一问题。当研究个体参与社会经济游戏时这样的一个结果在社会神经经济学中是有着极大的相关性的。社会协调性的神经中枢的存在表明了人们协调与否。它量级的大小可能揭示了人们模仿和协调意图性强弱。从而为具身神经经济学打开了新的研究视野。
三、小结
过去的十年间,认知神经系统科学家对危急关头的心理状态的神经生理基础感兴趣,他们已经注意到和使用了来自于被良好控制的实证范式研究的结果中的具身因素的强烈影响。我们建议进一步发展具身经济学背后的理论基础是相当明确的:为什么要阻止经济行为人了解彼此在躯体上的存在呢?如果躯体影响在决策动力上没有一个显著的效应的话。我们坚信通过考虑我们整个躯体在经济交换中的作用,而不仅仅是大脑的作用,经济学会更加接近真实的生活。换言之,当‘躯体说话时’,经济学家恐怕最明智的做法是去细心的倾听……
作者:高友明 单位:湖南师范大学教育科学学院
一、优化教学内容,突出基本概念和理论,重视理论联系实际
(一)静力学部分
静力学主要研究受力物体平衡时作用力应满足的条件,同时也研究物体受力的分析方法以及力系简化方法,是理论力学基础重要的部分,也是后续课程的基础。因此,讲授该部分时要适当增加课时,而对大学物理中已经讲过的一些概念,可以引导学生以复习的形式加深对这些概念的理解。约束反力是理论力学中比较重要的概念,而大学物理学中没有提过,因此必须给学生讲解透彻。但是单纯讲概念比较抽象,引入工程实例后学生会易于理解与接受。例如物体受力分析和平衡方程是静力学的基础部分,可以对工程实例(比如活塞连杆机构)进行分析,得到力学模型,除外力外根据约束类型画出机构各部分的约束力,然后列出平衡方程并求解,这样既可以提高学生力学建模的能力,也有利于提高学生应用平衡方程解决问题的能力。对摩擦问题主要讲清存在摩擦时的平衡范围和临界状态的概念,重点是存在摩擦时平衡问题的解法,滚动摩阻可不举例。
(二)运动学部分
运动学部分主要研究物体运动的几何性质,为学习动力学打基础,同时也为分析机构运动打下了基础。这部分关于点的运动和刚体的简单运动是基本内容,可以通过向学生提出问题,然后让学生自学,最后在课堂上对实际问题进行讨论总结,这样可以培养学生自学能力和解决问题的能力。该部分的重点和难点是点的合成运动和刚体平面运动以及运动学的综合运用。点的合成运动要结合实例强调“一个点、两种坐标系、三种运动”,特别要讲清牵连运动的概念与动坐标系的适当选取。而关于速度合成定理和加速度合成定理的推导限于课时限制,由学生课下自行推导,课堂上强调应用。尤其当牵连运动是定轴转动时,牵连运动和相对运动相互影响产生了科氏加速度,教材上的理论推导较抽象,对农业机械化学生来说感到茫然,通过举实际生活中的例子,比如田径比赛中的长跑项目,运动员都是按规定向左转弯;又比如在俄罗斯,向北冰洋流去的那些河流河床的东岸总是容易被冲刷,这都是由于科氏加速度的原因。运动学的综合应用是运动学中的难点,这部分内容可通过刨床机构的实例进行讲解。
(三)动力学部分
动力学部分主要是建立受力和运动之间的关系,质点动力学方程是该部分的基本内容,动量定理、动量矩定理和动能定理都是建立在质点动力学基本方程基础上的,关于这三大定理的推导可略讲,而对质心运动定理、质点系相对质心的动量矩定理以及普遍定理的综合应用则结合具体的工程实例进行讲解。比如讲解动量守恒时,可以偏心转子电动机为例,向学生提出以下问题:电动机工作时为什么会左右运动?这种运动有什么规律?会不会上下跳动?带着这些问题,学生听课时就有了目标。对于普遍定理的综合应用部分是动力学中的难点,要给学生讲清解题思路,通过一题多解的方式提高学生解决问题的能力。达朗贝尔原理是用静力学方法求解动力学问题,虚位移原理是用动力学方法求解静力学平衡问题。